

CPSC 327: Data Structures and Algorithms • Spring 2024 83

• this can be solved with a greedy algorithm
– take the songs in order of …

• what if only whole songs can be included?
– ... no longer works
– (in fact, no polynomial time algorithm works)

• key snag is that there may be empty space because no other song fits,
which contributes nothing to the total popularity – but a different choice of
songs, which might be individually less good, could result in less empty
space and a higher total popularity

CPSC 327: Data Structures and Algorithms • Spring 2024 84

Knapsack Problem

• the popular playlist problem is an instance of the
knapsack problem

• given a set of items, each with a
weight w

i
 and a value v

i
, find a

subset of the items such that the
total value is maximized but the
total weight does not exceed W
– 0-1 knapsack only allows the item

or not
• greedy does not work

– fractional knapsack allows parts of
items to be chosen

• has an efficient greedy algorithm

https://commons.wikimedia.org/w/index.php?curid=985491

CPSC 327: Data Structures and Algorithms • Spring 2024 85

Greedy Isn't Always Good

Greedy algorithms are typically efficient (polynomial time)
but there are many situations where they don't work –

• it may not be possible to obtain a globally optimal solution
via only locally optimal choices
– e.g. 0-1 knapsack

• it may be hard to come up with a plausible
greedy choice
– e.g. n queens – place n queens on an nxn chess

board so that no row, column, or diagonal contains more
than one queen

• you may want to enumerate all possibilities
– e.g. generating anagrams

https://commons.wikimedia.org/wiki/File:Solution_C_for_8_Queen_Puzzles.png CPSC 327: Data Structures and Algorithms • Spring 2024 91

Recursive Backtracking

• applicable when the solution can be formulated as a
series of choices building up partial solutions

– e.g. solution is a particular ordering of objects (permutation)
• choice: which to choose next?

– e.g. solution is a particular subset of the input objects
• choice: take or not take (or which to take next)

• needed when greedy doesn't work
– greedy corresponds to finding a route when you can pick the

right way to go every time

CPSC 327: Data Structures and Algorithms • Spring 2024 92

Recursive Backtracking Formulation

We choose one alternative and then ask the friend to solve
the rest of the problem in light of that choice.

– if the friend fails, we choose a different alternative and try again

• the friend's solution is constrained by the partial solution
– partial solution is passed explicitly or implicitly (by the

construction of the subproblem)

The other way around – we ask the friend to solve a smaller
version of the problem and then we choose an alternative
and add that to the solution – doesn't work.

– if we have several legal alternatives, which do we pick?
• the discovery that our choice was bad comes after we've returned our

answer

• the friend's choices are only constrained by the partial
solution, so we have no way to direct them to come up
with a different solution

CPSC 327: Data Structures and Algorithms • Spring 2024 93

Key Points – Recursive Backtracking

• (essentially) exhaustive search applies when greedy fails – the right
choice at the moment depends on what else can happen later

• development via the 16-step process
– very similar to the general recursive process
– adds “partial solution” and “alternatives” as part of generalize /

define subproblems
– emphasis is on establishing the problem, assembling the

algorithm, showing the main case, and time
• most of the proving correctness steps are either trivial or always the same

given the framework that the 16-step process provides

• the consequences of the series of choices on the
branching factor and the longest path length
– and the impact of these on running time

• the three structural variations (one solution, all solutions, best
solution) and the corresponding code structure

CPSC 327: Data Structures and Algorithms • Spring 2024 99

16 Steps to Recursive Backtracking Success

establishing the
problem
1.specifications
2.examples
3.size

brainstorming
ideas
4. targets
5. tactics
6.approaches

● process input
● produce output

showing
correctness
13.termination

● making progress
● reaching the end

14. correctness
● establish the base

case(s)
● show the main

case
● final answer

determining
efficiency
15.implementation
16.time and space

defining the
algorithm
7. generalize / define

subproblems
● partial solution
● alternatives
● subproblem

8. base case(s)
9. main case
10.top level

● initial subproblem
● setup
● wrapup

11.special cases
12.algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 100

16 Steps to Recursive Backtracking Success

• generalize / define subproblems

– partial solution – what constitutes a solution-so-far
• same kind of thing as a legal solution for the whole problem, but less

complete (fewer choices have been made)

– alternatives
• the choice and the possible values for that choice
• only consider legal alternatives

– subproblems – the rest of the problem
• same kind of problem (task, input, output) as the original problem but

generalized – “solve the problem given this partial solution” instead of
“solve the problem from scratch”

• input may include the solution so far → output is complete solution
• input may only be the subproblem → output is solution for subproblem

CPSC 327: Data Structures and Algorithms • Spring 2024 101

16 Steps to Recursive Backtracking Success

• making progress
– progress is made because another choice is made

• reaching the end
– if you keep making choices, eventually you will have made them

all

• establish the base case(s)
– the base case condition captures a complete solution
– only legal alternatives been considered, so any complete

solution reached is legal

• show the main case
– explain why all possible alternatives for the next choice are

covered
– explain why the right partial solution is passed to each friend
– explain why pruning is safe i.e. desired solution is not pruned

away

