

CPSC 124: Introduction to Programming • Spring 2024 16

Lab 3 Comments

• name directories and files/programs as directed
– no spaces!
– case too!

• include your name and a description of the program in
comments at the beginning of every program

• style
– autoformat
– split/wrap long lines
– use blank lines to group and organize
– variable names should start with lowercase letters

CPSC 124: Introduction to Programming • Spring 2024 17

Lab 3 Comments

• only create one Scanner per program, even if you read
lots of things

• equality test
– use == for only primitive types (int, etc)
– use s1.equals(s2) for String

• you can use literals with String functions
– e.g. if (beverage.equals(“juice”)) { … }

Scanner input = new Scanner();
String line1 = input.nextLine();
String line2 = input.nextLine();
…

CPSC 124: Introduction to Programming • Spring 2024 18

Lab 3 Comments

• using things not (yet) covered in class e.g. Random instead
of Math.random(), subroutines, arrays –

– is it not necessary to “do research” beyond the assigned reading
and material covered in class

• use the class resources first, as the information you need will be better
organized for our purposes

• if you are going beyond, do it because you are curious and interested in
learning more, not because you don’t know how to solve the problem with
what has been covered in class

– if a TF or someone else is suggesting the thing, tell them that
hasn’t been covered yet – you must understand help you
receive, not just write down what someone else told you

CPSC 124: Introduction to Programming • Spring 2024 19

Lab 3 Comments

• roulette

– watch out for off-by-one problems – double-check > vs >=, < vs
<=, random number generation (*36 or *37)

CPSC 124: Introduction to Programming • Spring 2024 20

Lab 3 Comments

• elegance – roulette

– two main structural options for the conditionals
• each type of bet is separate consideration → a series of “do or not do”

choices (if without else or else if)
• low/high, red/black, first/second/third dozen are mutually exclusive

variations of the same kind of criterion → three ifs, each with several
cases

– don’t forget to consider whether “do nothing” is an option – it is, as 0 is not
included in any of these bets → final else if rather than final else

– the following ifs are the same logically
• both are valid but in this case the nested ifs can be easier to understand

(and get right)

if (a && b) {
 …
} else if (a && !b) {
 …
}

if (a) {
 if (b) {
 …
 } else {
 …
 }
}

CPSC 124: Introduction to Programming • Spring 2024 21

Lab 3 Comments

• elegance – roulette

– it is cleaner conceptually to separate different steps
• e.g. determining the pocket color is separate from determining whether a

red or black bet has been won → separate ifs

...but sometimes not repeating code is better
• the two ifs would be very similar since the bet type is based on the

pocket color – so combining is reasonable, though there may be extra
hoops to jump through to keep the order that the lines of output are
produced correct (low/high bets are considered before red/black bets)

– the goal of the program is to print out the pocket color and the
bets that would be won

• it is simplest to just print the desired output in the if case where you
determine the color/bet rather than storing a value so you can have one
System.out.println() at the end

• go with simple unless there’s a more compelling reason to do otherwise

CPSC 124: Introduction to Programming • Spring 2024 22

Lab 3 Comments

• elegance – drink order

– since the kind of juice, milk, etc depends on the type of
beverage, this naturally gives rise to nested ifs where the top
level has a case for each kind of beverage (water, juice, milk, …)
and an if inside each case deals with the variety (apple,
orange, etc)

– coffee and tea are similar
• simplest is to have them as separate cases because they are different

beverages
• the simple solution is fine here!
• in general, start with simple, but then consider how to avoid repeating

code

CPSC 124: Introduction to Programming • Spring 2024 23

Lab 3 Comments

• elegance – drink order

– the goal of the program is to print out the drink order
• it is simplest to just print the desired output in the if case where you

determine the full order rather than storing a value so you can have one
System.out.println() at the end

• this is fine for the required version of the program – go with simple unless
there’s a compelling reason otherwise

• to deal with the size, you don’t want to repeat the code to get the size
from the user for each kind of beverage, so you can’t print the drink order
in each case

– then the solution is to introduce a variable containing whatever is different
about each order – set the variable accordingly in each case, and print it
(along with any common elements) at the end

