Cover Page

Introduction to Programming Using Java
Version 3.1, February 2001

(Repackaged with minor corrections June 2004)

Author: David J. Eck

Department of Mathematics and Computer Science
Hobart and William Smith Colleges
Geneva, New York 14456
Email: eck@hws.edu
WWW: http://math.hws.edu/eck/

This PDF file or printout contains parts of afree textbook
that covers introductory programming with Java
The entire text is available on the World-Wide Web,
for use on-line and for downloading,
at this Web address:

http://math.hws.edu/javanotes3/

A newer edition of this book is available at

http://math.hws.edu/javanotes/

The PDF file and printouts that are made from it do not show the Java applets that
are embedded throughout the text. In most places where an applet should appear, you will
see amessage such as " Sorry, but your Web browser does not support Java." Also not
included are Java source code examples from Appendix 3 of the text and solutions to the
guizzes and programming exercises. The real version of the textbook is on-line, to be read
with aWeb browser. Version 3.1 contains only minor corrections from Version 3.0, which
was released in May 2000. Version 3.1 was released in February 2001, and some additional
corrections were incorporated in June 2004.

Permission is hereby granted to duplicate, modify,
and distribute all or part of the following material,
under the terms of the Open Publication License.

http://math.hws.edu/eck/cs124/javanotes3/pdf-front-page.html [6/10/2004 8:34:21 AM]

http://math.hws.edu/javanotes3/license.html

Java Programming, Main Index

Note: New Version Available...
A newer edition of Introduction to Programming Using Java
isavailable at http://math.hws.edu/javanotes/
(The new edition requires Java 1.3 or higher,
while thisversion uses Javal.1.)

Introduction to Programming Using Java
Version 3.1, February 2001

(Repackaged with minor corrections June 2004)

Author: David J. Eck (eck@hws.edu)

WEL COME TO Introduction to Programming Using Java, an on-line textbook on introductory

programming, which uses Java as the language of instruction. This text has more than enough material for a
one-semester course, and it is also suitable for individuals who want to learn programming on their own.
Thisisthe third edition of the text. (Version 3.1 isaminor upgrade of Version 3.0, which wasreleased in
May, 2000. Version 3.1 wasreleased in February 2001 and incorporated a few changes and corrections. A
final packaging of Version 3.1 was released in June 2004, incorporating corrections made since the release
of Version 3.1. Thisversion is released under the Open Publication License.) The third edition covers more
material and has more examples than the second edition. It aso adds end-of -chapter quizzes and solved
programming exercises. Previous editions have been used in a course, Computer Science 124 Introductory
Programming, at Hobart and William Smith Colleges. (Thettitle of the previous editions included a
reference to this course.) This textbook covers Java 1.1. Most of the applets that are contained in the text
require Java 1.1 or higher.

Links for downloading copies of this text can be found at the bottom of this page. To learn more about this
on-line text, please read its preface.

Search this Text:

Although this book does not have a conventional index, you can search it for terms that interest you. Note
that this searches the version of the text book at its main site, at math.hws.edu.

Search Introdution to Programming Using Java for pages...

Containing all of these words: Search

http://math.hws.edu/eck/cs124/javanotes3/index.html (1 of 3) [6/10/2004 8:34:42 AM]

http://math.hws.edu/javanotes/
http://math.hws.edu/eck/
mailto:eck@hws.edu
http://math.hws.edu/eck/cs124/javanotes3/license.html
http://www.hws.edu/

Java Programming, Main Index

Short Table of Contents:

« Full Table of Contents

« Preface

» Preface to the Second Edition

o Chapter 1: Overview: The Mental L andscape

o Chapter 2: Programming in the Small 1. Names and Things

o Chapter 3: Programming in the Small 11: Control

« Chapter 4: Programmingin the Largel: Subroutines

o Chapter 5: Programming in theLargell: Objects and Classes
o Chapter 6: Applets, HTML, and GUI's

o Chapter 7: Advanced GUI Programming

o Chapter 8: Arrays

o Chapter 9: Correctness and Robustness

« Chapter 10: Advanced I nput/Output

o Chapter 11: Linked Data Structures and Recursion

o Appendix 1: From Javato C++

» Appendix 2: Some Notes on Java Programming Environments

« Appendix 3: Source code for al examplesin the text

« Newsand Errata

Thisisafreetextbook. Asof Version 3.1, it is published under the terms of the Open Publication License,

Version 1.0. The latest edition is always available, at no charge, for downloading and for on-line use at the
Web address http://math.hws.edu/javanotes’. This edition, the third, is aso permanently archived at the

address http://math.hws.edu/eck/cs124/javanotes3/.

Downloading Links

Use one of the following direct links to download a compressed archive of this entire textbook. Y ou can use
this material on your own computer. Y ou can aso re-post it on any Web server: See the preface for more

detailed information about downloading. In the preface, you will also find alink to a PDF file that can be
used for printing the textbook.

« http://math.hws.edu/eck/cs124/downl oads/javanotes3.zip (1.6 MB), for Windows. This can be used
directly in Windows XP. On any version of Windows, you can open it using WinZip from
www.winzip.com or Aladdin Expander for Windows from www.aladdinsys.com. (Note: The text
filesin this archive are in Windows/DOS format.)

« http://math.hws.edu/eck/cs124/downl oads/javanotes3.tar.bz2 (1.0 MB), for Linux/MaxOS. In Linux,
you should be able to expand this using the command "bunzip2 javanotes3.tar.bz2" followed by "tar
xf javanotes3.tar.bz2"; thiswill also work in UNIX, if you have the bunzip2 program. For MacOS,
your browser will probably expand it automatically when you download it,or it can be opened with
Suffit Expander from www.al addinsys.com.

http://math.hws.edu/eck/cs124/javanotes3/index.html (2 of 3) [6/10/2004 8:34:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c4/index.html
http://math.hws.edu/eck/cs124/javanotes3/c5/index.html
http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c7/index.html
http://math.hws.edu/eck/cs124/javanotes3/c8/index.html
http://math.hws.edu/eck/cs124/javanotes3/c9/index.html
http://math.hws.edu/eck/cs124/javanotes3/c10/index.html
http://math.hws.edu/eck/cs124/javanotes3/c11/index.html
http://math.hws.edu/eck/cs124/javanotes3/java2cpp/index.html
http://math.hws.edu/eck/cs124/javanotes3/license.html
http://math.hws.edu/javanotes/
http://math.hws.edu/eck/cs124/javanotes3/
http://math.hws.edu/eck/cs124/downloads/javanotes3.zip
http://www.winzip.com/
http://www.aladdinsys.com/
http://math.hws.edu/eck/cs124/downloads/javanotes3.tar.bz2
http://www.aladdinsys.com/

Java Programming, Main Index
The following archivesin older formats do not include the final corrections of June 2004:
« http://math.hws.edu/eck/cs124/downl oads/javanotes3.sit.hgx (2.1 MB), for Macintosh.
« http://math.hws.edu/eck/cs124/downl oads/[avanotes3.tar.Z (1.8 MB), for Linux/UNIX.

