
1. specifications

Given a sequence S of numbers, find the longest subsequence containing increasing
numbers. The numbers in the subsequence must occur in that order in S, but need not be
consecutive in S.

task: find the longest subsequence containing increasing numbers

input: sequence S

output: subsequence

legal solution: elements in subsequence are increasing and in same order as in S

optimization goal: longest subsequence

2. size

3. examples

5 10 2 7 10 1 18 3

• 5 10 18 – an increasing subsequence

• 2 7 10 18 – a longer increasing subsequence

4. targets

5. tactics

6. approaches

subset

process input – for each element, include in the subsequence or not

produce output – what’s the next element in the subsequence?

7. generalize / define subproblems

a) partial solution

the subsequence built so far

b) alternatives

process input – include or not include the current element in the subsequence

c) subproblem

task: find the longest subsequence containing increasing numbers, given a partial
subsequence already started

input: sequence S, current position, partial solution (last thing included in subsequence)

output: subsequence and its length

8. base case(s)

have a complete solution – current position is at the end

9. main case

subseq(S,k,last)

if S[k] > last

 make both choices – include and not : subseq(S,k+1,S[k]) and subseq(S,k+1,last)

update best so far

else

make that choice – don’t include

subseq(S,k+1,last)

update best so far

return best so far

10. top level

a) initial subproblem

b) setup

c) wrapup

11. special cases

12. algorithm

13. termination

a) making progress

b) reaching the end

14. correctness

a) establish the base case(s)

b) show the main case

c) final answer

15. implementation

a) memoization

subseq(k,last)

- k is already integer 0..n-1

- last the index – S[last] is the last element picked

b) order of computation

c) dynamic programming

16. time and space

