Identifying and Designing Classes

identify classes through textual analysis
what are the things (nouns) that feature in a description of the
program’s task?
e.g. tile, bag, rack, board, word, ...

distinguish kinds of things (classes) from specific instances
(objects)

e.g. “the player” and “their opponent” - class Player
recognize synonyms

eliminate things already well-served by existing types
e.g. score — int
e.g. word — String

CPSC 124: Introduction to Programming + Spring 2024 48

Scrabble
BoardSquare — tile contained, scoring info
create a particular kind (triple word score, etc)
place tile
GameBoard — tiles on the board and their arrangement
create empty board

Identifying and Designing Classes

instance variables
what needs to be represented about this thing?
in textual analysis, look for possessives
e.g. player’s score, player’s played tiles

methods

in textual analysis, look for verbs
e.g. “exchange one or more tiles for an equal number from the bag”, “play
at least one tile on the board”, “draw tiles [from the bag]”
for actions that involve more than one kind of thing, break it
down into how it affects each thing

e.g. “exchange tiles” requires removing specific tiles from the rack, adding
tiles to the bag, removing (random) tiles from the bag, and adding tiles to
the rack

put methods in the classes whose representation they
manipulate
e.g. play a word on the board —~ GameBoard

CPSC 124: Introduction to Programming + Spring 2024 49

Completing the Design

play word (return score)
TileRack — contents

create empty rack

add tile

remove particular tile
TileBag — contents

create containing all tiles

draw tile (remove random tile)

exchange tile
Tile — letter, point value

create particular tile (with letter, point value)
Dictionary — the words that are legal to play

create containing all legal words

look up word (determine if a particular word is legal)
Player — score, tiles

create with no tiles, score 0

add to score

strive for a complete list of needed operations
review specifications, descriptions, etc to make sure no
operations were missed (textual analysis)
write pseudocode to help identify program needs not present (or
obvious) in the real-world version
e.g. printing the contents of the tile rack
think through the flow of information

e.g. the board manages the board squares, so we will need to ask the
board to place a word rather than interacting directly with the squares

complete the abstractions
e.g. getters to access stored information
but not necessarily every getter possible
e.g. ways to add to, remove from, and iterate through collections

some of these things may not be required by this particular
program, but are helpful for future reusability

CPSC 124: Introduction to Programming Spring 2024 51

Scrabble
BoardSquare — tile contained, scoring info
* create a particular kind (triple word score, etc)
* place tile
GameBoard - tiles on the board and their arrangement
* create empty board
* play word (return score)
* display board
TileRack — contents
 create empty rack

Player — score, tiles
create with no tiles, score 0
manipulate set of tiles (add tile,

.

.

° add tile S _
> remove particular tile remove particular tile)
* print tiles * add to score

.

TileBag — contents get score

* create containing all tiles
* draw tile (remove random tile)
= exchange tile
Tile — letter, point value
* create particular tile (with letter, point value)
* get letter, get point value
Dictionary — the words that are legal to play
* create containing all legal words
* look up word (determine if a particular word is legal)

~ |

Designing Reusable Classes

Several factors influence reusability —

* how specific a thing is
e.g. Uno card vs standard playing card

CPSC 124: Introduction to Programming + Spring 2024

How do you know all the classes needed for a program and how do you know
everything that is needed in each class? How do you tell if something is reusable

or not?

« identifying classes and their elements

try to be thorough in each step
« start from a complete description
« think about what else would typically go with each concept

remember that it doesn’t have to be perfect or complete on the
first pass
+ most important from a practical standpoint is to identify the major things
especially classes, as those dictate the organization

« missing elements may be identified as you progress to greater detail, such
as pseudocode or even code
adding is less upheaval than changing

the goal is to plan enough to avoid having to redo a lot because
something important wasn'’t anticipated

CPSC 124: Introduction to Programming + Spring 2024

Designing Reusable Classes

Several factors influence reusability —

* how you design the class
flexibility

» e.g. DiceCollection with 5 dice vs n dice, or not restricting to 6-sided
dice

include sufficient methods to support the abstraction
« Yahtzee needs roll the dice, print the dice values, set aside dice

- other applications might need to undo setting aside, or sum the values of
the dice, or add and/or remove dice from the collection

avoid overly specialized methods
« print prints with certain formatting

= roll, print, sum all involve going through the collection — provide support
for iteration rather than specific tasks

CPSC 124: Introduction to Programming Spring 2024

Choose one of the character recipes, listed below, and
give every player that set of coins. Different characters
make the whole game different, but every player must start
with the same set of coins.

There is a “pot” in the middle of the table. Players will
take turns playing one coin into the pot. After you play a
coin, you may withdraw from the pot any set of coins that
adds up to less than the value of the coin you put in. For
example, if you put in a dime, you can take back up to 9
cents. (You should ahways take back as much as you can.)

The goal is to run your opponent out of coins. Your
scoreis the number of cents that you have remaining when
your opponent plays his last coin. Keep score over multiple
games, alternating who goes first.

To play with more than two players, use the same
basic rules, with the turn passing to the left. In this case,
when one player is knocked out, the game is over, and the

* identify classes

¢ identify what needs to be
represented - instance
variables

« identify verbs/actions -
methods

player with the most points wins.

CPSC 124: Introduction to Programming + Spring 2024 https://cheapass.com/free-games/pennywise/

* Pot — contents
play coin into the pot
withdraw coins
» Player — set of coins, score
° Cein—valde seems like just
an integer value
« SetOfCoins — contents
» CharacterRecipe — particular
collection of coins

CPSC 124: Introduction to Programming + Spring 2024 https://cheapass.com/free-games/pennywise/

Choose one of the character recipes, listed below, and
give every player that set of coins. Different characters
make the whole game different, but every player must start
with the same set of coins.

There is a “pot” in the middle of the table. Players will
take turns playing one coin into the pot. After you play a
coin, you may withdraw from the pot any set of coins that
adds up to less than the value of the coin you put in. For
example, if you put in a dime, you can take back up to 9
cents. (You should always take backas much as you can.)

‘The goal is to run your opponent out of coins. Your
score isthe number of cents that you have remaining when
your opponent plays his last coin. Keep score over multiple
games, alternating who goes first.

To play with more than two players, use the same
basic rules, with the turn passing to the left. In this case,
when one player is knocked out, the game is over, and the
player with the most points wins.

(in progress)

EEEEE—_—_—_——]
57

