

CPSC 327: Data Structures and Algorithms • Spring 2024 36

BFS – Implementation and Running Time

bfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()

 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then

 state[v] = “discovered”
 prev[v] = u
 Q.enqueue(v)
 state[u] = “processed”

O(1) per element O(n) total→

O(1) per element =
 O(deg(u)) (adj list)
O(n) (adj matrix)

enqueue, dequeue, isEmpty are O(1)

set, access state – want O(1), can do
that with Map (hashtable)

total over all iterations of
while loop –
• O(m) for adj list because the

sum of the degrees is 2m –
each edge is counted twice

• O(n2) for adj matrix because
while loop repeats n times

O(n+m) for adjacency list implementation
O(n2) for adjacency matrix implementation

O(1)

O(1)

O(1)

O(1)

n repetitions

total over all iterations
of while loop – O(n)

CPSC 327: Data Structures and Algorithms • Spring 2024 39

BFS-Based Algorithms

• reachability

run bfs(s) – the vertices reachable from s are those marked as
”processed” by bfs(s)

– works with both undirected and directed graphs

 state[s] = “discovered”
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 state[v] = “discovered”
 Q.enqueue(v)
 state[u] = “processed”

intuition – we follow every edge leaving each
discovered vertex, and every vertex put in the
queue is eventually removed and marked as
processed

CPSC 327: Data Structures and Algorithms • Spring 2024 40

BFS-Based Algorithms

• unweighted shortest path

– initialize dist[s] = 0, dist[v] = ∞ for all other vertices v
– set dist[v] = dist[u]+1 when vertex v is discovered from vertex u
– at the end, dist[v] has the length of the shortest path from s to v

for all vertices v in the graph
unweighted-shortest-path(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 dist[v] = ∞
 state[s] = “discovered”
 prev[s] = null
 dist[s] = 0
 Q.enqueue(s)
 while Q is not empty do
 u = Q.dequeue()
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 dist[v] = dist[u]+1
 state[v] = “discovered”
 prev[v] = u
 Q.enqueue(v)
 state[u] = “processed”

intuition – all dist 1 vertices are
discovered before dist 2, etc

BFS finds the unweighted
shortest path because of how it
traverses the graph CPSC 327: Data Structures and Algorithms • Spring 2024 41

BFS-Based Algorithms

• connected components

– a connected component is a subgraph where every pair of
vertices are connected by a path and there are no connections
to other vertices not in the subgraph

a graph with three connected
components (circled)

c = 0
for each vertex v of graph G
 if v has not been discovered
 run bfs(v), setting comp[u] = c when each vertex u is
 processed
 c++

intuition – BFS finds all vertices
reachable from v along a path

CPSC 327: Data Structures and Algorithms • Spring 2024 42

BFS-Based Algorithms

• bipartite graph detection /
two-coloring

– a bipartite graph is one whose vertices can be divided into two
sets such that every edge connects a vertex in one set with a
vertex in the other

– coloring refers to assigning labels (colors) to vertices so that no
two adjacent vertices have the same label (color)

• a two-coloring uses two colors

bipartite not bipartite

color[s] = 0
run bfs(s), setting color[v] = the opposite color of
 color[u] for each discovery edge (u,v) and checking that
 color[v] is the opposite color of color[u] for each non-
 discovery edge (u,v)

– if there is an edge (u,v) for which color[u] = color[v], the graph
is not bipartite / two-colorable

intuition – following a path along discovery edges must alternate colors, since
those edges are graph edges
 – can’t change the color of any vertex without changing them all
 – non-discovery edges are also graph edges, and ends must be opposite colors CPSC 327: Data Structures and Algorithms • Spring 2024 46

Takeaways

• BFS algorithm

• BFS-based algorithms
– graph traversal
– reachability
– unweighted shortest path
– connected components
– 2-coloring / detecting bipartite graphs