David Eck (eck@hws.edu)

Version 3.0, May 2000

Version 3.1, with minor changes, February 2001
Final packaging, with further corrections, June 2004

http://math.hws.edu/eck/cs124/javanotes3/index.html (3 of 3) [6/10/2004 8:34:42 AM]

http://math.hws.edu/eck/cs124/downloads/javanotes3.sit.hqx
http://math.hws.edu/eck/cs124/downloads/javanotes3.tar.Z
http://math.hws.edu/eck/
mailto:eck@hws.edu

Java Programming: Contents

Introduction to Programming Using Java, Third Edition

Table of Contents

THIS ISTHE FULL TABLE OF CONTENTS for an on-line introductory programming textbook that uses
Java as the language of instruction. For more information about the text, please see its front page. The text
isavailable on-line at http://math.hws.edu/javanotes.

Preface

Preface to the Second Edition

Chapter 1: Overview: The Mental L andscape

Section 1: The Fetch-and-Execute Cycle: Machine Language
Section 2: Asynchronous Events: Polling L oops and Interrupts
Section 3: The Java Virtual Machine

Section 4: Fundamental Building Blocks of Programs

Section 5: Objects and Object-oriented Programming
Section 6: The Modern User Interface

Section 7: The Internet and World-Wide Web

Quiz on this Chapter

Chapter 2: Programming in the Small |: Names and Things

Section 1. The Basic Java Application
Section 2: Variables and the Primitive Types
Section 3: Strings, Objects, and Subroutines
Section 4: Text Input and Output

Section 5: Details of Expressions

Programming Exercises

Quiz on this Chapter

Chapter 3: Programming in the Small |1: Control

Section 1: Blocks, Loops, and Branches

Section 2: Algorithm Development

Section 3: Thewhi | e and do. . whi | e Statements
Section 4: Thef or Statement

Section 5: Thei f _Statement

http://math.hws.edu/eck/cs124/javanotes3/contents.html (1 of 4) [6/10/2004 8:35:18 AM]

http://math.hws.edu/javanotes/
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programming: Contents
o Section 6: Theswi t ch Statement
e Section 7: Introduction to Applets and Graphics

« Programming Exercises

o Quiz on this Chapter

Chapter 4: Programmingin theLarge|l: Subroutines
» Section 1: Black Boxes
« Section 2: Static Subroutines and Static Variables
» Section 3: Parameters
» Section 4: Return Values
« Section 5: Toolboxes, API's, and Packages

« Section 6: More on Program Design
¢ Section 7: The Truth about Declarations

o Programming Exercises

o Quiz on this Chapter

Chapter 5: Programmingin theLargell: Objects and Classes
« Section 1: Objects, Instance Variables, and Instance M ethods
 Section 2: Constructors and Object Initialization
 Section 3: Programming with Objects

« Section 4: Inheritance, Polymorphism, and Abstract Classes
¢ Section 5: More Details of Classes

« Programming Exercises

o Quiz on this Chapter

Chapter 6: Applets, HTML, and GUI's
» Section 1: The Basic Java Applet
« Section 2. HTML Basics and the Web
 Section 3: Graphics and the Paint Method
 Section 4: Mouse Events
« Section 5: Keyboard Events
« Section 6: Introduction to L ayouts and Components
» Section 7: Looking Back: The Java 1.0 Event Model
« Programming Exercises

o Quiz on this Chapter

Chapter 7: Advanced GUI Programming
o Section 1: More about Graphics
o Section 2: More about Layouts and Components

http://math.hws.edu/eck/cs124/javanotes3/contents.html (2 of 4) [6/10/2004 8:35:18 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html
http://math.hws.edu/eck/cs124/javanotes3/c5/index.html
http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c7/index.html

Java Programming: Contents

Section 3: Standard Components and Their Events

Section 4: Programming with Components

Section 5: Threads, Synchronization, and Animation
Section 6: Nested Classes and Adapter Classes
Section 7: Frames and Dialogs

Section 8: Looking Forward: Swing and Java 2.0
Programming Exercises

Quiz on this Chapter

Chapter 8: Arrays

Section 1: Creating and Using Arrays
Section 2: Programming with Arrays

Section 3: Vectors and Dynamic Arrays
Section 4: Searching and Sorting
Section 5: Multi-Dimensional Arrays

Programming Exercises

Quiz on this Chapter

Chapter 9: Correctness and Robustness

Section 1: Introduction to Correctness and Robustness

Section 2: Writing Correct Programs

Section 3: Exceptionsand thetry. . . cat ch Statement

Section 4: Programming with Exceptions

Programming Exercises

Quiz on this Chapter

Chapter 10: Advanced | nput/Output

Section 1: Streams, Readers, and Writers
Section 2: Files

Section 3: Programming with Files

Section 4: Networking
Section 5: Programming Networked Applications

Programming Exercises

Quiz on this Chapter

Chapter 11: Linked Data Structuresand Recursion

Section 1: Recursion
Section 2: Linking Objects
Section 3: Stacks and Queues

http://math.hws.edu/eck/cs124/javanotes3/contents.html (3 of 4) [6/10/2004 8:35:18 AM]

http://math.hws.edu/eck/cs124/javanotes3/c8/index.html
http://math.hws.edu/eck/cs124/javanotes3/c9/index.html
http://math.hws.edu/eck/cs124/javanotes3/c10/index.html
http://math.hws.edu/eck/cs124/javanotes3/c11/index.html

Java Programming: Contents
« Section 4: Binary Trees
o Section 5: A Simple Recursive-descent Parser

« Programming Exercises

o Quiz on this Chapter

Appendix 1. From Javato C++

« Section 1;: C++ Programming Fundamentals

o Section 2: Pointers and Arraysin C++
o Section 3: Classes and Objectsin C++

Appendix 2: Some Notes on Java Programming Environments

Appendix 3: Source code for all examplesin thetext

News and Errata

David J. Eck (eck@hws.edu), May 2000

http://math.hws.edu/eck/cs124/javanotes3/contents.html (4 of 4) [6/10/2004 8:35:18 AM]

http://math.hws.edu/eck/cs124/javanotes3/java2cpp/index.html
http://math.hws.edu/eck/cs124/javanotes3/errata.html
http://math.hws.edu/eck/
mailto:eck@hws.edu

Java Programming: Preface to the Third Edition

Introduction to Programming Using Java,
Third Edition (Version 3.1)

Preface

" | NTRODUCTION TO PROGRAMMING WITH JAVA" is afree, on-line textbook. It is suitable for use

in an introductory programming course and for people who are trying to learn programming on their own.
There are no prerequisites beyond a general familiarity with the ideas of computers and programs.

