
Divide-and-conquer works by dividing the task into independent subproblems which are solved separately;
the solutions from the subproblems are then combined in some way to get the overall solution.

A different strategy is to formulate the process of building a solution as making a series of choices. For
example, consider the event scheduling problem:

Given a collection of events with start time s(i) and finish time f(i) (0 ≤ s(i) ≤ f(i)), find the
largest set of non-overlapping events.

An algorithm to solve this problem (from the produce output perspective) could be summed up as follows:

initialize an empty set of events

repeatedly

select a non-overlapping event

until no non-overlapping events remain

The choice here is which event to add to the solution set next, and the series of choices arises from
repeatedly choosing a next event.

This problem can also be thought of from a process input perspective —

initialize an empty set of events

for each event

if it doesn’t overlap anything already in the set,

decide whether or not to add it to the set (and add it if so)

In this the choice is deciding whether or not to include a particular event in the set, and the series of
choices comes from making a decision about each event.

In both algorithms, the key question is how to make each choice — in the first algorithm there may
be many non-overlapping events to choose from and in the second algorithm there are always two possible
options (add or don’t add). Related to this is whether it is possible to choose the right alternative on the
spot, or if more than one alternative needs to be considered in order to find the desired answer.

March 29, 2024 20

Chapter 5

Greedy Algorithms

When the process of building a solution can be framed as making a series of choices, a key question is how
to make each choice. A greedy algorithm always makes a local decision — that is, one alternative is picked
based on the information present at the time the choice is being made and not on any consideration of
future possibilities. This means that we’re not concerned with whether choosing a particular alternative now
prevents a better option in the future — we just make the choice that seems to do the best job of achieving
the goal now.

Greedy algorithms often come up in optimization problems, where the goal is to find the best solution
amongst many legal solutions, but the key characteristic — that the right alternative can be chosen with a
purely local decision — is also relevant when the goal is simply to find a legal solution.

Because a single alternative is picked at each decision point, greedy algorithms are iterative algorithms,
and our development process for greedy algorithms is based on the one for iterative algorithms.

5.1 Does Greedy Work?

It is important to realize that a greedy strategy doesn’t always work — it is not always the case that the
right alternative can be chosen with a purely local decision. Problems for which a greedy algorithm can find
an optimal solution have two key properties:

� Greedy choice property. The globally optimal solution can be found by making locally optimal
choices.

� Optimal substructure property. An optimal solution to the problem can be constructed efficiently
from optimal solutions of subproblems.

(These properties can be adapted for non-optimization problems: a greedy algorithm can find a legal
solution if a legal solution can be found by making locally valid choices, and a legal solution can be constructed
from legal solutions of subproblems.)

The second property is essential for being able to build up the solution one step at a time — without
the optimal substructure property, it might be necessary to undo parts of an earlier solution-so-far in later
iterations.

Identifying whether a particular problem satisfies these properties is, of course, essential for the ultimate
success (or not) of a greedy algorithm for the problem but it isn’t necessary to prove that greedy is applicable
as the first step of developing a greedy algorithm — after all, the process of coming up with a successful
greedy algorithm is also the process of demonstrating that the greedy choice property holds. However, it is
worth considering the optimal substructure property — if you can find a counterexample, then you know
that pursuing a greedy algorithm isn’t going to be successful.

21

5.2. 15.5 STEPS TO A GREEDY ALGORITHM CHAPTER 5. GREEDY ALGORITHMS

5.2 15.5 Steps to a Greedy Algorithm

Greedy algorithms are iterative algorithms, and the development process is largely the same as the 15-step
iterative development process (section 2.1). However, there are a few additional elements specific to greedy
algorithms.

Establishing the problem.

1. Specifications.
For optimization problems, also explicitly identify the optimization goal (what does “best” mean?)
and be sure to distinguish between optimal solution(s) and legal ones.

Brainstorming ideas.

5.5 Greedy choice.
The main steps involve repeatedly making a local decision. On what basis is that choice made?

(a) Greedy strategies. Identify plausible greedy strategies for making each choice.

(b) Counterexamples. Narrow down the candidates by looking for counterexamples to eliminate
plausible-but-incorrect greedy strategies.

