

CPSC 124: Introduction to Programming • Spring 2024 48

Identifying and Designing Classes

• identify classes through textual analysis
– what are the things (nouns) that feature in a description of the

program’s task?
• e.g. tile, bag, rack, board, word, …

– distinguish kinds of things (classes) from specific instances
(objects)

• e.g. “the player” and “their opponent” → class Player

– recognize synonyms

– eliminate things already well-served by existing types
• e.g. score → int
• e.g. word → String

CPSC 124: Introduction to Programming • Spring 2024 49

Identifying and Designing Classes

• instance variables
– what needs to be represented about this thing?
– in textual analysis, look for possessives

• e.g. player’s score, player’s played tiles

• methods
– in textual analysis, look for verbs

• e.g. “exchange one or more tiles for an equal number from the bag”, “play
at least one tile on the board”, “draw tiles [from the bag]”

– for actions that involve more than one kind of thing, break it
down into how it affects each thing

• e.g. “exchange tiles” requires removing specific tiles from the rack, adding
tiles to the bag, removing (random) tiles from the bag, and adding tiles to
the rack

– put methods in the classes whose representation they
manipulate

• e.g. play a word on the board → GameBoard

CPSC 124: Introduction to Programming • Spring 2024 50

Class Design
• Scrabble

– BoardSquare – tile contained, scoring info
• create a particular kind (triple word score, etc)
• place tile

– GameBoard – tiles on the board and their arrangement
• create empty board
• play word (return score)

– TileRack – contents
• create empty rack
• add tile
• remove particular tile

– TileBag – contents
• create containing all tiles
• draw tile (remove random tile)
• exchange tile

– Tile – letter, point value
• create particular tile (with letter, point value)

– Dictionary – the words that are legal to play
• create containing all legal words
• look up word (determine if a particular word is legal)

– Player – score, tiles
• create with no tiles, score 0
• add to score CPSC 124: Introduction to Programming • Spring 2024 51

Completing the Design

• strive for a complete list of needed operations
– review specifications, descriptions, etc to make sure no

operations were missed (textual analysis)
– write pseudocode to help identify program needs not present (or

obvious) in the real-world version
• e.g. printing the contents of the tile rack

– think through the flow of information
• e.g. the board manages the board squares, so we will need to ask the

board to place a word rather than interacting directly with the squares

• complete the abstractions
– e.g. getters to access stored information

• but not necessarily every getter possible

– e.g. ways to add to, remove from, and iterate through collections
– some of these things may not be required by this particular

program, but are helpful for future reusability

CPSC 124: Introduction to Programming • Spring 2024 52

Class Design
• Scrabble

– BoardSquare – tile contained, scoring info
• create a particular kind (triple word score, etc)
• place tile

– GameBoard – tiles on the board and their arrangement
• create empty board
• play word (return score)
• display board

– TileRack – contents
• create empty rack
• add tile
• remove particular tile
• print tiles

– TileBag – contents
• create containing all tiles
• draw tile (remove random tile)
• exchange tile

– Tile – letter, point value
• create particular tile (with letter, point value)
• get letter, get point value

– Dictionary – the words that are legal to play
• create containing all legal words
• look up word (determine if a particular word is legal)

– Player – score, tiles
• create with no tiles, score 0
• manipulate set of tiles (add tile,

remove particular tile)
• add to score
• get score

CPSC 124: Introduction to Programming • Spring 2024 53

• identifying classes and their elements

– try to be thorough in each step
• start from a complete description
• think about what else would typically go with each concept

– remember that it doesn’t have to be perfect or complete on the
first pass

• most important from a practical standpoint is to identify the major things
– especially classes, as those dictate the organization

• missing elements may be identified as you progress to greater detail, such
as pseudocode or even code

– adding is less upheaval than changing

– the goal is to plan enough to avoid having to redo a lot because
something important wasn’t anticipated

CPSC 124: Introduction to Programming • Spring 2024 54

Designing Reusable Classes

Several factors influence reusability –

• how specific a thing is
– e.g. Uno card vs standard playing card

CPSC 124: Introduction to Programming • Spring 2024 55

Designing Reusable Classes

Several factors influence reusability –

• how you design the class

– flexibility
• e.g. DiceCollection with 5 dice vs n dice, or not restricting to 6-sided

dice

– include sufficient methods to support the abstraction
• Yahtzee needs roll the dice, print the dice values, set aside dice
• other applications might need to undo setting aside, or sum the values of

the dice, or add and/or remove dice from the collection

– avoid overly specialized methods
• print prints with certain formatting
• roll, print, sum all involve going through the collection – provide support

for iteration rather than specific tasks

CPSC 124: Introduction to Programming • Spring 2024 56https://cheapass.com/free-games/pennywise/ CPSC 124: Introduction to Programming • Spring 2024 57https://cheapass.com/free-games/pennywise/

• identify classes
• identify what needs to be

represented → instance
variables

• identify verbs/actions →
methods

• Pot – contents
– play coin into the pot
– withdraw coins

• Player – set of coins, score
• Coin – value seems like just

an integer value
• SetOfCoins – contents
• CharacterRecipe – particular

collection of coins
(in progress)