This text uses the Java programming language as the language of instruction. It requires Javaversion 1.1 or
higher. In style, thisis atextbook rather than atutorial. That is, it concentrates on explaining concepts rather
than giving step-by-step how-to-do-it guides. It is certainly not a Java reference book, and it isnot even a
comprehensive survey of al the features of Java. It is not a quick introduction to Javafor people who
already know another programming language. Instead, it is directed mainly towards people who are
learning programming for the first time, and it is as much about general programming concepts asit is
about Javain particular.

Thisisthe third edition of Introduction to Programming with Java. The first two editions have been used
by the author and by another professor in the introductory programming class at Hobart and William Smith
Colleges (http://www.hws.edu/). The new edition is a major upgrade. It is more than twice the size of the

second edition. Changes include:
« Chapter 11, on linked data structures and recursion, is completely new. Chapter 9, on correctness
and robustness, is new except for the sectiononthet ry. . . cat ch statement.

« A single chapter on "programming in the small" from the previous edition has been expanded to two
chapters (Chapter 2 and Chapter 3) in this edition.

« Every chapter, except the first, now includes a set of programming exercises. A solution is provided
for each exercise, aong with a discussion of the programming involved.

« Thereisasample quiz at the end of each chapter, with answers.

« Many sections from the previous edition have been rewritten, and many new examples have been
added. Asin the previous editions, the source code for every exampleisincluded in an appendix.

» Based on experience with the previous editions, the exposition of some topics has been modified by
postponing certain details until later in the text. Thisis especially true in the two chapters on
graphical user interface programming (Chapter 6 and Chapter 7 in this edition). These chapters have
been completely reorganized.

With these changes, Introduction to Programming with Java is now fully competitive, in the author's
opinion, with the conventionally published, printed programming textbooks that are available on the
market. (Well, all right, I'll confessthat | think it's better.)

This textbook differs from many other Java programming booksin that it does not deal primarily with
applets. Early chapters concentrate on standal one applications that use text input and output. Applets are
introduced briefly in Section 3.7 and covered pretty thoroughly in Chapter 6 and Chapter 7. In the

remaining chapters, applets are used in many but not all examples and exercises. "Swing," a new set of
interface components introduced in Java 1.2, isjust barely mentioned (in Section 7.8). This approach allows
a gentler introduction to fundamental programming concepts, and it postpones the complexities of graphical
user interface programming until atime when students are ready to deal with them. The decision to do

things this way also reflects the fact that applets are only one aspect of Java, and probably not the most
important.

http://math.hws.edu/eck/cs124/javanotes3/preface3.html (1 of 3) [6/10/2004 8:35:43 AM]

http://www.hws.edu/
http://math.hws.edu/eck/cs124/javanotes3/c11/index.html
http://math.hws.edu/eck/cs124/javanotes3/c9/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c7/index.html
http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c7/index.html

Java Programming: Preface to the Third Edition

| do not plan any further major upgrades to this textbook, but | will probably release new versionsin the
future with minor revisions and corrections. The current edition of Introduction to Programming with Java
will always be available at the following Web address:

http://math.hws.edu/javanotes/

Version 3.1 (February 2001) is aminor upgrade to Version 3.0 (May 2000). It incorporates corrections to a
few errorsin Version 3.0. (Seethe Version 3.0 errata page for alist.) A final repackaging in June 2004

incorporats afew additional errors. No further changes will be made in the future. The major change is that
with Version 3.1, modification and republication is now covered by the terms of the Open Publication

License.

Thefirst, second, and third editions are permanently archived at the following addresses:

First edition: http://math.hws.edu/eck/cs124/javanotesl/
Second edition: http://math.hws.edu/eck/cs124/javanotes?/
Third edition: http://math.hws.edu/eck/cs124/javanotes3/

Downloading the Text

The complete Introduction to Programming with Java is available for download as a compressed archive
for the Windows, Macintosh, or Linux/Unix platforms. (Text files have dlightly different formats on the
three platforms. The text filesin each archive are in the appropriate format for the platform. For many
purposes, though, the difference is unimportant. For example, Web browsers will accept filesin any of the
formats.) The uncompressed archives contain 580 files and directories and take up over four megabytes of
space. Y ou should be able to download an archive by clicking on one of the following links. If you have
problems with the downloading, please let me know!

« http://math.hws.edu/eck/cs124/downl oads/javanotes3.zip (1.6 MB), for Windows.
« http://math.hws.edu/eck/cs124/downl oads/javanotes3.tar.bz2 (1.0 MB), for Linux/MaxOS

The following archivesin older formats do not include the final corrections of June 2004:
« http://math.hws.edu/eck/cs124/downl oads/javanotes3.sit.hgx (2.1 MB), for Macintosh.

« http://math.hws.edu/eck/cs124/downl oads/javanotes3.tar.Z (1.8 MB), for Linux/UNIX.

An archive must be uncompressed to be useful. To do this, you will need appropriate software (which might
aready be on your computer). In Windows XP, you can just open the file javanotes3.zip by

double-clicking on it; then drag the folder javanotes3-final to another location and Windows will
uncompressit for you. Also, in any versino of Windows, you can use WinZip, available from
WWwWWw.winzip.com, to uncompress the file. WinZip is shareware, but you can useit for a 30 day trial without
charge. Alternatively, you might want to get the free program, Aladdin Expander for Windows from
www.aladdinsys.com, which can also be used to uncompress the Windows archive.

The software for Linux/UNI X should already be included on your system. To decode the archive
javanotes3.tar.bz2, use the command "bunzip2 javanotes3.tar.bz2" followed by the command "tar xf
javanotes3.tar". If you do not have the bunzip2 program, try dowloading javanotes3.tar.Z instead and
decode it with the command "uncompress javanotes3.tar.Z" followed by the command "tar xf
javanotes3.tar".

