The Big Picture

* object-oriented programming is meant to reflect the
structure of things in the real world
objects correspond to individual things
classes correspond to kinds of things

Inheritance

* in the real world, different kinds of things are not always
completely unrelated

e e.g. apples and fruit — apples are a kind of fruit, though there is
fruit that's not apples

e.g. savings accounts and checking accounts are both kinds of
bank accounts (and there may be other kinds of bank accounts)

* Inheritance is the mechanism by which we can express
“is-a” relationships between classes

» polymorphism is the mechanism by which we can write
code that works with things related by an “is-a”
relationship

Inheritance

Which of the following is the most accurate analogy?

A subclass is to a superclass as

* inheritance defines an “is-a” relationship between classes

"apple" is to th le sitti desk g .
appie s o the appie sifing on fy des public class Apple extends Fruit {

"fruit" is to the apple sitting on my desk

}

the apple sitting on my desk is to "apple” .) .
an apple is a (kind of) fruit

the apple sitting on my desk is to "fruit"

A + subclasses inherit everything — instance variables and
apple" s tofruit methods — except constructors

even private things, though they cannot be accessed directly

new access modifier: protected allows only the class and its
subclasses to access

"fruit" is to "apple"”

"apple" is to "orange"

"vegetable" is to "fruit"

CPSC 124: Introduction to Programming + Spring 2024 3 CPSC 124: Introduction to Programming + Spring 2024

Inheritance

Subclasses —

+ can add new elements (instance variables and methods)
a new method has a different header (hame and/or number/type
of parameters)

+ can redefine (override) or extend methods
same header, new body
to extend, also invoke superclass version

* must define one or more constructors (in most cases)

constructor should first call superclass constructor, then initialize
only the instance variables for its own class

» cannot redefine instance variables

+ cannot remove instance variables or methods already
defined

CPSC 124: Introduction to Programming + Spring 2024

Inheritance

Inheritance is often talked about as a way to reuse existing
classes or code — but while this often occurs, it is not why
inheritance should be used.

Subclass (only) when both —

+ “isa”, “is a kind of” language makes logical sense, and

* everything inherited from the superclass makes sense for
the subclass

* Liskov Substitution Principle

* introduced by Barbara Liskov in 1987

* won 2008 Turing Award for work leading to the
development of object-oriented programming

CPSC 124: Introduction to Programming + Spring 2024

the subclass

When defining a subclass, you can: (choose all that apply)

* add instance variables that are not part of the superclass
* add methods that are not part of the superclass

redefine superclass instance variables so they have a different type or purpose in

* redefine superclass methods so they behave differently in the subclass
remove instance variables that are part of the superclass

remove methods that are part of the superclass

CPSC 124: Introduction to Programming + Spring 2024

Inheritance and the Liskov Substitution Principle

Ellipse

wradius: double
radius: double

getxRadius(): double
getyRadius(): double
setXRadius(xradius: double)
setyRadius(yradius: double)
getareal): double
qgetPerimeter(): double

Circle

getRadius(): double

CPSC 124: Introduction to Programming Spring 2024

setRadius(radius: double)

Should Circle extend Ellipse?

Circle “is a kind of” Ellipse...

But Circle inherits setXRadius() and
setYRadius(), allowing the following —

Circle ¢ = new Circle();
c.setXRadius(5);
c.setYRadius(10);

This doesn't make sense for Circle!
(so no, Circle should not extend Ellipse)

Inheritance

* an object is like an onion, with each class in the
inheritance hierarchy describing a layer

* top-level class is at the core

« this refers to the current
layer of the onion

+ super refers to the next
layer in

CPSC 124: Introduction to Programming + Spring 2024

