
  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 21

Recap

Key points –

• the container ADTs Vector/List/Sequence, Stack, Queue
– characterization and typical operations

• the data structures array and linked list 
– characteristics and tradeoffs

• using arrays and linked lists to implement Queue, Stack
– explain how the elements in the queue/stack are arranged in the 

array/linked list
• both queue/stack and array/linked list have a linear order
• identify which end of the array/linked list corresponds to the beginning/top of 

queue/stack

– carrying out insert, remove operations

• improving implementations
– a strategy: store instead of computing

• e.g. tail pointer, circular array

– but: have to make sure that maintenance of the stored information 
doesn’t increase the big-Oh

CPSC 327: Data Structures and Algorithms  •  Spring 2024 22

How Do We Apply This Stuff?

• ADTs
– algorithm may boil down to just manipulating the right ADT, or 

become much simpler with the right ADT

– once you have an algorithm, identify the operations it needs
– find a standard ADT that provides those operations (and ideally 

little else) and choose an efficient implementation, or design a 
new implementation to efficiently support those operations

• data structures
– to choose an efficient implementation for standard ADT
– to design your own data structure or customize a standard 

implementation if a standard ADT/implementation doesn’t meet 
your needs

• why study different implementations?
– often not a single best choice – tradeoffs mean making one 

operation faster can make another slower

CPSC 327: Data Structures and Algorithms  •  Spring 2024 23

Containers in Java

ADT in Java

Vector / 
List / 
Sequence

List – interface
LinkedList – linked list implementation
ArrayList – array implementation

Vector – legacy class and use is discouraged (array 
implementation)

Deque (double-ended queue) – interface
ArrayDeque – array implementation
LinkedList – linked list implementation

Stack Stack – legacy class, Deque preferred

Queue Queue – interface
ArrayDeque – array implementation
LinkedList – linked list implementation

Collections Framework overview:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/doc-files/coll-
overview.html

CPSC 327: Data Structures and Algorithms  •  Spring 2024 26

ADTs – Map/Dictionary and Set

Map / Dictionary

variations
● OrderedDictionary – 

also supports 
min/max, 
predecessor(k)/ 
successor(k) based on 
an ordering of the 
keys

lookup
(no duplicate keys)

● find(k) – find elt with key k if it exists
● insert(k,v) – add elt v with key k
● delete(k) – remove elt, key with key k (may 

return elt)

Set membership
(no duplicate 
elements)

● add(x) – add elt x if not already present
● remove(x) – remove elt x
● contains(x) – return whether x is present 

• searching and lookup



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 27

ADTs for Algorithm Design

The ordering of elements imposed by different types of 
containers can be exploited to achieve algorithmic goals.

ADT some applications of the ADT

Vector / List / 
Sequence

general-purpose container
round-robin scheduling, taking turns

Stack match most recent thing, proper nesting, reversing
DFS – go deep before backing up
has ties to recursive procedures – supports iterative 
implementation of recursive ideas

Queue FIFO order minimizes waiting time
BFS – spread out in levels
round-robin scheduling, taking turns

Map
Set

duplicate removal, set union – look up each new element in 
collection of already-seen ones

OrderedDictionary sorting – insert elements, then go through keys in order

CPSC 327: Data Structures and Algorithms  •  Spring 2024 28

Map/Dictionary

delete operation as defined in ADM assumes that the element is 
already found (known array index, pointer to the linked list node) – 
otherwise find operation is required first

* denotes cleverness or subtlety

O(1) *      O(1) *

CPSC 327: Data Structures and Algorithms  •  Spring 2024 29

Constant-Time Deletion in a Singly-Linked List

• O(1) deletion

x.setValue(x.getNext().getValue())
x.setNext(x.getNext().getNext())

CPSC 327: Data Structures and Algorithms  •  Spring 2024 30

Map/Dictionary

• basic container is a Vector/List/Sequence
– choice of array or linked list implementation depends on which 

operations are used

• ordering of elements within Sequence is up to the Map – 
can be sorted or not
– unsorted leads to O(1) insert/delete but O(n) search for both 

arrays and linked lists
– sorted leads to differences between arrays and linked lists

• O(log n) search and O(n) delete for arrays
• O(n) search and O(1) delete for linked lists

Can we do better?
• can we exploit the sorted order to improve searching in 

linked lists?
• O(n) delete in arrays is due to shifting – can't do much about that

– circular arrays worked for queues because insert/delete was only at the 
ends



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 31

Improving an Implementation – Map

Binary search exploits the sorted order – but it requires 
efficient random access.

Or does it?
• the first iteration of binary search requires knowing the middle 

element
• successive iterations require knowing the middle element of one of 

the halves

Finding the middle element is achieved in arrays by 
arithmetic involving array indexes, but what if we just stored 
the necessary info instead?
• store instead of computing…

CPSC 327: Data Structures and Algorithms  •  Spring 2024 32

Doing Better

161511854 20

• each middle element only needs to store the location of two other 
middle elements → binary tree structure

• overall the elements are ordered, so the “other middle elements” are 
smaller and larger than the “middle element”, respectively → binary 
search tree

CPSC 327: Data Structures and Algorithms  •  Spring 2024 33

Binary Search Trees

• a binary tree with an ordering property 
for the elements
– for every node, all of the elements in the 

left subtree are less than or equal to the 
node's element and all of the elements in 
the right subtree are greater than the 
node's element

• operations
– find
– insert
– remove
– visit all elements (traverse) in order

(dummy leaves not shown)

implementation note: 
every internal node in a 
proper binary tree has 
exactly two children – for 
BST, we only store 
elements at internal nodes

CPSC 327: Data Structures and Algorithms  •  Spring 2024 34

Binary Search Trees

• find
– moving down, 1-finger (only go to one                                     

child) pattern → loop
– observation: if the element isn't there,                                 

search ends at a (dummy) leaf

• insert
– can only insert at a leaf
– the correct insertion point is the leaf where an unsuccessful 

search for the element ends up

• remove
– can only remove above a leaf
– if the element to remove does not have at least one leaf child, 

swap it with a safe element which does has at least one leaf 
child

• i.e. the next element larger or smaller than the one to remove

(dummy leaves not shown)



  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 35

Binary Search Trees

• visit all elements in order
– moving down, both children pattern → recursion
– need to visit smaller elements before the current node's element 

before the larger elements → inorder traversal

(dummy leaves not shown)

CPSC 327: Data Structures and Algorithms  •  Spring 2024 36

Implementing Map

• can store (key,value) pairs in a binary search tree ordered 
by key
– let h be the height of the tree
– all operations are O(h) as it may be necessary to go from the 

root all the way down to a leaf

CPSC 327: Data Structures and Algorithms  •  Spring 2024 37

BST Height

• height of a binary search tree
– best case is O(log n)
– worst case is O(n)

• whether a BST of a given size is balanced 
(O(log n) height) or unbalanced (O(n) 
height) depends on the order of insertions 
and removals, not the elements in the tree

• can we do better? 
– try to keep the tree balanced...