For Macintosh, you need Stuffit Expander for Macintosh, which is already included with most Web
browsers. In fact, your Web browser will probably uncompress the archive automatically when you
download it. If you don't have it, Stuffit Expander can be downloaded from www.al addinsys.com.

http://math.hws.edu/eck/cs124/javanotes3/preface3.html (2 of 3) [6/10/2004 8:35:43 AM]

http://math.hws.edu/javanotes/
http://math.hws.edu/eck/cs124/javanotes3/errata.html
http://math.hws.edu/eck/cs124/javanotes3/license.html
http://math.hws.edu/eck/cs124/javanotes3/license.html
http://math.hws.edu/eck/cs124/javanotes1/
http://math.hws.edu/eck/cs124/javanotes2/
http://math.hws.edu/eck/cs124/javanotes3/
http://math.hws.edu/eck/cs124/downloads/javanotes3.zip
http://math.hws.edu/eck/cs124/downloads/javanotes3.tar.bz2
http://math.hws.edu/eck/cs124/downloads/javanotes3.sit.hqx
http://math.hws.edu/eck/cs124/downloads/javanotes3.tar.Z
http://www.winzip.com/
http://www.aladdinsys.com/
http://www.aladdinsys.com/

Java Programming: Preface to the Third Edition

I recommend reading Introduction to Programming with Java with a Web browser, so that you can see and
use the applets that occur throughout the text. However, | know from experience that alot of people will
want to print all or part of the text. To make this alittle easier, I've made alarge PDF file that contains the
entire textbook, except for the Java source code files from Appendix 3 and the solutions to the quizzes and
programming exercises. Of course, the PDF file does not display the applets in the text. Where they should
appear, you'll generally see a message such as "Sorry, but your browser does not support Java." A PDF file
can be viewed or printed using the free program, Adobe Acrobat Reader. (The file was created using the
"Web Capture" feature in Adobe Acrobat Pro 4.0. Thisis nothing fancy -- just all the Web pages
captured in asinglefile.) The PDF file is available through the following link. It is more than 1.8
megabytesin size, and it contains more than 500 pages of text.

« http://math.hws.edu/eck/cs124/downl oads/javanotes3.pdf (1.8 MB)

If thereis a PDF viewer built into your browser, clicking on the above link will show the file in your Web
browser window. In that case, to download the file, try right-clicking or Control-clicking the link. This
should bring up amenu that contains a command such as " Save this link™. Selecting that command will
allow you to download the file to your hard disk.

Usage Restrictions

Introduction to Programming with Java isfree, but it is not in the public domain. Asof Version 3.1, itis
published under the terms of the Open Publication License. (For the purpose of this license, | am both the

publisher and author of the work.) This license allows redistribution and modification under certain terms.
For example, you can:

« Post an unmodified copy of this textbook on your own Web site.

« Giveaway or sell printed, unmodified copies of this book, aslong as they meet the requirements of
the license.

« Post on the web or otherwise distribute modified copies, provided that the modifications are clearly
noted in accordance with the license.

While it is not actually required by the license, | do appreciate hearing from people who are using or
distributing my work.

Professor David J. Eck

Department of Mathematics and Computer Science
Hobart and William Smith Colleges

Geneva, New York 14456, USA

Email: eck@hws.edu
WWW: http://math.hws.edu/eck/

May 23, 2000
Modified February 18, 2001
Final modifications June 8, 2004

[Main Index]

http://math.hws.edu/eck/cs124/javanotes3/preface3.html (3 of 3) [6/10/2004 8:35:43 AM]

http://math.hws.edu/eck/cs124/downloads/javanotes3.pdf
http://math.hws.edu/eck/cs124/javanotes3/license.html
mailto:eck@hws.edu
http://math.hws.edu/eck/

Java Programming: Preface to Previous Edition

Introduction to Programming Using Java

Preface to the Previous Edition, Fall 1998

" | NTRODUCTION TO PROGRAMMING WITH JAVA" is the "second edition” of an on-line

introductory programming textbook that uses Java as the language of instruction. This book does not claim
to cover the Java language comprehensively, although it does cover enough of it to make it possible to write
interesting programs and applets. The main point of the text, however, is to teach the basics of

programming -- including object-oriented programming -- with no prerequisites except a general familiarity
with the ideas of computers and programs.

This text should be useful to anyone who wantsto learn Java, but who is not already an expert in C and
C++. Unlike many introductions to Java programming, it does not assume any background in these
languages.

Many working applets are included on the Web pages that make up the text, and the full source code for all
these applets can be found in an appendix.

| used the "first edition” of the text in introductory programming courses taught at Hobart and William
Smith Collegesin Fall 1996 and Winter 1998. The second edition has been updated to cover Java 1.1

instead of Java 1.0 and was used in the Fall term of 1998. The course has aweekly lab. Lab worksheets
from Fall 1998 and from previous terms are available. (See the information page for CS124.)

Usage Restrictions

This on-line text can be freely used for non-commercial purposes, aslong as its source and author are made
clear. For example, you can download a copy and use it on your own computer. Y ou can post it in
unmodified form on your own Web server (provided that you do not charge for access). Y ou can print it out
for your personal use. Professors who use it in a course can make printed copies and make them available to
students for the cost of reproduction.

The text can also be distributed in unmodified form as part of a CD-ROM collection of free and/or
shareware materias, provided that the cost of the CD is not more than $50.

Anyone who wants to use the text for any other purposes that might be considered "commercial™ should
contact me for permission.

Downloading the Text

This entire text is available for downloading in several formats. The archives, which | haven't yet created as
| write this, will probably be between 600 KB and 1 MB in size. You can use the following links to
download the archives.

« http://math.hws.edu/eck/cs124/downl oads/javanotes2-fall98.zip, for Windows 95/98/NT and other
platforms.

« http://math.hws.edu/eck/cs124/downl oads/javanotes2-fal| 98.sit.hgx, for Macintosh.
« http://math.hws.edu/eck/cs124/downl oads/javanotes2-fall98.tar.Z, for UNIX.

http://math.hws.edu/eck/cs124/javanotes3/preface2.html (1 of 3) [6/10/2004 8:36:18 AM]

http://www.hws.edu/
http://www.hws.edu/
http://math.hws.edu/eck/cs124/
http://math.hws.edu/eck/cs124/downloads/javanotes2-fall98.zip
http://math.hws.edu/eck/cs124/downloads/javanotes2-fall98.sit.hqx
http://math.hws.edu/eck/cs124/downloads/javanotes2-fall98.tar.Z

Java Programming: Preface to Previous Edition

The "first edition” of the text, which covered Java 1.0 instead of Java 1.1, is also available for download.
See the bottom of itsindex page at http://math.hws.edu/eck/cs124/notes98.html.

