Knapsack Problem

You are creating a playlist for a party. There are n songs that you are considering including; song i has
a length /; and a popularity p;. Your goal is to create the most popular playlist possible (the playlist's
popularity is the sum of the popularities of the songs included), but the playlist can't last any longer
than the party does (a total time of L) so you have to decide which songs to include and which to leave
out. However, you can include parts of songs; perhaps somewhat unrealistically, the popularity scales
so that, for example, half of a song is half as popular as the whole song. Which songs do you include,
and how much of each?

* this can be solved with a greedy algorithm
take the songs in order of ...

* what if only whole songs can be included?
... no longer works

(in fact, no polynomial time algorithm works)

« key snag is that there may be empty space because no other song fits,
which contributes nothing to the total popularity — but a different choice of
songs, which might be individually less good, could result in less empty
space and a higher total popularity

CPSC 327: Data Structures and Algorithms + Spring 2024 83

Greedy Isn't Always Good

Greedy algorithms are typically efficient (polynomial time)
but there are many situations where they don't work —

* it may not be possible to obtain a globally optimal solution
via only locally optimal choices
e.g. 0-1 knapsack

¢ it may be hard to come up with a plausible
greedy choice

€.9. N queens - place n queens on an nxn chess
board so that no row, column, or diagonal contains more
than one queen

* you may want to enumerate all possibilities
e.g. generating anagrams

CPSC 327: Data Structures and Algorithms « Spring 2024 https://commons.wikimedia.org/wiki/File:Solution_C_for_8_Queen_Puzzles.png8s

« the popular playlist problem is an instance of the
knapsack problem

 given a set of items, each with a .f@ 7
. . = <
weight w, and a value v,, find a @ G
subset of the items such that the — Coab
total value is maximized but the g
total weight does not exceed W ') e
0-1 knapsack only allows the item —
or not

« greedy does not work

fractional knapsack allows parts of
items to be chosen
« has an efficient greedy algorithm

CPSC 327: Data Structures and Algorithms « Spring 2024 https://commons.wikimedia.org/w/index.php?curid=985491 84

Recursive Backtracking

+ applicable when the solution can be formulated as a
series of choices building up partial solutions

e.g. solution is a particular ordering of objects (permutation)
« choice: which to choose next?

e.g. solution is a particular subset of the input objects
« choice: take or not take (or which to take next)

* needed when greedy doesn't work

greedy corresponds to finding a route when you can pick the
right way to go every time

e 24-friend solutions, where there is more than one subproblem at each level

— divide-and-conquer
The problem is split into b subproblems of size n/b where b > 2 (typically 2).

[— case analysis]

Each friend considers a different choice.

CPSC 327: Data Structures and Algorithms + Spring 2024 91

Recursive Backtracking Formulation

We choose one alternative and then ask the friend to solve
the rest of the problem in light of that choice.
if the friend fails, we choose a different alternative and try again

the friend's solution is constrained by the partial solution

partial solution is passed explicitly or implicitly (by the
construction of the subproblem)

The other way around — we ask the friend to solve a smaller
version of the problem and then we choose an alternative
and add that to the solution — doesn't work.
if we have several legal alternatives, which do we pick?
the discovery that our choice was bad comes after we've returned our

answer

the friend's choices are only constrained by the partial
solution, so we have no way to direct them to come up
with a different solution

16 Steps to Recursive Backtracking Success

establishing the
problem

specifications

examples

size
brainstorming
ideas

targets

tactics

approaches
* process input
* produce output

CPSC 327: Data Structures and Algorithms « Spring

defining the
algorithm
generalize / define
subproblems
* partial solution
* alternatives
* subproblem
base case(s)
main case
top level
* initial subproblem
* setup
* wrapup
special cases
algorithm

showing
correctness
termination
* making progress
* reaching the end
correctness

* establish the base
case(s)

* show the main
case

* final answer

determining
efficiency

implementation

time and space _

%

Key Points — Recursive Backtracking

(essentially) exhaustive search applies when greedy fails — the right
choice at the moment depends on what else can happen later

development via the 16-step process
very similar to the general recursive process
adds “partial solution” and “alternatives” as part of generalize /
define subproblems
emphasis is on establishing the problem, assembling the
algorithm, showing the main case, and time
most of the proving correctness steps are either trivial or always the same

given the framework that the 16-step process provides
the consequences of the series of choices on the
branching factor and the longest path length
and the impact of these on running time

the three structural variations (one solution, all solutions, best
solution) and the corresponding code structure

CPSC 327: Data Structures and Algorithms + Spring 2024 %

16 Steps to Recursive Backtracking Success

generalize / define subproblems

partial solution — what constitutes a solution-so-far

same kind of thing as a legal solution for the whole problem, but less
complete (fewer choices have been made)

alternatives
the choice and the possible values for that choice
only consider legal alternatives

subproblems — the rest of the problem

same kind of problem (task, input, output) as the original problem but
generalized — “solve the problem given this partial solution” instead of
“solve the problem from scratch”

input may include the solution so far — output is complete solution
input may only be the subproblem - output is solution for subproblem

CPSC 327: Data Structures and Algorithms + Spring 2024 100

16 Steps to Recursive Backtracking Success

making progress
progress is made because another choice is made
reaching the end

if you keep making choices, eventually you will have made them
all

establish the base case(s)
the base case condition captures a complete solution
only legal alternatives been considered, so any complete
solution reached is legal

show the main case

explain why all possible alternatives for the next choice are
covered

explain why the right partial solution is passed to each friend

explain why pruning is safe i.e. desired solution is not pruned
away

CPSC 327: Data Structures and Algorithms + Spring 2024

