

CPSC 327: Data Structures and Algorithms • Spring 2024 23

Understanding Definitions

CPSC 327: Data Structures and Algorithms • Spring 2024 24

3n+100 = O(10n-log n)

because
3n+100 ≤ c(10n-log n)
for c = 1 and n > 15

3n+100 = Ω(10n-log n)

because
3n+100 ≥ c(10n-log n)
for c = 0.25 and n > 0

thus
3n+100 = Θ(10n-log n)

because
3n+100 ≤ c1(10n-log n) and
3n+100 ≥ c2(10n-log n) for
c1 = 1, c2 = 0.25, and n > 15

CPSC 327: Data Structures and Algorithms • Spring 2024 25

(log n)2 + 5n log n = Ω(2n)

because
(log n)2 + 5n log n ≥ 2n
for c = 1 and n > 5

3n2+n3 = O(3n-5n3)

because
3n2+n3 ≤ c(3n-5n3)
for c = 1 and n > 8

CPSC 327: Data Structures and Algorithms • Spring 2024 26

O, Ω, Θ vs Best and Worst Cases

The big-Oh notation compares growth rates of functions –
comparing shapes of curves.

– f(n) = O(g(n)) says that f(n) grows no faster than g(n)
• g(n) is an upper bound on the growth rate

– f(n) = Ω(g(n)) says that f(n) grows no slower than g(n)
• g(n) is a lower bound on the growth rate

– f(n) = Θ(g(n)) says that f(n) grows at the same rate as g(n)
• g(n) is a tight bound on the growth rate

The best (or worst) case is the specific input instance that
yields the fastest (or slowest) running time over all possible
input instances of a given size – comparing the actual
number of steps required.

– no input instance will take longer than the worst case for that
size, or take less time than the best case for that size

CPSC 327: Data Structures and Algorithms • Spring 2024 27

Understanding Terminology and Concepts

• Θ means that the worst case
won't actually turn out to be better
than n2, but the worst case is the
slowest input of a given size and
others (e.g. best case) may be
better

• O is an upper bound, so f(n) =
O(n2) says that f(n) doesn't grow
any faster than n2, but it doesn't
preclude it growing slower i.e. n =
O(n2) though typically we want to
give the tightest bound we can

• worst-case means nothing is
slower, but faster is possible

– e.g. insertion sort

• in all cases, the answer is “yes” – why?

CPSC 327: Data Structures and Algorithms • Spring 2024 28

O, Ω, Θ vs Best and Worst Cases

Saying that the worst-case behavior is O(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– all inputs could be O(n) because n grows no faster than n2,

though one generally tries to give the tightest O possible

Saying that the worst-case behavior is Θ(n2) means –
– some inputs could be O(n) because the worst case is the

slowest instance for a given size
– not all inputs could be O(n) because then the worst case

instances would also be O(n) and n does not grow at the same
rate as n2

CPSC 327: Data Structures and Algorithms • Spring 2024 29

O, Ω, Θ

• give as tight as bound as possible

• use Θ if you can
– e.g. mergesort is Θ(n log n)
– e.g. insertion sort is best case Θ(n) and worst case Θ(n2)

• can use O if best case running time grows more slowly
than the worst case (or Ω if worst case running time
grows faster than the best case) but you don't want to
distinguish – only worst (or best) case is important
– e.g. insertion sort is O(n2)
– e.g. insertion sort is Ω(n)

• can use O (or Ω) if you can't establish a tight bound
– you don’t know if the best case is better or if the worst case is

worse
CPSC 327: Data Structures and Algorithms • Spring 2024 30

Implications for Algorithm Design

Θ fast computer 1000x faster

1 n is irrelevant n is irrelevant

log n any n is fine any n is fine

n still practical for n =
1,000,000

still practical for n =
1,000,000,000n log n

n2 usable up to n = 10,000
hopeless for n > 1,000,000

usable up to n = 300,000
hopeless for n > 30,000,000

2n impractical for n > 40 impractical for n > 50

n! useless for n ≥ 20 useless for n ≥ 22

CPSC 327: Data Structures and Algorithms • Spring 2024 33

Θ fast computer

1 n is irrelevant

log n any n is fine

n
still practical
for n =
1,000,000n log n

CPSC 327: Data Structures and Algorithms • Spring 2024 34

n
still practical for
n = 1,000,000n log n

n2

usable up to n =
10,000
hopeless for n >
1,000,000

2n
impractical for n >
40

n! useless for n ≥ 20

CPSC 327: Data Structures and Algorithms • Spring 2024 35

Implications for Algorithm Design

Θ running time on fast
computer

characteristics of typical
tasks with the specified
running time

1 n is irrelevant examine only a fixed number of
things regardless of input size

log n any n is fine repeatedly eliminate a fraction of
the search space

n
still practical for
n = 1,000,000

examine each object a fixed
number of times

n log n
divide-and-conquer with linear
time per step
mergesort, quicksort

n2 usable up to n = 10,000
hopeless for n > 1,000,000

examine all pairs
insertion sort, selection sort

n3 examine all triples

2n impractical for n > 40 enumerate all subsets

n! useless for n ≥ 20 enumerate all permutations
CPSC 327: Data Structures and Algorithms • Spring 2024 36

Big-Oh From Algorithms
use the table on the
previous slide

sort, then examine each
object a fixed number of
times → Θ(n log n) + Θ(n)
= Θ(n log n)

examine each object a
fixed number of times,
then examine only a fixed
number of things → Θ(n)
+ Θ(1) = Θ(n)

for each object, examine
each object a fixed
number of times → Θ(n) x
Θ(n) = Θ(n2)

CPSC 327: Data Structures and Algorithms • Spring 2024 37

 B A C

suitability for n = 25, 2500, 250,000, 250,000,000

