Motivation

Analysis of Algorithms A good algorithm is

correct,

(efficient) and

easy to implement.

* answering “how much time/space does this algorithm
take?” and “can we do better?” requires a measure of the
time/space requirements

CPSC 327: Data Structures and Algorithms + Spring 2024

Key Points RAM Model of Computation

We want to compare algorithms, not programs. Assumptions —

» each simple operation takes exactly one time step
arithmetic, boolean, logical operations; =; if; subroutine calls

A subroutine call is just the call and return, not the execution of the
subroutine body

« the elapsed time of a running program depends on many
factors unrelated to the algorithm
speed of computer
computer architecture

choice of language, skill/cleverness of programmer, compiler * loops and subroutines are not simple operations

optimizations composed of (many) simple operations
time required is the sum of the time required for each simple
* implementing and debugging a program is time operation
consuming

requires too many details + each memory access takes exactly one time step

CPSC 327: Data Structures and Algorithms + Spring 2024 3 CPSC 327: Data Structures and Algorithms + Spring 2024

Key Points

All three of these assumptions are actually false with
respect to real computers.

Even though our analyses will be based on a model of
computation that is not how real computers work, all is not
lost —

still meaningful
it is difficult to find a case where it gives misleading results

simplifies analysis
allows for reasoning about algorithms in a language- and
machine-independent manner

CPSC 327: Data Structures and Algorithms + Spring 2024

Key Points

We are more interested in categorizing algorithms into a
few common classes than determining specific growth rate
functions.

still meaningful

the differences within one class are far less than the differences
between classes

simplifies analysis
can drop constant factors and lower order terms (eliminating
distracting bumps)
can analyze algorithm at a higher level of abstraction
(pseudocode or even natural language description rather than
code)

CPSC 327: Data Structures and Algorithms + Spring 2024

Key Points

We are more interested in how quickly the running time
of an algorithm increases as the size of the input
increases than in how long the algorithm will take on a
particular input instance.

still meaningful
a single input instance may not be all that informative anyway

any algorithm will do when the input is small — it's what happens
for big inputs that matters

simplifies analysis
don't need to count precisely — can focus on how the number of
steps depends on aspects of the input

can consider (only) best and worst-case bounds

fewer cases to consider, and easier to work with an instance with specific
properties

CPSC 327: Data Structures and Algorithms + Spring 2024

Understanding Limitations

Alice and Bob each implement different algorithms for
solving a particular problem. When they run their

programs, they find that the one with the slower growth gr?wth
rate takes longer. What could be going on? e
fgster
be careful not to confuse growth rate with speed e

the speed refers to the running time for a particular input
faster speed = less time
the growth rate refers to how quickly the running time increases

slower growth rate means the running time doesn’t increase as quickly —
the running time is smaller/shorter/faster for longer

the question is how an algorithm with a slower growth rate could
take more time on an input than one with a faster growth rate

CPSC 327: Data Structures and Algorithms + Spring 2024

Understanding Limitations

1 B

how can an algorithm A with a slower growth
rate could take more time on an input than
algorithm B with a faster growth rate?

n is small — due constant factors or lower- —»
order terms '

there could be different environments —
language, programmer cleverness, compiler
optimizations, computer speed, ...
“growth rate of algorithm” typically — ot
refers to the growth rate of the worst- , case a,
case running time

input instance may not be worst case for B N

different inputs e.g. different size T e

CPSC 327: Data Structures and Algorithms + Spring 2024 9

Understanding Definitions

For each of the following pairs of functions, indicate
whether f = O(g), f = (2(g), or f = O(g).

a. f(n) =3n+ 100,g(n) = 10n — logn [pairA]

b. f(n) = (log :rL)2 +b5n log n,g(n) =2n [pairB]
c.f(n)=3n" +nd g(n) =3" —5n® [pairC]

O gives an upper bound on a function's growth rate
Q gives a lower bound on a function's growth rate
O gives a tight bound on a function's growth rate

notation meaning definition

f(n) = O(g(n)) cg(n)is an upper bound on f(n) there exists ¢ > 0 and n, > 0 such that
f(n) <c g(n) foralln=n,
f(n) = Q(g(n)) cg(n)is an lower bound on f(n) there exists ¢ > 0 and n, > 0 such that
f(n) =2 c g(n) for alln=n,
f(n) = ©(g(n)) c, g(n) is an upper bound on f(n) there exists ¢, >0, ¢, >0, and n, > 0
¢, g(n) is an lower bound on f(n) such that f(n) < c, g(n) and f(n) =2 c, g(N) ==

foralln=n, N

Definitions

O gives an upper bound on a function's growth rate
Q gives a lower bound on a function's growth rate
© gives a tight bound on a function's growth rate

notation meaning definition

f(n) = O(g(n)) c g(n) is an upper there exists ¢ > 0 and n, > 0 such
bound on f(n) that f(n) < c g(n) for all n = n,

f(n) = Q(g(n)) c g(n) is an lower there exists ¢ > 0 and n, > 0 such
bound on f(n) that f(n) > ¢ g(n) for all n > n,

f(n) = ©(g(n)) c, g(n) is an upper there exists c, > 0, ¢, > 0, and
bound on f(n) n, > 0 such f(n) < c, g(n) and

¢, g(n) is an lower f(n) > ¢, g(n) for all n = n,
bound on f(n)

CPSC 327: Data Structures and Algorithms + Spring 2024 10

