Deep Learning

- training time increases very rapidly with the number of inputs
 - traditionally this means that one must first select (often manually) a small number of features

- deep learning refers to a collection of techniques in which features can also be learned

Deep Learning Network Architecture

- core architecture
 - preprocessing +
 - application dependent (e.g. normalizing)
 - several feature layers +
 - trained by unsupervised learning
 - classical neural network
 - trained by supervised learning

- mimics the structure of the brain
 - sensory organs detect stimuli
 - brain has multiple layers of processing, with higher layers dealing with more abstract levels of information

Stacked Denoising Autoencoders

- an autoencoder learns an identity mapping of its inputs

- contains a single hidden layer
- to avoid overfitting, denoising is used instead of cross-validation to update weights
 - cross-validation = evaluating on a different set of inputs from those used for training
 - denoising = randomly change some of the inputs, then use the distance between the calculated output vector and the original input as the error function

Training a Deep Learning Network

- feature layers are trained first
 - trained by unsupervised learning

- algorithm
 - first feature layer is trained using a stacked denoising autoencoder
 - once trained, the computed weights for first layer are fixed
 - repeat for each additional feature layer
 - train the current layer using a stacked denoising autoencoder
 - the inputs used are the outputs from the previous (already-trained) layer
 - once trained, the computed weights for the current layer are fixed
Training a Deep Learning Network

• once the feature layers are trained, the classical neural network is trained
 – trained by supervised learning
 – inputs are the outputs from the last feature layer
 – feature layer weights can be held constant, or re-trained to fine-tune performance

Variations

• “deep learning” refers to a family of techniques rather than a specific algorithm

• e.g. for the unsupervised learning portion
 – convolutional neural networks with pooling layers
 – deep belief networks with restricted Boltzmann machines
 – clustering via kernel PCA

• e.g. for the supervised learning portion
 – support vector machines (SVMs)

Applications of Neural Networks

• many applications involve pattern recognition, but that is not the only application
 – character recognition
 – electronic nose
 – credit approval
 – stock market prediction
 – image recognition
 – predicting football plays
 – self-driving vehicles
 – handwriting identification
 – handwriting analysis
 – acting on thoughts
 – image compression
 – natural language captioning of photos

Problems with Supervised Learning

Problem: the trained network is no better than its teacher.
Problem: we may not have an expert teacher.
Reinforcement Learning

The agent receives an evaluation of its action (reward or punishment) but is not told the correct action.
- often used when the designer doesn't know how to program the correct actions to take

Challenges.
- **blame attribution problem**
 - reinforcement is often delayed, so must figure out which action(s) were most responsible for the outcome
 - may not be a single action, but a combination of actions carried out in the right circumstances
- the effect of an action also depends on what the agent does subsequently
- **exploit vs explore**
 - exploit utilizes a good solution once it is found, but what if there's something better?
 - too much exploration ignores the benefits of experience and risks missing the best solution altogether

Approaches

- utility-based – agent learns a utility function on states, and uses it to select actions that maximize the expected outcome utility
 - requires agent to know what happens when an action is applied
- Q-learning – agent learns an action-utility function giving the expected utility of taking a given action in a given state
 - does not require the agent to know what happens when an action is applied
 - does not allow lookahead
- reflex – agent learns policy that maps directly from states to actions

Backward Induction

Backward induction is the process of reasoning backwards from the end of the problem to find a solution.
Nim

The game:
- two players
- 21 sticks
- players alternate turns, picking up 1, 2, or 3 sticks
- player to pick up last stick wins

Variations have sticks grouped into some number of heaps, or player to pick up last stick loses.

Nim has an optimal strategy.
- first player can guarantee a win if she plays perfectly
- other player can seize on a mistake and turn the tables

Learning Nim via Backward Induction

- learning goal: a direct mapping from state to action

 Initialize a table containing all possible legal moves for each number of sticks.

 Play a game, choosing a move at random from those listed in the table for the current number of sticks.
 - if there are no available moves, a loss is inevitable and game can be abandoned (or pick a random move if a move is required)

 If the computer wins, nothing changes.
 If the computer loses (or reaches state where a loss is inevitable), remove the last move made (to that point) from the table.

Learning Nim via Backward Induction

- exploitation refers to repeating past good choices
- exploration refers to trying new things

How is exploration incorporated into this approach?
- only eliminates known failures
- randomly selects from remaining options

What makes for a good opponent for learning?
- computer needs to experience all the ways to lose as quickly as possible
Learning Nim via Backward Induction

Would this strategy work for other games?
- e.g. tic-tac-toe, checkers, chess, Connect Four, backgammon, ...

Observations.
- this strategy eliminates every move from which we can't force a win
 - it only considers "win" and "not win"
 - blames the last move entirely for a loss
- requires storing every combination of state and action

Temporal Difference

Goal: learn the likelihood of winning from each game state.
- $V(s) > V(t)$ if greater likelihood of winning from state s than from t

Playing the game:
- at each state s, choose the move leading to the successor state s' with the highest $V(s')$ value

Learning:
- play a game, storing the sequence of states visited
- working backwards, update values of visited states
 $$V(s) \leftarrow V(s) + \alpha [V(s') - V(s)]$$
 - $V(t) = 1$ for a winning state, -1 for a losing state, 0 for a draw
 - learning rate α is the degree to which new information replaces old information
 - $0 =$ consider only old info, $1 =$ consider only new info

$V(s)$ is highest-valued successor

*s' is highest-valued successor