5.3 Greedy Flavors

“A series of choices” is a broad categorization, and can apply to many different kinds of tasks. However,
there are some common “flavors” of tasks that come up in greedy algorithms, including:

� Select a subset of the input items.
� Order the input items.
� Assign labels to the input items.

In all cases there is also a constraint that limits what constitutes a valid solution, and, for optimization
problems, a notion of “best” amongst the valid solutions.

Identifying a familiar flavor can help further define a framework for the algorithm when combined with
the common iterative approaches.

task iterative pattern main steps structure

“select a subset”
process input for each element, decide whether to include in the

solution or not include in the solution
produce output repeatedly find elements to include in the solution

“order the input items”
process input for each element, add to the solution in the proper

order
produce output repeatedly find the next element in the ordered

solution
“assign labels” process input for each element, determine its label

Table 5.1

5.4 Developing Greedy Algorithms

We now consider aspects of the iterative development process as it applies to greedy algorithms in more
detail.

March 29, 2024 22

5.4. DEVELOPING GREEDY ALGORITHMS CHAPTER 5. GREEDY ALGORITHMS

Example(s). Examples are important both to explain the task to be accomplished, but also in the context
of counterexamples for potential greedy choices. Initially focus on clarifying the specifications (as needed),
but examples may be added later as potential greedy choices are considered.

Targets. The brute force algorithm for “series of choices” problems is to try all possible combinations of
choices, of which there will generally be an exponential number. (cd where c is the number of alternatives
for each choice and d is number of decisions made) Greedy algorithms typically allow for a polynomial-time
solution.

Approaches. Identify the particular greedy flavor, if applicable, as well as the applicable iterative ap-
proaches and what they look like for this problem.

Greedy strategies. To identify potential greedy strategies, consider what information you have about
each element and consider how you could use each piece of information as the basis for picking one element
or making one choice instead of another. Keep it simple — elaborate conditions involving a combination
of multiple pieces of information will likely be more difficult to prove things about — and plausible — you
aren’t arguing correctness yet, but if there’s no reason to think that a particular greedy choice might result
in the desired solution, there’s no reason to consider it.

Counterexamples. Narrow down the plausible greedy strategies by looking for counterexamples to elim-
inate ones that aren’t going to work.

Main steps. Combine the main steps structure shown in table 5.1 with a plausible greedy choice.
It is worth noting that the “select a subset” process input and produce output approaches are related

to each other — if the elements are sorted according to the choice criterion, “repeatedly find elements to
include in the solution” amounts to the same thing as “for each element in order, decide to take or not to
take”.

Loop invariant. For optimization problems, the loop invariant contains two parts, addressing both legality
— that the solution-so-far is valid (it doesn’t violate the structural constraints of a solution) – and optimality.

A direct statement — that what we want to be true for the entire solution holds for the part completed
so far — still often works for the legality part of the invariant.

However, unlike the typical “process input” pattern, the optimality part of the loop condition is not that
we have the optimal solution for the first k items. Instead, two common forms are

� Staying ahead: our algorithm’s partial solution after k steps is at least as good in some respect as any
optimal solution after k steps

� We haven’t gone wrong yet: our algorithm’s partial solution is still consistent with an optimal solution
for the whole problem

For a “staying ahead” argument, a specific goodness measure is needed — the “at least as good as” language
is a template and needs to be defined for the particular algorithm. The goodness measure is a quantity
that can be compared, and it should be stated whether “at least as good as” means a bigger quantity or
a smaller quantity. The particular measure depends on the problem, and is not always the same quantity
that is being optimized — in fact, the goodness measure may be more closely connected to what the greedy
choice is based on that the optimization criteria.

For both forms of invariant, if the output is a set (and thus the ordering of the elements doesn’t matter,
just what they are), it can be useful (and necessary) to consider the elements in the optimal solution ordered
the same way the algorithm considers them. That allows for an apples-to-apples comparison.

March 29, 2024 23

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

Final Answer. Since it can take some effort to show the “maintain the loop invariant” step, it can be a
good strategy to first test whether it’s worth proving the invariant correct — can a particular invariant be
used to show the correctness of the final answer?

