When we declare variables, it is important to initialize them before they are used. Who is responsible
for making sure that a subroutine's formal parameters have values?

No one - the formal parameters are not required to have values.

* The caller - the formal parameters get their values from outside the subroutine. (i.e. when the
subroutine is called)

The subroutine - there must be assignment statements at the beginning of the subroutine's
body to give values to the formal parameters.

The subroutine - there must be assignment statements somewhere in the subroutine body
(before the parameters are used), though they don't necessarily have to be at the beginning.

public static void foo (int a, String b) {
System.out.println(“a: “+a);
System.out.println(“length of b: “+b.length());
}
}

L —————————————————————————
A ————
13

CPSC 124: Introduction to Programming + Spring 2024

Subroutine Contracts

« the contract allows for the separation of interface and
implementation

defines how to use the subroutine and what it accomplishes (but
not how)

part of the declaration

L —m————————————————
15

CPSC 124: Introduction to Programming + Spring 2024

-}

public static void printGreeting (String name) {
System.out.println("Hello "+name+"!");

If you wanted to call this subroutine in order to print "Hello arthur!", what would you write?

printGreeting();
System.out.println(printGreeting());

* printGreeting("arthur");
System.out.println(printGreeting("arthur"));

message = printGreeting();
System.out.println(message);

message = printGreeting("arthur”);
System.out.println(message);

none of the above

L — ——
AEHHE——————
14

CPSC 124: Introduction to Programming + Spring 2024

Contracts and Javadoc

A subroutine's contract tells you everything you need to
know in order to use the subroutine.
* header
syntax of how to call the subroutine
types of parameters
* comment
what the subroutine does
what the parameters are for
what the return value is
preconditions

Javadoc is a tool that can generate documentation from

specially-formatted comments.

« from now on, we will use javadoc style for public
comments

CPSC 124: Introduction to Programming Spring 2024 16

Method Summary

CURCCICEEN] Static Methods | Concrete Methods

Modifier and Type Method and Description
static double abs(double a)

Returns the absolute value of a double value.
static float abs(float a)

Returns the absolute value of a float value.
static int abs(int a)

Returns the absolute value of an int value.
static long abs(long a)

Returns the absolute value of a Long value.

static double acos (double a)
Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.

Javadoc Format — Subroutines

abs

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not negative, the argument is returned. If the argument
is negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN_VALUE, the most negative representable int value, the
result is that same value, which is negative.

Parameters:

a - the argument whose absolute value is to be determined

Returns:

the absolute value of the argument.

Javadoc Format — Classes

~
*

* X X X X ¥

The first sentence should summarize the
purpose of the class. Any other sentences can
provide more information.

@author who wrote the class
*/

CPSC 124: Introduction to Programming + Spring 2024 19

/**
* The first sentence should summarize what the

subroutine does. Any other sentences can
provide more information.

ram paramlname describe paraml
m param2name describe param2
describe return value\

ab:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not negative, the argument/(s retupfied. If the argument
is negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN VALUE, the most negdfive répresentable int value, the

result is that same value, which is negative.

Parameters:

a - the argument whose absolute value is to be determined

Returns:

the absolute value of the argument.
18

Preconditions

* preconditions are assumptions made in order for the
subroutine to work correctly
e.g. specific requirements for parameter values (other than type)
must be stated as part of the subroutine's contract

 robust programs check preconditions whenever possible
want to fail fast if there is a problem

« convention is to throw an I1legalArgumentException
if a precondition is violated

if (precondition is violated) {
throw new IllegalArgumentException(“detail message”);

}

CPSC 124: Introduction to Programming Spring 2024 20

The Big Picture

» subroutines are a self-contained unit

variables declared inside one subroutine are not visible inside
another

* parameters allow the caller to pass values into a
subroutine

 return values allow the subroutine to hand one value back
to the caller

the term function is often used for a subroutine that returns a
value, though the terminology can be used sloppily (e.g. “function”
may be used interchangeably with “subroutine”)

CPSC 124: Introduction to Programming + Spring 2024 21

Syntax and Semantics

« declaration

modifiers return-type subroutine-name (parameter-list) {
statements
}

non-void return type indicates that this is a function, and
defines the type of the value handed back to the caller

« can only return one thing
body must contain a single return statement for every path

= can have multiple return statements, but return exits the function
immediately so only one per path of execution

- call

.subroutine-name (parameter-values)..

the statement form is also legal, but generally function calls
should occur in expressions

« otherwise the return value is ignored, which is generally not what you
want

The purpose of a return value in a function is:

to pass information from the rest of the program into the subroutine body
* to pass information from the subroutine body to the rest of the program
to store values used locally inside the subroutine body

something else

CPSC 124: Introduction to Programming + Spring 2024

public static int getRandom (int low, int high) {
int rnd = (int)(Math.getRandom()*(high-low+1)+1ow);
return rnd;

Given the function defined above, which of the following are legal syntax? Choose all that apply.

O | getrandom(1,6);
System.out.printIn(rnd);

% System.out . println(getRandom(1,6));

int rnd = getRandom(1,6);
System.out.printin(rnd);

i&(int x = getRandom(1,6);

System.out.println(x);

O int x = getrandom();
System.out.println{x);

O system.out.printin(getrandon());

ﬁ getRandom(6,1);
S

—

int row, col;
for (; true ;) {
System.out.print

("enter a row: ");

row = scanner.nextInt();

System.out.print

("enter a column: ");

col = scanner.nextInt();

if (row <= 0 ||

row >3 || col <= 0 || col >3) {

System.out.println("invalid position, please try again);

} else {
break;

Scope

By the end of the lo
is a somewhat comp
would the return sta

CPSC 124; Introduction to Programming

O return row, col;
o] return row && col;

o] return row;
return col;

*ycu can't return more than one value from a function

O something else

the body of the subroutine is the
cook in the kitchen

the caller is the waiter in the
dining room

kitchen and dining room are separated — waiter can’t see
what is going on in the kitchen, cook can’t see what is going
on in the dining room

subroutine cannot use the caller’s local variables

caller cannot use the subroutine’s local variables

» waiter hands order slips to the cook through the pass-through
» cook hands plates of food back to the waiter

only one plate of food per order

< only values — the order slip, the plate of food — go through the

pass through
named parameters allow the cook to access values passed through
caller must store or use the values they get back

annarbor.

2