Why a Free On-line Text?

Y ou might ask, does thisreally qualify as atextbook? And if so, why isit available for free on-line, instead
of as an overpriced hardcover edition?

To answer the first question: Y es, thisis meant as a serious textbook. Currently, it is not quite as long as
most programming textbooks, but it has plenty of material for a solid one-term course. | think that itisa
reasonabl e choice for atextbook in a college-level programming course -- or | wouldn't be using it in my
OWN COUrSEs.

When | started work on the text for the Fall term of 1996, there was really no suitable textbook for
introductory programming in Java. | decided to write my own class notes, and it seemed reasonable to put
them in HTML format so that | could include working Java applets right on the page. | felt that the result
was good enough to publish on the Web, and the response to it has been good. | suppose that | had some
ideathat | might eventually convert the notes into a hard-copy textbook, but | know from experience that
it'salong, hard process to get a textbook into print -- and not avery profitable one unless alot of people
buy the book.

Since then, I've decided that the book really works well in an on-line version. Sometimes, it would be
convenient to have a printed version aswell, but if | ever do come out with a printed version, it will bea
companion to the on-line version, rather than vice versa.

Furthermore, in the meantime, 1've become a fan of the Linux operating system and the whole free software
movement. (The "free" in this case means "freely distributable” rather than "free of charge.”) If we can have
free software, why not free textbooks?

Javal0vs.Javal.l

Java 1.1 introduced a large number of changes to the Javalanguage, and in this second edition of the text, |
have made correspondingly large changes. | do not try to cover both Javal.0 and 1.1. That is, | amost
never say thingslike, in Java 1.1 you do this, but in Java 1.0 you do that. And | don't try to point out the
features that were unavailable in Java 1.0. It'stimeto let Java 1.0 fade away...

However, it isonly fairly recently that Web browsers have become available that use Java 1.1. If you read
thistext with an older browser, most of the applets will just show up as blank white areas. Netscape 4.0.6,
released in August 1998, isthe first version of Netscape that will run the Java 1.1 applets in these notes.
(On the Macintosh, even Netscape 4.0.6 does not support Java 1.1.) Internet Explorer 4.0 also uses Java 1.1,
as does Sun Microsystem's browser, HotJava 1.1.4.

Changes from the First Edition

Chapter 1 isamost unchanged, except that I've removed Section 8, which was an explanation of why |
decided to use Javainstead of C++ in my introductory programming class. | don't think this can any longer
be seen as a controversial decision.

In the fist edition, Chapters 2 and 3 used a"Console" class that | wrote for doing console-style 1/O in
programs. | did this because | found standard input and output (System.in and System.out) to be
undependable. (The Macintoshes on which | first taught the course did not even implement standard input!)
In the second edition, | use a"TextlO" class that ssmply provides a reasonable interface to the standard

http://math.hws.edu/eck/cs124/javanotes3/preface2.html (2 of 3) [6/10/2004 8:36:18 AM]

http://math.hws.edu/eck/cs124/notes98.html

Java Programming: Preface to Previous Edition

input and output streams. This makes for a smoother exposition, since using the Console class forced me to
start using objects prematurely.

I've added a new section in Chapter 2 on "the structure of Java programs,” in which | try to deal with the
confusion that results from having both static and non-static members in classes.

| restructured the material in Chapter 4 extensively, without really adding any important new topics.

The largest changes in the text are in Chapters 5 and 6, which have been completely rewritten to use the
Java 1.1 event model. All the appletsin the text (except for some of the decorative end-of-chapter applets)
have been rewritten to use this event model. I've added sections in Chapter 6 on nested classes and on
Frames, and | moved the section on threads and animation from Chapter 6 to Chapter 5. The number of
sample appletsin Chapters 5 and 6 has been increased substantially.

Chapter 7 contains a new section that briefly introduces some of Java's standard data types, such as
St ri ngBuf f er and HashTabl e. Therest of the chapter islittle changed

Chapter 8 has been revised to cover Reader and Wi t er streams. These were introduced in Javal.l as
the recommended way to do character input and output, in place of | nput St r eamand Qut put St r eam
| nput St r eamand Qut put St r eamare still used for binary data.

Chapter 9 is essentially unchanged (and might be removed in future editions of this text).

The Future of This Text

| expect that there will be a"third edition” of this text, but not until the second half of the year 2000. | will
be on sabbatical for the academic year 1999--2000, so | won't be teaching any courses. However, | do plan
to work on thistext as one of my sabbatical projects.

It looks like Javais here to stay as an important language. The next version of the language, Java 1.2, will
be out before the end of 1998. Asfar as| know, nothing in Java 1.2 will require major changes in thistext.
One of the big changes in Java 1.2 will be the inclusion of anew set of GUI components, called "Swing," as
an aternative to the AWT components used in Java 1.0 and 1.1. If Swing becomes popular enough to
displace the AWT, then | will probably rewrite the text to use Swing instead of the AWT. Most of the other
forseeable changes in Java concern advanced API's that will probably never be more than mentioned in an
introductory text.

I would like to expand treatment of several topicsin the text. In the next edition, Chapter 7 will be broken
into at least two chapters. The first chapter will cover arrays, probably with more examples than are now
included. The second chapter will include material on linked data structures such as trees, stacks, and
gueues. It will also include an introduction to recursion. Chapter 8, which in this edition is pretty sketchy,
will also be expanded and possibly broken into separate chapters on writing correct and robust programs,
using files and streams, and networking. In the longer term, the text might eventually be expanded to
include enough material for atwo-term introductory programming sequence.

[Main Index]

http://math.hws.edu/eck/cs124/javanotes3/preface2.html (3 of 3) [6/10/2004 8:36:18 AM]

Java Programing: Chapter 1

Chapter 1

Overview: The Mental Landscape

WH EN YOU BEGIN ajourney, it'sagood ideato have a mental map of the terrain you'll be passing

through. The sameistrue for an intellectual journey, such as learning to write computer programs. In this
case, you'll need to know the basics of what computers are and how they work. Y ou'll want to have some
idea of what a computer program is and how one is created. Since you will be writing programs in the Java
programming language, you'll want to know something about that language in particular and about the
modern, "networked" computing environment for which Javais designed.