The goal of this step is still to show that the loop invariant being true at the end of the final iteration
combined with the exit condition and any wrapup steps means that the final answer is correct.

For loop invariants that have a simple “process input” form — the task is to maximize X, and the
invariant is that after k interations, the algorithm’s value of X is as big as or bigger than the optimal’s value
of X — this step is straightforward. (The exit condition means that k = n when the loop exits, so the
invariant holding yields that after (all) k = n iterations, the algorithm’s value of X is as big as or bigger
than the optimal’s value of X — and since the definition of “optimal” means that the algorithm can’t have
found a better solution, the algorithm’s solution is optimal.)

For cases where optimality is based on the number of elements in the solution (such as the largest set of
events), a strategy for this step is to consider the possibilities when the loop terminates: either |A| > |O| or
|A| < |O| or |A| = |O| where |A| and |O| are the number of elements in the algorithm’s and in an optimal
solution, respectively. To show that it must be the case that |A| = |O|, argue why the other alternatives
are impossible: |A| > |O| means that the algorithm found a larger set than the optimal solution, which is
impossible due to the definition of “optimal”, while why |A| < |O| is impossible must be shown using the
loop invariant, exit condition, and wrapup steps. Then, if |A| > |O| and |A| < |O| are both impossible, it
must be the case that |A| = |O| and thus the algorithm produces an optimal solution. (Note that this is
assuming a maximization goal; the cases are reversed for a minimization goal.)

Maintain the loop invariant. For a staying ahead loop invariant, proof by contradiction is often a good
strategy: assume that the invariant is true after k iterations but is no longer true after k+ 1, and argue why
that cannot happen.

Note that it is not valid to attempt a direct argument by saying that the invariant is maintained because
the algorithm’s process (namely the greedy choice) is correct. Whether or not the algorithm’s process is
correct is what we are trying to show — the overall correctness of the algorithm is established indirectly
via the argument that because the invariant holds, the algorithm’s process must be the right process. As a
result, it is necessary to show that the steps the algorithm takes lead to the loop invariant holding.

5.5 Example

Specifications. State complete specifications for the problem. What is the problem? What do you start
with (input) and what is the end result (output)? What are the legal input instances and the required
output for each? For optimization problems, distinguish between legal solutions and optimal ones. out-
put:

Given a collection of events with start time s(i) and finish time f(i) (0 ≤ s(i) ≤ f(i)), find the
largest set of non-overlapping events.

Input: n events with start and finish times s(i) and f(i)

Legal input: 0 ≤ s(i) ≤ f(i)

Output: a set of events

Legal solution: a non-overlapping set of events

Optimization goal: largest set

Examples. If needed, give examples (specific inputs and the corresponding outputs) of typical and special
cases to clarify the specifications.

No explanatory examples are needed; we might need to identify some examples as counterexamples for greedy
choices later.

March 29, 2024 24

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

Targets. What are the time and space requirements for your solution?

No constraints on time or space are given in the problem. Trying all combinations of sets of
events is exponential time, so we are aiming for polynomial time. Sublinear is not likely to be
possible because it is possible that none of the events overlap and thus the solution contains all
n.

Tactics. The time and space constraints may narrow down the algorithmic options and/or may guide you
in particular directions. Consider both things you can and can’t do.

Polynomial time means not looking at every possible combination of sets of events — a successful greedy
strategy will achieve that so there’s not really anything to say here.

Approaches. Identify the particular greedy flavor, if applicable, as well as the applicable iterative ap-
proaches and what they look like for this problem.

This is a “select a subset” problem.

Process input: For each event, decide whether or not to include it in the set.

Produce output: Repeatedly choose events to include in the set.

Greedy strategies. Identify plausible greedy strategies for making each choice.

For process input, a plausible greedy choice would be to include the event if it doesn’t overlap
with events already included in the solution — this is plausible because more events are better,
so we include an event if we can.

