

CPSC 327: Data Structures and Algorithms • Spring 2024 64

Entry and Exit Times

Recording entry and exit times –
• early process (before incident edges)
 time = time+1
 entry[v] = time

• late process (after incident edges)
 time = time+1
 exit[v] = time

Properties –
• the [entry,exit] interval for v is properly nested within

interval for ancestor u
– entry times for ancestors of v are smaller than for v, while exit

times are larger

• the number of descendants of v is (exit[v]-entry[v])/2
– the [entry,exit] interval for all of the descendants is properly nested

within the interval for v – so there is both an entry and an exit for each
– time is incremented once for each entry and once for each exit

CPSC 327: Data Structures and Algorithms • Spring 2024 65

DFS

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 process vertex u (early)
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 process edge (u,v)
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 process vertex u (late)

CPSC 327: Data Structures and Algorithms • Spring 2024 66

Applications of DFS – Undirected Graphs

• articulation (cut) vertices
– a cut vertex is a vertex whose removal

disconnects the graph (single point of failure)
– a biconnected graph has no cut vertices (at

least two vertices must be removed to disconnect)

– observation – if a back edge connects a
descendant of v with an ancestor of v, v is not
a cut vertex

• because the back edge forms a cycle

– idea – for each vertex, determine its earliest
reachable ancestor in the DFS search tree

• number vertices in the order first encountered by
DFS (entry time)

• earliest reachable ancestor = lowest-numbered of v,
the vertices adjacent to v via back edges, and the
earliest reachable ancestors of children of v

• v is a cut vertex if
– the earliest reachable ancestor of at least one of v's

children is the child itself or v
– if v is the root, it must also have two or more children

cut vertices marked in
red

DFS tree – DFS entry
order in black, earliest
reachable ancestor in red

CPSC 327: Data Structures and Algorithms • Spring 2024 67

Applications of DFS – Undirected Graphs

• bridges (cut edges) – edges whose removal disconnects
the graph
– edge (u,v) is a cut edge if it is a tree edge and there's no back

edge from v or a descendant of v to u or an ancestor of u

cut edges marked in red DFS tree

CPSC 327: Data Structures and Algorithms • Spring 2024 68

Applications of DFS – Directed Graphs

• topological sort – order the vertices of G so
that all edges are oriented from an earlier vertex
to a later one

– possible if and only if G is a DAG (directed acyclic graph)

– algorithm – the ordering is the reverse of the order in which
vertex processing is completed (exit time) when dfs is started
from a vertex s where indeg(s) = 0 (i.e. s has no incoming edges)

https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery CPSC 327: Data Structures and Algorithms • Spring 2024 69

Topological Sort

time = 0
for each vertex v in V do
 if G.inDegree(v) = 0
 dfs(G,v)

dfs(G,s)
 for each vertex u in V-{s} do
 state[u] = “undiscovered”
 prev[u] = null
 state[s] = “discovered”
 prev[s] = null
 dfshelper(G,s)

dfshelper(G,u)
 time = time+1
 entry[u] = time
 for each edge (u,v) in G.incidentEdges(u) do
 if state[v] = “undiscovered” then
 state[v] = “discovered”
 prev[v] = u
 dfshelper(G,v)
 state[u] = “processed”
 time = time+1
 exit[u] = time

CPSC 327: Data Structures and Algorithms • Spring 2024 70

Applications of DFS – Directed Graphs

• topological sort – order the vertices of G so
that all edges are oriented from an earlier vertex
to a later one

– possible if and only if G is a DAG (directed acyclic graph)

– algorithm – the ordering is the reverse of the order in which
vertex processing is completed (exit time) when dfs is started
from a vertex s where indeg(s) = 0 (i.e. s has no incoming edges)

•

•

intuition
• exit timestamp for u is after all of the outgoing incident edges (u,v) have

been processed, which means u’s exit timestamp is after the exit
timestamps of its adacent vertices v and u occurs before v in the
topological ordering

• edges are oriented (u,v) – u appears before v in the ordering so the edges
are correctly oriented

https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery CPSC 327: Data Structures and Algorithms • Spring 2024 72

Applications of DFS – Directed Graphs

• is G strongly connected? – strongly connected means
a directed path exists between every pair of vertices
– algorithm

• dfs(s), then reverse all of the edges of G and repeat dfs(s) – G is strongly
connected if the same set of vertices are discovered/processed each time

• strongly connected components
– an algorithm

• repeatedly compute the intersection of vertices
reachable by dfs(s) and by dfs(s) with the graph's
edges reversed, removing each set as a strongly
connected component

– another algorithm
• repeatedly find a cycle and contract those vertices

into a single vertex
• when there are no more cycles, each remaining

vertex represents a different strongly connected
component

http://rosalind.info/glossary/algo-strongly-connected-component/

CPSC 327: Data Structures and Algorithms • Spring 2024 73

Takeaways

• DFS algorithm

• DFS-based algorithms / applications
– graph traversal
– reachability
– finding cycles (undirected graphs)
– cut vertices (undirected graphs)
– cut edges (undirected graphs)
– topological sort (directed graphs)
– strongly connected / strongly connected components (directed

graphs)

