Developing Algorithms

Strategies —

realize your problem is another well-known problem in

disguise

it is searching or sorting
there’s a data structure for that
it is a graph problem

develop a new algorithm
divide-and-conquer

iterative

series of choices — greedy, recursive backtracking, dynamic

programming

CPSC 327: Data Structures and Algorithms + Spring 2024

16 Steps to Recursive Success

establishing the
problem

specifications
examples
size

brainstorming
ideas

targets
tactics
approaches

CPSC 327: Data Structures and Algorithms + Spring 2024

defining the
algorithm

generalize / define
subproblems

base case(s)
main case
top level
* initial subproblem
* setup
* wrapup

special cases
algorithm

showing
correctness
termination
* making progress
* reaching the end
correctness

* establish the base
case(s)

* show the main
case

* final answer

determining
efficiency

—

implementation
time and space

52

Algorithmic Paradigms

Iterative algorithms proceed forward towards the solution
one step at a time.

Recursive algorithms have friends solve subproblems.

construct a complete solution out of complete solutions for
smaller subproblems

induction lets you demonstrate that the solution for the bigger problem is
correct

base case defines when you stop

making progress ensures that you will get there (recursion will terminate)
in terms of problem size

CPSC 327: Data Structures and Algorithms + Spring 2024 51

Recursive Patterns

Characterized by the number and size of subproblems —

1 friend — can often easily be written as iterative instead

constant amount — subproblem is smaller by a fixed number of
elements (typically 1)
e.g.a"=aa" orn!=n(n-1)!

constant factor — subproblem is a fixed fraction of the size
(typically ¥2) — “decrease and conquer”

e.g. binary search

e.g. a"= (a"»?if nis even, a (a™??)?if n is odd

variable factor — subproblem is smaller, but the size of the
reduction varies

e.g. gcd(m,n) = gcd(n,m mod n)

CPSC 327: Data Structures and Algorithms + Spring 2024 53

Recursive Patterns

Characterized by the number and size of subproblems —

2+ friends

divide-and-conquer — split into b = 2 subproblems of size n/b
(b is typically 2)
process input — split input in straightforward way, then do work combining
subproblem solutions
e.g. mergesort

produce output — do work creating the subproblem instances, then just
add a piece to the subproblem solutions
e.g. quicksort

narrowing the search space — each friend searches a different part of the
search space

case analysis — each friend considers a different choice
e.g. depth first search

CPSC 327: Data Structures and Algorithms + Spring 2024 54

Solving Recurrence Relations

T(n) = a T(n-b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the number of subproblems and f(n).

a f(n) behavior solution

base case dominates
(too many leaves)

1 =1 all levels are important T(n) = ©(n f(n))

>1 any T(n) = ©(a™)

CPSC 327: Data Structures and Algorithms + Spring 2024 56

Solving Recurrence Relations

Recursive algorithms tend to lead to recurrence relations in
one of two forms:

split off b elements
T(n) = a T(n-b) + f(n) where f(n) = 0 or ©(n° log® n)

divide into subproblems of size n/b
T(n) = a T(n/b) + f(n) where ©(n° log® n)

CPSC 327: Data Structures and Algorithms + Spring 2024

Solving Recurrence Relations

T(n) = a T(n/b) + f(n) where f(n) = ©(n° log® n)

Cases are based on the relationship between the number of
subproblems, the problem size, and f(n).

(log a)/
(logb) d behavior solution
VS C

top level dominates - more work

< any splitting/combining than in subproblems T(n) = ©(f(n))
(root too expensive)
all levels are important - log n steps to

= > -1 get to base case, and roughly same T(n) = ©(f(n) log n)
amount of work in each level

= < -1 base cases dominate - so many
subproblems that taking care of all the T(n) = ©(nos 2/iog)y
> any base cases is more work than
splitting/combining (too many leaves)

Divide-and-Conquer

The goal in developing a divide-and-conquer algorithm is
often to improve on a polynomial brute-force solution.

« targets should identify the brute force solution and its
running time
this should be pretty straightforward

if not, then divide-and-conquer is being used to try to find a
solution in the first place

CPSC 327: Data Structures and Algorithms + Spring 2024 58

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

What is the smallest size problem?

Can a process-outptt approach be used here?
Q 0days produce output
Oty O True
2days
O 3days

(O 4 ormore days

16 Steps to Divide-and-Conquer Success

establishing the | defining the showing
problem algorithm correctness
1.specifications | | 7. generalize / define | 13.termination
2.examples subproblems » making progress
3. size 8. base case(s) * reaching the end

9. main case 14. correctness
brainstorming | |, 1o, jevel + establish the base
ideas case(s)

« initial subproblem

4. targets - setup * show the main
* identify brute force case
algorithm / running ° Wrapup « final answer
e 11.special cases o
5.tactics 12.a|gorithm determlnlng
6. approaches | efficiency .
« process input 15.implementation
* produce output 16.time and space
* narrow the search ———
space : 5

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

Generalize / define subproblems:

[have one friend find the lowest price day in a region of the array and another friend find the highest price day in a region of
the array

[0 friend finds the lowest and highest prices in a region of the array

[D friend finds the best buy/sell dates in a region of the array]

(] have one friend find the lowest price day in the whole array and another friend find the highest price day in the whole array

e Process input. where the input is divided in half in a straightforward way (such as “first half” and
“second half™); the work in the main case is primarily in combining the results from the friends to
produce the solution

e Produce output, where cach friend produces some of the ontput (typically one friend produces the
first part of the output and the other friend produces the second part); the work in the main case is
primarily in splitting the input

7. Generalize / define subproblems.

Friends get smaller versions of the original problem, which often takes the form of a generalized version
of the original problem. (For example, doing the original task on a portion of the original input is a
generalized version of the original problem — the specific task is to work with all of the input, while
the generalized version works with any portion of the input, including all of it.) Define the generalized
problem, its input, and its output along with pre- and postconditions. Make sure that everything the
friend needs or hands back should be covered by the input(s) and output(s) — avoid global variables
and global effects.

Given the price of a stock over an n-day period, determine
the best time to have bought and sold 1000 shares of that
stock. (Buy and sell once, on different days.)

‘What base cases) are needed?

Oodays
O1dy

O 2days
O 3days

[something else

8. Base case(s).
Address how to solve the smallest problem(s). This is often trivial, or is solved via brute force.

CPSC 327: Data Structures and Algorithms + Spring 2024

