The Big Picture

; Subroutines provide a way to associate a name with a set of
Subroutines Statements.

Subroutines are an organizational tool.
* used to manage complexity
- facilitate reuse of code

The idea of a black box is key.

« subroutine contract makes it possible to separate what
the subroutine does and how to use it from how it does its
job

CPSC 124: Introduction to Programming + Spring 2024

The advantage(s) of subroutines are that... (choose all that apply) O deC|aI‘atI0n —to deﬂne the SubI’OUtIne name
Code can be used at many places in the program, but it only has to be written once. o . .
* e prog Y modifiers return-type subroutine-name (parameter-list) {
i\(Programs are easier to develop because complex tasks can be broken into simpler components. statements
* Programs are easier to understand because a name can be used instead of a list of instructions. }

access modifiers

* You only have to understand the contract of the subroutine in order touse it.) A . .
« public, private, protected, [none] define where the subroutine

Subroutines must be defined inside classes. | true, but it's not really an advantage, name can be used
| just a fact private can only be used within the same class, public can be used
anywhere
other modifiers
« static

* are there any cases where subroutines are necessary
rather than just convenient?

in theory, no, but really anything but the smallest programs
would be too cumbersome to create without subroutines

return type — allows the subroutine to be used to compute values
instead of just doing something

+ void if nothing to be returned
parameter list — allows information to be passed into the
subroutine by the caller

« empty if nothing to be passed in

CPSC 124: Introduction to Programming + Spring 2024 3 CPSC 124: Introduction to Programming + Spring 2024

Syntax

/**

* Print a bingo card. Only the uncrossed off numbers are printed.

*

* @param card the bingo card to print

*/
(public static|void[printBingoCard]int[] card) {

for (int 1 = ©; 1 < card.length; i++) {
if (card[i] != -1) {
System.out.printf(" %2d", card[i]);

}
}
System.out.println();

modifiers return-type subroutine-name (parameter-list) {
statements
}

CPSC 124: Introduction to Programming + Spring 2024

The Big Picture

Subroutines are useful for managing complexity and
promoting reuse.

However, it is common to want to do the same task but with
different values.
e.g. convert Fahrenheit temperatures to Celsius (or vice versa)
e.g. print an array
e.g. present a math quiz problem with a particular difficulty

In main, we achieve this with variables instead of using
literal values.
In subroutines, we achieve this with parameters.

parameters are essentially variables local to a particular
subroutine whose values are set when we call the subroutine
instead of through assignment statements

CPSC 124: Introduction to Programming + Spring 2024

« call —to carry out the instructions in the subroutine body
subroutine-name (parameter-values);

.Subroutine-name (parameter-values)..

number and type of parameter values must match declaration
can be used as an expression only if the return type is not void

for (int player = 0; player < cards.length; player++) {
System.out.print("player " + player + ":");

printBingoCard(jcards[player]);

}

CPSC 124: Introduction to Programming + Spring 2024

The purpose of formal parameters in a subroutine is:

* to pass information from the outside world into the subroutine body
to pass information from the subroutine body to the outside world

to store values used locally inside the subroutine body

CPSC 124: Introduction to Programming Spring 2024

Syntax

« declaration

modifiers return-type subroutine-name (parameter-list) {
statements
}

parameter list — allows information to be passed into the
subroutine by the caller
« comma-separated list of parameter declarations, each of which has the
form type param-name
« parameter names are only visible/known inside the subroutine body

e call
subroutine-name (parameter-values);
.subroutine-name (parameter-values)..

parameter values — specifies the values for the parameters

* comma-separated list of values
« number and type of parameter values must match declaration

CPSC 124: Introduction to Programming + Spring 2024

Semantics

When a subroutine is called —
* boxes are created for each parameter

« the values being passed are computed and copied into
the respective box

« the body of the subroutine is executed

+ when the subroutine was called as a statement, control
continues with the next statement after the call

public class Demo {
public static void foo (int a, String b) {
System.out.println(“a: “+a);
System.out.println(“length of b: “+b.length());

public static void main (String[] args) {
System.out.println(“line 1”);
foo(10+args.length,”hello”);
System.out.println(“last line”);

/**
* Print a bingo card. Only the uncrossed off numbers are printed.
*
* @param card the bingo card to print
*/
public static void printBingoCard[int[] card) {
for (int i = ©; 1 < card.length; i++) {
if (card[i] != -1) {
System.out.printf(" %2d", card[i]);
}
}
System.out.println();

for (int player = 0; player < cards.length; player++) {
System.out.print("player " + player + ":");
(printBingoCard(cards[player])]

}

CPSC 124: Introduction to Programming + Spring 2024

When we declare variables, it is important to initialize them before they are used. Who is responsible
for making sure that a subroutine's formal parameters have values?

No one - the formal parameters are not required to have values.

* The caller - the formal parameters get their values from outside the subroutine. (i.e. when the
subroutine is called)

The subroutine - there must be assignment statements at the beginning of the subroutine’s
body to give values to the formal parameters.

The subroutine - there must be assignment statements somewhere in the subroutine body
(before the parameters are used), though they don't necessarily have to be at the beginning.

" I

CPSC 124: Introduction to Programming Spring 2024

-}

public static void printGreeting (String name) {
System.out.println("Hello "+name+"!");

If you wanted to call this subroutine in order to print "Hello arthur!", what would you write?

printGreeting();
System.out.println(printGreeting());

* printGreeting("arthur");
System.out.println(printGreeting("arthur"));

message = printGreeting();
System.out.println(message);

message = printGreeting("arthur”);
System.out.println(message);

none of the above

CPSC 124: Introduction to Programming + Spring 2024 13