Asyou read this chapter, don't worry if you can't understand everything in detail. (In fact, it would be
impossible for you to learn all the details from the brief expositionsin this chapter.) Concentrate on learning
enough about the big ideas to orient yourself, in preparation for the rest of the course. Most of what is
covered in this chapter will be covered in much greater detail later in the course.

Contents of Chapter 1:

« Section 1: The Fetch-and-Execute Cycle: Machine Language
 Section 2: Asynchronous Events: Polling L oops and Interrupts
« Section 3: The Java Virtual Machine

« Section 4: Fundamental Building Blocks of Programs

 Section 5: Objects and Object-oriented Programming
» Section 6: The Modern User Interface

« Section 7: The Internet and World-Wide Web

o Quiz on this Chapter

[First Section | Next Chapter | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c1/ [6/10/2004 8:37:32 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 1.1

Section 1.1
The Fetch and Execute Cycle: Machine Language

A COMPUTER ISA COMPLEX SYSTEM consisting of many different components. But at the heart --

or the brain, if you want -- of the computer is a single component that does the actual computing. Thisisthe
Central Processing Unit, or CPU. In a modern desktop computer, the CPU isasingle "chip" on the order of
one square inch in size. The job of the CPU is to execute programs.

A programissimply alist of unambiguous instructions meant to be followed mechanically by a computer.
A computer is built to carry out instructions that are written in avery simple type of language called
machine language. Each type of computer hasits own machine language, and it can directly execute a
program only if it is expressed in that language. (It can execute programs written in other languages if they
are first trandated into machine language.)

When the CPU executes a program, that program is stored in the computer's main memory (also called the
RAM or random access memory). In addition to the program, memory can also hold data that is being used
or processed by the program. Main memory consists of a sequence of |ocations. These locations are
numbered, and the sequence number of alocation is called its address. An address provides away of
picking out one particular piece of information from among the millions stored in memory. When the CPU
needs to access the program instruction or datain a particular location, it sends the address of that
information as a signal to the memory; the memory responds by sending back the data contained in the
specified location. The CPU can also store information in memory by specifying the information to be
stored and the address of the location where it isto be stored.

On the level of machine language, the operation of the CPU isfairly straightforward (although it is very
complicated in detail). The CPU executes a program that is stored as a sequence of machine language
instructions in main memory. It does this by repeatedly reading, or fetching, an instruction from memory
and then carrying out, or executing, that instruction. This process -- fetch an instruction, execute it, fetch
another instruction, execute it, and so on forever -- is called the fetch-and-execute cycle. With one
exception, which will be covered in the next section, thisis all that the CPU ever does.

The details of the fetch-and-execute cycle are not terribly important, but there are afew basic things you
should know. The CPU contains afew internal registers, which are small memory units capable of holding
asingle number or machine language instruction. The CPU uses one of these registers -- the program
counter, or PC -- to keep track of where it isin the program it is executing. The PC stores the address of the
next instruction that the CPU should execute. At the beginning of each fetch-and-execute cycle, the CPU
checks the PC to see which instruction it should fetch. During the course of the fetch-and-execute cycle, the
number in the PC is updated to indicate the instruction that is to be executed in the next cycle. (Usualy, but
not always, thisisjust the instruction that sequentially follows the current instruction in the program.)

A computer executes machine language programs mechanically -- that is without understanding them or
thinking about them -- simply because of the way it is physically put together. Thisis not an easy concept.
A computer isamachine built of millions of tiny switches called transistors, which have the property that
they can be wired together in such away that an output from one switch can turn another switch on or off.
As acomputer computes, these switches turn each other on or off in a pattern determined both by the way
they are wired together and by the program that the computer is executing.

Machine language instructions are expressed as binary numbers. A binary number is made up of just two
possible digits, zero and one. So, a machine language instruction is just a sequence of zeros and ones. Each
particular sequence encodes some particular instruction. The data that the computer manipulatesis also
encoded as binary numbers. A computer can work directly with binary numbers because switches can
readily represent such numbers: Turn the switch on to represent a one; turn it off to represent a zero.

http://math.hws.edu/eck/cs124/javanotes3/cl/s1.html (1 of 2) [6/10/2004 8:37:33 AM]

Java Programing: Section 1.1

Machine language instructions are stored in memory as patterns of switches turned on or off. When a
machine language instruction is loaded into the CPU, all that happensisthat certain switches are turned on
or off in the pattern that encodes that particular instruction. The CPU is built to respond to this pattern by
executing the instruction it encodes; it does this simply because of the way al the other switchesin the CPU
are wired together.

So, you should understand this much about how computers work: Main memory holds machine language
programs and data. These are encoded as binary numbers. The CPU fetches machine language instructions
from memory one after another and executes them. It does this mechanically, without thinking about or
understanding what it does -- and therefore the program it executes must be perfect, completein al details,
and unambiguous because the CPU can do nothing but execute it exactly as written. Here is a schematic
view of this first-stage understanding of the computer:

hd eriniony

001110 | [Location 0]

110100711 | [Lazakion 1)

Datatomemory | 01010011 | [Location 2]

00010000 [Location 3
CPU - [LARRRAE!
Data from memoey oron11o
11101001
Program - oooon1t
counter: Address for LAY
1011100001 readingwiting | 00010001

data 00111110 | [Location 10

Thisfigure istaken from The Most Complex Machine: A Survey of Computers and Computing, a textbook

that serves as an introductory overview of the whole field of computer science. If you would like to know
more about the basic operation of computers, please see Chapters 1 to 3 of that text.

[Next Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/cl/s1.html (2 of 2) [6/10/2004 8:37:33 AM]

http://math.hws.edu/TMCM.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.2

Section 1.2
Asynchronous Events: Polling Loops and Interrupts

THE CPU SPENDS ALMOST ALL ITSTIME fetching instructions from memory and executing them.

However, the CPU and main memory are only two out of many components in areal computer system. A
complete system contains other devices such as.

o A hard disk for storing programs and data files. (Note that main memory holds only a comparatively
small amount of information, and holds it only aslong as the power isturned on. A hard disk is
necessary for permanent storage of larger amounts of information, but programs have to be loaded
from disk into main memory before they can actually be executed.)

A keyboard and mouse for user input.
A monitor and printer which can be used to display the computer's output.
A modem that allows the computer to communicate with other computers over telephone lines.

A network interface that allows the computer to communicate with other computers that are
connected to it on a network.

A scanner that converts images into coded binary numbers that can be stored and manipulated on the
computer.