For produce output, the greedy choice is about which event to choose next. Available event
properties are length, starting time, and finish time — one could choose event in order of shortest
or longest, earliest starting or latest starting, or earliest finish or latest finish. Of these, shortest
(because there’s more time remaining for other events to fit into), latest starting time (because
there’s more time before for more events to fit into), and earliest finish time (because there’s
more time after for more events to fit into) are plausible options for achieving the goal of most
events selected. There’s no reason to think that picking longer, earlier-starting, or later-finishing
events would help us fit in more.

Counterexamples. Narrow down the candidates by looking for counterexamples to eliminate plausible-
but-incorrect greedy strategies.

� Include the next event if it doesn’t overlap with events already included in the solution.
The problem here is that a long event chosen early could block lots of shorter events not yet
considered. For example, event A runs from 2pm to 6pm, event B runs from 1pm to 3pm,
and event C runs from 4pm to 8pm. The largest non-overlapping set would contain events
B and C but an include-if-no-overlap strategy with the events considered in the order A, B,
C means that A would be included, blocking both B and C.

� Take the shortest remaining non-overlapping event next.
We look for a short event that nonetheless overlaps several others. For example, event A
runs from 2-4pm, event B runs from 11-2:30pm, and event C runs from 3-8pm. Event A
will be chosen first since it is shortest, but then A blocks the other two events. Choosing B
and C is the optimal solution.

� Take the remaining non-overlapping event with the latest starting time next.
For a counterexample, we want to set up a case where event A has the latest starting time
but choosing it blocks both B and C, neither of which overlaps with the other (so B and C
is the optimal solution). Both B and C must then start before A starts so that A has the
latest starting time, and must end after A starts in order for them to overlap A. But then

March 29, 2024 25

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

both B and C must span A’s start time, overlapping with each other. Perhaps there is a
more complex counterexample, but the failure of one counterexample gives some additional
plausibility to this as a potential greedy choice.

� Take the remaining non-overlapping event with the earliest finish time next.
For a counterexample, we want to set up a case where event A has the earliest finish time
but choosing it blocks both B and C, neither of which overlaps with the other (so B and
C is the optimal solution). Both B and C must start before A ends and end after A ends
in order to overlap with A and not be chosen before A. But this means that both B and
C span A’s finish time and thus overlap with each other. Perhaps there is a more complex
counterexample, but the failure of one counterexample gives some additional plausibility to
this as a potential greedy choice.

Main steps. This is the core of the algorithm — the main loop, focusing on the loop body. What’s being
repeated?

Counterexamples were found for several of the greedy choices identified, and we can observe that latest-
starting and earliest-finishing are really just mirror images of each other — the difference is whether the
solution is built up with later events first or earlier events first. Since going from earlier to later is perhaps
a bit more natural an ordering, we’ll go with earliest-finishing as our greedy choice.

Also, while this is a greedy choice associated with a “produce output” pattern, recall that for “select a
subset” problems, there’s an equivalent “process input” version where the elements are first sorted according
to the choice criterion and then whether or not to take each element is considered in turn. Since it is often
easier to think in terms of process input, make that switch.

for each event (in order of increasing finish time)

choose the event if it doesn’t overlap any already-selected events

Exit condition. Identify when the loop ends.

The process input pattern is that the loop ends when all of the input items have been processed.

When all of the events have been considered. (Alternatively, when there are no non-overlapping
events remaining.)

Setup. Whatever must happen before the loop starts (initialization, etc).

Sort the events in order of increasing finish time.

Initialize the set of selected events to empty. (Nothing has been selected yet.)

Wrapup. Whatever must happen after the loop ends to produce the final solution.

The set of selected events is the answer — no need to do anything else after the loop ends.

Special cases. Make sure the algorithm works for all legal inputs — revise the previous steps to add
handling for those cases as needed.

Duplicates or ties can often cause problems, so that’s a good thing to check.

Two events with the same finish time will get sorted into some order and one will be considered
before the other — it doesn’t cause any problems for carrying out the algorithm.

Whether same-finish-time events being considered in a arbitrary order causes problems for correctness
will be considered in the correctness argument.

Algorithm. Assemble the algorithm from the previous steps and state it.

March 29, 2024 26

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

sort the events by finish time

initialize the set of selected events to be empty

for each event

add it to the selected events if it doesn’t overlap with anything already selected

Termination. Show that the loop eventually terminates.

