Multiwvay Search Trees

A multiway search tree allows more than one value per
node.

* each node has up to m-1 values, in sorted order
* a node with k values has k+1 children (which may be
empty)
* ith subtree of a node [v,, ..., v,] only contains values in the
rangev, = v <v,
O=<i=<k

Vo=-%, iy = ® 7_,_

CPSC 327: Data Structures and Algorithms + Spring 2024 65

Height of 2-4 Trees

Does this ensure logarithmic height?
- Yes!

Observe.
 the 2-4 tree with the fewest keys for its height has 1 key
per node (complete binary tree)
level i has 2' keys and the whole tree has n = 2"-1 keys
- h=0(log n)
 the 2-4 tree with the most keys for its height has 3 keys
per node
level i has 3% 4' keys and the whole tree has n = 4"-1 keys
- h=0(log n)

CPSC 327: Data Structures and Algorithms + Spring 2024 67

2-4 Trees

A 2-4 tree is a multiway search tree where
« all leaves are at the same depth
» each node has 1, 2, or 3 keys and (# keys)+1 children

CPSC 327: Data Structures and Algorithms + Spring 2024 66

Operations on 2-4 Trees

Searching in a multiway tree is similar to searching in a
binary tree —

if the target element is not one of the keys in the current
node, continue the search with the appropriate child.

CPSC 327: Data Structures and Algorithms + Spring 2024 68



Operations on 2-4 Trees

For insert and remove, we use the same approach as with
AVL trees:

« insert/remove as dictated by the structural and ordering
rules
new elements are always inserted at a leaf

elements can only be removed from a leaf — first swap with next
larger (or smaller) as needed

« fix up the broken node size property as needed

if insertion creates an overflow —
« split the node and promote a middle item to the proper place in the parent
* repeat until there are no more overflows, creating a new root if necessary

if removal creates an underflow —
« if there's a sibling with at least two keys, transfer one (via the parent)
. o_tglerwisa merge — move a key from the parent, merging the node with a

sibling

« repeat until there are no more underflows, removing the root if necessary =

9

insert 55

Insert

insert 12

CPSC 327: Data Structures and Algorithms + Spring 2024

remove 30

swap



remove 25

transfer

remove 30

merge with 75,
pulling 70 down
from the parent

another
underflow!

resolve via
transfer

remove 25

merge empty
node with 50,
pulling down 30
from the parent

Insert the elements 10, 20, 30, 40, 50, 60, 70, 80, 90,
100 into an initially-empty 2-4 tree. If an overflow
occurs, promote the leftmost of the two middle
elements. Draw the state of the tree after each insertion.

Remove the elements 35, 80, 75, 40 from the 2-4 tree
shown. If swaps are needed, swap the element with its
successor. Draw the state of the tree after each removal.

W G
olofentolclolat

CPSC 327: Data Structures and Algorithms + Spring 2024



2-4 Trees Running Time

time for initial insert — O(log n)
time to fix up one overflow — O(1)
number of overflows to fix — O(log n)

- total time for insert — O(log n)
time for initial remove — O(log n)

time to fix up one underflow — O(1)
number of underflows to fix — O(log n)

- total time for remove — O(log n)

CPSC 327: Data Structures and Algorithms + Spring 2024 77

Red-Black Trees

A red-black tree is a BST + coloring
rules:

the root and the (null) leaves are black 7
every red node has two black child nodes

every path from a node to any of its descendant leaves
contains the same number of black nodes

Properties.
O(log n) height
longest root-to-leaf path (alternating red and black nodes) is no
more than twice as long as the shortest (all black nodes)

O(log n) insert/remove
O(log n) to perform insert/remove

O(log n) color changes and at most three restructurings to
restore properties

CPSC 327: Data Structures and Algorithms + Spring 2024 79

Balanced Search Trees

2-4 trees achieve O(log n) height by fixing the maximum
depth of any element. This is made possible by allowing
flexibility in the number of elements per node.

Red-black trees have the same idea — logarithmic max
depth — but achieve it through flexibility in height rather than
in the number of elements per node.
structurally equivalent to 2-4 trees
can create an instance of the other with elements in the same order
can map operations on one into operations on the other

CPSC 327: Data Structures and Algorithms + Spring 2024 8

Splay Trees

invented by Daniel Sleator and Robert
Tarjan in 1985

A splay tree is a BST + a restructuring operation:

after each find/insert/remove, that node (or its parent) is
brought to the root through splaying

Observation.
frequently-accessed nodes are near the root

Does this ensure O(log n) height?
on average, yes
worst case is O(n) — but the worst case is unlikely

CPSC 327: Data Structures and Algorithms + Spring 2024 80



Splaying

* X is the node being splayed
* pis the parent of x
* g is the parent of p (i.e. the grandparent of x)

Case 1: zig — applies when p is the root
X is rotated to the root

A B (the right-handed case is similar) B c
http://en.wikipedia.org/wiki/Splay tree

CPSC 327: Data Structures and Algorithms + Spring 2024 81

Splaying

« X is the node being splayed
* pis the parent of x
* g is the parent of p (i.e. the grandparent of x)

Case 3: zig-zag — applies when p is not the root, and one of
x and p is a right child and the other is a left child
X is rotated into p's position, then x is rotated into g's position

how oG
A A A A

(the right-handed case is similar)

http://en.wikipedia.org/wiki/Splay tree

CPSC 327: Data Structures and Algorithms + Spring 2024 83

Splaying

* X is the node being splayed
* pis the parent of x
« g is the parent of p (i.e. the grandparent of x)

Case 2: zig-zig — applies when p is not the root, and x and p
are both either right children or left children
p is rotated into g's position, then x is rotated into p's position

(the right—hanfded
case is similar)

http://en.wikipedia.org/wiki/Splay_tree

CPSC 327: Data Structures and Algorithms + Spring 2024 82

Performance

- all operations are O(height) to perform the operation +
O(height) splay steps
each zig-zig or zig-zag raises x two levels, each zig (done at
most one per splay) raises x one level

- O(log n) amortized

* worst-case performance

splay trees perform as well as optimum static balanced BSTs on
sequences of at least n accesses (up to a constant factor)

« “static” = no restructuring of tree after construction

« “optimal” = tree providing smallest possible time for a series of accesses
it is conjectured that splay trees perform as well as optimum
dynamic balanced BSTs on sequences of at least n accesses (up
to a constant factor)

« “dynamic” = tree can be restructured after construction (e.g. AVL trees,
red-black trees)

CPSC 327: Data Structures and Algorithms + Spring 2024 8



Splay Trees Takeaways

« another form of restructuring operation

* randomized or heuristic approaches can result in good
performance in practice because worst case scenarios
are rare

* amortized analysis
based on performance over a series of operations

CPSC 327: Data Structures and Algorithms + Spring 2024