Thelist of devicesis entirely open ended, and computer systems are built so that they can easily be
expanded by adding new devices. Somehow the CPU has to communicate with and control al these
devices. The CPU can only do this by executing machine language instructions (which is all it can do,
period). The way thisworksisthat for each devicein asystem, there is a device driver, which consists of
software that the CPU executes when it has to deal with the device. Installing a new device on a system
generally has two steps: plugging the device physically into the computer, and installing the device driver
software. Without the device driver, the actua physical device would be useless, since the CPU would not
be able to communicate with it.

A computer system consisting of many devicesistypically organized by connecting those devices to one or
more busses. A busis aset of wiresthat carry various sorts of information between the devices connected to
those wires. The wires carry data, addresses, and control signals. An address directs the data to a particular
device and perhaps to a particular register or location within that device. Control signals can be used, for
example, by one device to alert another that datais available for it on the data bus. A fairly simple computer
system might be organized like this:

http://math.hws.edu/eck/cs124/javanotes3/c1/s2.html (1 of 3) [6/10/2004 8:37:34 AM]

Java Programing: Section 1.2

CPU Ermpby Slot
for fubure
bdemory Exparsi o
Y ¢
Inpukd Data bus
Dukpuk Address bus
Zartraller Cortrol bus
Yideo K eyboard M etwork
Cartroller Irterface
and
karitar 1 1
Metwork Cable

(Thisillustration is taken from The Most Complex Machine.)

Now, devices such as keyboard, mouse, and network interface can produce input that needs to be processed
by the CPU. How does the CPU know that the data is there? One simple idea, which turns out to be not very
satisfactory, is for the CPU to keep checking for incoming data over and over. Whenever it finds data, it
processes it. Thismethod is called polling, since the CPU polls the input devices continually to see whether
they have any input datato report. Unfortunately, although polling is very smple, it is also very inefficient.
The CPU can waste an awful lot of time just waiting for input.

To avoid thisinefficiency, interrupts are often used instead of polling. Aninterrupt isasignal sent by
another device to the CPU. The CPU responds to an interrupt signal by putting aside whatever it isdoing in
order to respond to the interrupt. Once it has handled the interrupt, it returns to what it was doing before the
interrupt occurred. For example, when you press a key on your computer keyboard, a keyboard interrupt is
sent to the CPU. The CPU responds to this signal by interrupting what it is doing, reading the key that you
pressed, processing it, and then returning to the task it was performing before you pressed the key.

Again, you should understand that thisis purely mechanical process: A device signals an interrupt simply
by turning on awire. The CPU isbuilt so that when that wire is turned on, it saves enough information
about what it is currently doing so that it can return to the same state later. This information consists of the
contents of important internal registers such as the program counter. Then the CPU jumps to some
predetermined memory location and begins executing the instructions stored there. Those instructions make
up an interrupt handler that does the processing necessary to respond to the interrupt. (This interrupt handler
is part of the device driver software for the device that signalled the interrupt.) At the end of the interrupt
handler is an instruction that tells the CPU to jump back to what it was doing; it does that by restoring its
previously saved state.

Interrupts alow the CPU to deal with asynchronous events. In the regular fetch-and-execute cycle, things
happen in a predetermined order; everything that happensis "synchronized" with everything else. Interrupts
make it possible for the CPU to deal efficiently with events that happen "asynchronously”, that is, at
unpredictable times.

As another example of how interrupts are used, consider what happens when the CPU needs to access data
that is stored on the hard disk. The CPU can only access data directly if it isin main memory. Data on the
disk hasto be copied into memory before it can be accessed. Unfortunately, on the scale of speed at which
the CPU operates, the disk drive is extremely slow. When the CPU needs data from the disk, it sends a
signal to the disk drive telling it to locate the data and get it ready. (This signal is sent synchronously, under
the control of aregular program.) Then, instead of just waiting the long and unpredicatal ble amount of time
the disk drive will take to do this, the CPU goes on with some other task. When the disk drive has the data

http://math.hws.edu/eck/cs124/javanotes3/cl/s2.html (2 of 3) [6/10/2004 8:37:34 AM]

http://math.hws.edu/TMCM.html

Java Programing: Section 1.2

ready, it sends an interrupt signal to the CPU. The interrupt handler can then read the requested data.

Now, you might have noticed that al this only makes sense if the CPU actually has several tasksto
perform. If it has nothing better to do, it might as well spend its time polling for input or waiting for disk
drive operations to complete. All modern computers use multitasking to perform several tasks at once.
Some computers can be used by several people at once. Since the CPU is so fast, it can quickly switch its
attention from one user to another, devoting a fraction of a second to each user in turn. This application of
multitasking is called timesharing. But even modern personal computers with asingle user use multitasking.
For example, the user might be typing a paper while a clock is continuously displaying thetime and afileis
being downloaded over the network.

Each of the individual tasks that the CPU isworking on is called a thread. (Or a process; there are technical
differences between threads and processes, but they are not important here.) At any given time, only one
thread can actually be executed by a CPU. The CPU will continue running the same thread until one of
several things happens:

« Thethread might voluntarily yield control, to give other threads a chance to run.

« Thethread might have to wait for some asynchronous event to occur. For example, the thread might
request some data from the disk drive, or it might wait for the user to press akey. Whileit is
waiting, the thread is said to be blocked, and other threads have a chance to run. When the event
occurs, an interrupt will "wake up" the thread so that it can continue running.

» Thethread might use up its alloted slice of time and be suspended to allow other threads to run. Not
all computers can "forcibly" suspend athread in this way; those that can are said to use preemptive
multitasking. To do preemptive multitasking, a computer needs a special timer device that generates
an interrupt at regular intervals, such as 100 times per second. When atimer interrupt occurs, the
CPU has a chance to switch from one thread to another, whether the thread that is currently running
likesit or not.

Ordinary users, and indeed ordinary programmers, have no need to deal with interrupts and interrupt
handlers. They can concentrate on the different tasks or threads that they want the computer to perform; the
details of how the computer manages to get al those tasks done are not relevant to them. In fact, most users,
and many programmers, can ignore threads and multitasking altogether. However, threads have become
increasingly important as computers have become more powerful and as they have begun to make more use
of multitasking. Indeed, threads are built into the Java programming language as a fundamental
programming concept.

Just as important in Java and in modern programming in genera is the basic concept of asynchronous
events. While programmers don't actually deal with interrupts directly, they do often find themselves
writing event handlers, which, like interrupt handlers, are called asynchronously when specified events
occur. Such "event-driven programming” has a very different feel from the more traditional straight-though,
synchronous programming. We will begin with the more traditional type of programming, which is still
used for programming individual tasks, but we will return to threads and events later in the text.