These steps often come directly from the iterative pattern.

Measure of progress. What metric can be used to tell you that you are getting closer to the solution?

The measure for the “process input” pattern is typically the number of input elements considered.

The number of events for which a take/no-take decision has been made.

Making progress. Explain how each iteration of the loop changes the value of the measure of progress.

In each iteration one more event is considered and either included or not, increasing the number
of events for which a take/no-take decision has been made by one.

Reaching the end. Explain why making progress means that eventually the exit condition will be
satisfied.

Every iteration makes a take/no-take decision about one event and no event is considered more
than once — n will be reached eventually.

Correctness. Show that the algorithm is correct.

Loop invariant. A loop invariant is a boolean statement about the state at the start of the loop body.

For optimization problems, the loop invariant needs to address both legality and optimality. We try a staying
ahead argument for the optimality part. Since the greedy choice is based on the earliest finish time, we define
the staying ahead goal in terms of the earliest finish time.

None of the selected events overlap, and f(Ak) ≤ f(Ok) where Ak is the kth event selected by
the algorithm (which chooses things in order of increasing finish time) and Ok is the kth event
an optimal solution (when ordered from earliest-finishing to latest-finishing).

The first part addresses legality — the set of events cannot contain overlapping events.
The second part addresses the optimality of the solution. (Recall that in the original problem specifi-

cations, f(i) is the finish time of event i.) It is a staying ahead argument — since the greedy choice deals
with the earliest-finishing event, we compare the finish time of the kth event selected by the algorithm and
the kth event in an optimal solution with the idea that “being ahead” means an equal or earlier finish time.
Note that since there isn’t any inherent ordering of the events in the solution — a solution is a set of events
— we consider the elements in the optimal solution in the same order as the algorithm i.e. ordered by finish
time.

Establish the loop invariant. Explain why the loop invariant is true at the beginning of the first
iteration, and why, if it is true at the beginning of the first iteration, why it is also true at the end of the
iteration / beginning of the second iteration.

For k = 0, no events have been selected yet so there can’t be any overlaps amongst selected
events and there aren’t any finish times to compare.

For k = 1, the algorithm has chosen a single event — the earliest-finishing event.

� None of the selected events overlap. A1 is the first event selected so there’s nothing already-

March 29, 2024 27

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

chosen for it to overlap.

� f(A1) ≤ f(O1). Since the algorithm considers events in order of finish time and A1 is the
first event considered, A1 is the earliest-finishing event. For the optimal solution, O1 is
earliest-finishing of the events in the optimal. However, since A1 is the earliest-finishing of
all the events, O1 can’t possibly end any earlier and f(A1) ≤ f(O1).

Maintain the loop invariant. Assume that the loop invariant is true at the start of an iteration,
and explain why the invariant is still true at the end of that iteration.

Assume that the loop invariant is true when a loop iteration begins: the k events already selected
by the algorithm do not overlap, and f(Ak) ≤ f(Ok).

On the next iteration, the next event is either taken or not taken.

Consider the “no-take” choice: If the next event considered overlaps with any events A1, ..., Ak,
it is not selected and k doesn’t change. Hence the invariant still holds.

Consider the “take” choice: If the next event considered does not overlap with any events
A1, ..., Ak, it is selected as Ak+1.

� None of the selected events overlap. We need to show that event Ak+1 does not overlap with
any events A1, ..., Ak — which is true because only non-overlapping events are selected.

� f(Ak+1) ≤ f(Ok+1). Assume the invariant is true up to this point: f(Ak) ≤ f(Ok). Now
also assume that this is the step where things go wrong: f(Ak+1) > f(Ok+1). What can we
conclude?

First, note that events Ak+1 and Ok+1 must be different events since they have different
finish times.

Since Ak+1 is non-overlapping and the algorithm considers events in order of finish time,
event Ok+1 must overlap with something the algorithm already picked or else it would have
been chosen instead of Ak+1 since it ends earlier than Ak+1. Overlapping with something
A1, ..., Ak means s(Ok+1) < f(Ak) — event Ok+1 must start before event Ak (the latest-
finishing event selected by the algorithm) finishes.

