
  

 

CPSC 327: Data Structures and Algorithms  •  Spring 2024 153

Algorithmic Paradigms Wrapup

Key points –

• how to apply the n-step algorithm development processes 
for iterative, greedy, divide-and-conquer, recursive 
backtracking, dynamic programming
– especially how the common patterns (process input, produce 

output, narrowing the search space) apply to and provide 
structure and direction for the main steps / general case and 
correctness arguments (loop invariant, maintaining the invariant)
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Algorithmic Paradigms Wrapup

Key points –

• what a rigorous argument of correctness looks like, and 
the ability to assess your own solution
– be able to identify and construct an appropriate loop invariant
– understand the form of the establish and maintain steps

• iterative – explain why the process results in the loop invariant holding
• recursive – explain why the process results in the correct subproblem 

solution

– understand the form of the final result step
• iterative – explain why the loop invariant being true when the loop exits 

means that the final result of the algorithm is correct
• recursive – explain why the correct answer for the initial subproblem 

means that the final result of the algorithm is correct

– detect and avoid the trap of claiming that the answer is correct 
because the process is right

• instead, must explain why the process results in the correct answer
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Algorithmic Paradigms Wrapup

Key points –

• the role and use of examples and counterexamples in 
figuring out the algorithm and arguing correctness
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Algorithmic Paradigms Wrapup

Key points –

• key building blocks
– sorting is O(n log n) – what algorithms achieve that, 

applicability/tradeoffs
– search – sequential search vs binary search (running time, 

applicability)
– core ADTs, main implementations of those ADTs, and their 

running times – how quickly can common operations be done, 
applicability/tradeoffs

• where it is productive to look for improvements
– in data structures
– in algorithms
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Improvement Techniques

Algorithmic strategies – 

• try a different paradigm
• improvements within a paradigm

• heuristics and randomization

Implementation strategies – 

• better data structures

CPSC 327: Data Structures and Algorithms  •  Spring 2024 158

Improvement Techniques

Try a different paradigm – 

• divide-and-conquer typically looks to improve a 
polynomial-time brute force
– applies when the input can be split and processed as 

independent subproblems

• when building the solution is formulated as a series of 
choices...
– recursive backtracking is exponential
– dynamic programming is often polynomial or pseudopolynomial
– greedy is typically polynomial

...but whether dynamic programming is effective or 
greedy can be used depends on the nature of the 
problem
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Improvement Techniques

Improvements within a paradigm – 

• greedy

– speed up making the next greedy choice
• when the choice is about which input item to process or select for the 

output next, sort first – O(n log n) to sort (before the loop), but then O(1) 
for each choice

• PQ/heap for repeated “find best” in a dynamic environment – O(n) to build 
heap from all elements, O(log n) for each choice

– try a different pattern
• e.g. process input vs produce output

CPSC 327: Data Structures and Algorithms  •  Spring 2024 160

Improvement Techniques

Improvements within a paradigm – 

• divide-and-conquer

– address the split/combine step
• if the combine step involves computation, can the friends return that 

instead?

– address the number of problems and the size of the problems 
• pass fewer total elements to friends

– adopt a narrowing the search space approach where elements are eliminated 
and not handed to the friends

• more smaller problems
– e.g. bucket sort, shuffle sort, counting sort, radix sort
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Improvement Techniques

Improvements within a paradigm – 

• recursive backtracking

– reduce the branching factor
– reduce the solution length (number of decisions)

– pruning
– branch-and-bound

• tighter bound and initial solution estimates
• search more promising branches first – best first search + A*
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Improvement Techniques

Improvements within a paradigm – 

• dynamic programming

– reduce the number of different subproblems
• need (substantially) fewer states than partial solutions
• reducing the number of states often requires some way of ordering the 

decisions

– reduce how much work is done per subproblem
• reduce the number of next choices for a decision
• representation is a factor – how quickly a subproblem solution can be 

looked up (which is really how quickly a subproblem can be turned into an array index)
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Strategies for Improvement

Heuristic and randomized algorithms and data structures 
generally perform well but can have poor worst-case 
performance.

• bucketing performs well when the distribution of data is 
roughly uniform
– e.g. hashtables – generally O(1)
– e.g. bucket sort – generally Θ(n) when k = Θ(n)

• distribute elements into k buckets based on key ranges
• sort each bucket e.g. with insertion sort
• O(n+n2/k+k) on average, O(n2) worst case with insertion sort

– if input distribution is not uniform but is known or can be estimated, can 
choose buckets with constant density to maintain O(n) average performance
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Strategies for Improvement

• randomization “fixes” worst cases by making them 
unlikely, and often result in much simpler algorithms
– e.g. randomized quicksort – sorted/reverse sorted are no longer 

the worst cases
– e.g. splay trees

•

• Las Vegas algorithms guarantee correctness and are 
usually efficient
– random selection methods

• e.g. randomized quicksort
• e.g. randomized hashing – randomly pick hash function from a collection

• Monte Carlo algorithms guarantee efficiency and are 
usually correct
– random sampling methods

• e.g. to approximate median, find median of a small random sample of 
elements
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Strategies for Improvement

Improve the data structure – 

• e.g. O(n2) selection sort becomes O(n log n) heapsort
– speed up “repeatedly find smallest” step

• e.g. O(n2) insertion sort becomes O(n log n) with balanced 
BST
– speed up “insert into sorted collection” step

Implementation design strategy – 

• start with an ADT
– e.g. instead of “use a hashtable” or “put everything into a 

balanced BST”, identify “this is a lookup problem”

• then consider how to support those operations
– is there a standard ADT and implementation that is efficient for 

everything needed?  
– if not, design your own
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Beyond Big-Oh

• big-Oh isn't enough to distinguish between algorithms of 
the same complexity
– then implementation and system details (e.g. cache 

performance, memory size) become important
→ implement and test!

• for very large datasets, constant factors are important 
even for low complexity (O(n), O(n log n)) algorithms
– e.g. external sorting