But no events in an optimal solution can overlap, and since f(Ok+1) ≥ f(Ok) (optimal’s
events are being considered in order of finishing time), s(Ok+1) ≥ f(Ok). The loop invariant
gives us that f(Ak) ≤ f(Ok) so s(Ok+1) ≥ f(Ak) — which flatly contradicts the requirement
that s(Ok+1) < f(Ak) from the previous paragraph.

Thus the assumption that the algorithm went wrong in this step is at fault, and f(Ak+1) ≤
f(Ok+1).

Final Answer. Explain why, with the loop invariant being true and the exit condition being false
when the loop completes, the wrapup steps lead to a correct result.

We need to show that we have the largest set of non-overlapping events. The non-overlapping
part comes directly from the first part of the loop invariant — none of the selected events along
the way overlap, so none of the selected events in the final set overlap.

But optimality? The loop invariant only says something about finish times: f(A|A|) ≤ f(O|A|),
where |A| is the number of events selected by the algorithm. Since this is a problem about the
number of elements in the solution, consider the two unwanted possibilities:

� |A| > |O|. This is impossible, because the definition of the optimal solution is that it is the
largest possible set of non-overlapping events. Since the algorithm generates a legal solution
(it does not pick overlapping events), it cannot end up with a larger set of non-overlapping
events than an optimal (also legal) solution.

� |A| < |O|. This means that there is at least one more event in the optimal solution than in
the algorithm’s solution. Since the events in the optimal solution are being considered in

March 29, 2024 28

5.5. EXAMPLE CHAPTER 5. GREEDY ALGORITHMS

order of finish time, f(O|A|+1) ≥ f(O|A|). The optimal solution does not contain overlapping
events, so this means s(O|A|+1) ≥ f(O|A|) — and, because f(A|A|) ≤ f(O|A|) by the loop
invariant, s(O|A|+1) ≥ f(A|A|). But if the extra event in the optimal solution starts after
the algorithm’s last event finishes, it can’t overlap with any other events that the algorithm
picked — so it can’t exist or else the algorithm would have picked it. Thus this case is also
impossible.

Since |A| > |O| and |A| < |O| are both impossible, it must be the case that |A| = |O| and thus
the algorithm produces an optimal solution.

Implementation. Identify data structures and, as necessary, specific implementations of those data struc-
tures to efficiently support the algorithm. Also fill in any algorithmic details that are needed in order to
establish the running time.

We need to sort and iterate through a collection of events, access start and end times for an event, and
repeateadly check for overlaps and, potentially, add an event to a collection. All of these, except for checking
for overlaps, are well-known operations in well-known data structures with well-known running times and
no tradeoffs (i.e. we can achieve all the desired running times in the same data structure) so we don’t need
to spell out the details.

(We don’t know the specific data structures for how the input is provided, but most collections support
O(1) per element traversal and property-access (such as getting an event’s start time) is typically assumed to
be O(1) (accessing an instance variable of an object, lookup by index in an array, or lookup in a hashtable-
based Map). Sorting is well-known to be O(n log n) for an array, but if we have some other kind of collection,
an array can be built for the cost of traversal, which is less than the time it takes to sort, so it can be safely
assumed that sorting is O(n log n) regardless of the specific collection data structure.)

Since we are considering events in order of increasing finish time, the last-selected event will have
the latest finish time of any already selected. Thus we only need to check that the next event’s
starting time is no earlier than the last-selected event’s finish time to know that there aren’t any
overlaps with any already-selected events. This is O(1).

Time and space. Assess the running time and space requirements of the algorithm given the implemen-
tation identified.

The beginning steps require sorting the n events (O(n log n)) and initializing an empty collection
(O(1)).

The loop repeats n times, and each iteration requires determining if an event overlaps any of the
already-selected events and, possibly, adding the event to list. As observed in the previous step,
the overlap check can be done with a single comparison of times (O(1)). Adding to an unordered
collection is also O(1) so the total running time of the loop is O(n).

The final runtime: O(n log n) to sort + O(n) to select events = O(n log n).

March 29, 2024 29