By the way, the software that does all the interrupt handling and the communication with the user and with
hardware devicesis called the operating system. The operating system is the basic, essential software
without which a computer would not be able to function. Other programs, such as word processors and
World Wide Web browsers, are dependent upon the operating system. Common operating systems include
UNIX, Linux, DOS, Windows 98, Windows 2000 and the Macintosh OS.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/cl/s2.html (3 of 3) [6/10/2004 8:37:34 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.3

Section 1.3
The Java Virtual Machine

M ACHINE LANGUAGE CONSISTS of very smpleinstructions that can be executed directly by the

CPU of acomputer. Almost all programs, though, are written in high-level programming languages such as
Java, Pascal, or C++. A program written in a high-level language cannot be run directly on any computer.
First, it hasto be translated into machine language. This translation can be done by a program called a
compiler. A compiler takes a high-level-language program and translates it into an executable
machine-language program. Once the trandation is done, the machine-language program can be run any
number of times, but of course it can only be run on one type of computer (since each type of computer has
itsown individual machine language). If the program is to run on another type of computer it hasto be
re-trandated, using a different compiler, into the appropriate machine language.

Thereis an alternative to compiling a high-level language program. Instead of using a compiler, which
trandlates the program all at once, you can use an interpreter, which translates it instruction-by-instruction,
as necessary. An interpreter is a program that acts much like a CPU, with akind of fetch-and-execute cycle.
In order to execute a program, the interpreter runsin aloop in which it repeatedly reads one instruction
from the program, decides what is necessary to carry out that instruction, and then performs the appropriate
machine-language commands to do so.

One use of interpretersis to execute high-level language programs. For example, the programming
language Lisp is usually executed by an interpreter rather than a compiler. However, interpreters have
another purpose: they can let you use a machine-language program meant for one type of computer on a
completely different type of computer. For example, there is aprogram called "Virtual PC" that runs on
Macintosh computers. Virtual PC is an interpreter that executes machine-language programs written for
IBM-PC-clone computers. If you run Virtual PC on your Macintosh, you can run any PC program,
including programs written for Windows 95 or 98. (Unfortunately, a PC program will run much more
slowly than it would on an actual IBM clone. The problem isthat Virtual PC executes several Macintosh
machine-language instructions for each PC machine-language instruction in the program it is interpreting.
Compiled programs are inherently faster than interpreted programs.)

The designers of Java chose to use a combination of compilation and interpretation. Programs written in
Java are compiled into machine language, but it is a machine language for a computer that doesn't really
exist. Thisso-caled "virtual" computer is known as the Java virtual machine. The machine language for the
Javavirtual machineis called Java bytecode. There is no reason why Java bytecode could not be used as the
machine language of areal computer, rather than a virtual computer. In fact, Sun Microsystems -- the
originators of Java-- have developed CPU's that run Java bytecode as their machine language.

However, one of the main selling points of Javaisthat it can actually be used on any computer. All that the
computer needsis an interpreter for Java bytecode. Such an interpreter simulates the Java virtual machinein
the same way that Virtual PC simulates a PC computer.

Of course, a different Jave bytecode interpreter is needed for each type of computer, but once a computer
has a Java bytecode interpreter, it can run any Java bytecode program. And the same Java bytecode
program can be run on any computer that has such an interpreter. Thisis one of the essential features of
Java: the same compiled program can be run on many different types of computers.

http://math.hws.edu/eck/cs124/javanotes3/c1/s3.html (1 of 2) [6/10/2004 8:37:34 AM]

Java Programing: Section 1.3

Jawa ititetpretor
for Macintosh

Jawa . - Java inte to

—™ Commpiler Evtecode Jawa interpretor

Erooratn for Windows 95
Progratn

Jawa ititetpretor
for UNIE

Why, you might wonder, use the intermediate Java bytecode at all? Why not just distribute the original Java
program and let each person compile it into the machine language of whatever computer they want to run it
on? There are many reasons. First of all, acompiler has to understand Java, a complex high-level language.
The compiler isitself acomplex program. A Java bytecode interpreter, on the other hand, isafairly small,
simple program. This makes it easy to write a bytecode interpreter for a new type of computer; oncethat is
done, that computer can run any compiled Java program. It would be much harder to write a Java compiler
for the same computer.

Furthermore, many Java programs are meant to be downloaded over a network. This leads to obvious
security concerns: you don't want to download and run a program that will damage your computer or your
files. The bytecode interpreter acts as a buffer between you and the program you download. Y ou are really
running the interpreter, which runs the downloaded program indirectly. The interpreter can protect you from
potentially dangerous actions on the part of that program.

| should note that there is no necessary connection between Java and Java bytecode. A program writtenin
Java could certainly be compiled into the machine language of areal computer. And programs written in
other languages could be compiled into Java bytecode. However, it is the combination of Java and Java
bytecode that is platform-independent, secure, and network-compatible while allowing you to program in a
modern high-level object-oriented language.

| should also note that the really hard part of platform-independence is providing a"Graphical User
Interface” -- with windows, buttons, etc. -- that will work on all the platforms that support Java. Y ou'll see
more about this problem in Section 6.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c1/s3.html (2 of 2) [6/10/2004 8:37:34 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.4

Section 1.4
Fundamental Building Blocks of Programs

THERE ARE TWO BASIC ASPECTS of programming: data and instructions. To work with data, you

need to understand variables and types; to work with instructions, you need to understand control structures
and subroutines. You'll spend alarge part of the course becoming familiar with these concepts.

A variableisjust amemory location (or several locations treated as a unit) that has been given a name so
that it can be easily referred to and used in a program. The programmer only has to worry about the name; it
is the compiler's responsibility to keep track of the memory location. The programmer does need to keep in
mind that the name refersto akind of "box" in memory that can hold data, even if the programmer doesn't
have to know where in memory that box is located.

In Java and most other languages, a variable has atype that indicates what sort of datait can hold. One type
of variable might hold integers -- whole numbers such as 3, -7, and 0 -- while another holds floating point
numbers -- numbers with decimal points such as 3.14, -2.7, or 17.0. (Y es, the computer does make a
distinction between the integer 17 and the floating-point number 17.0; they actually look quite different
inside the computer.) There could also be types for individual characters ('A', ';', etc.), strings ("Hello", "A
string can include many characters’, etc.), and less common types such as dates, colors, sounds, or any
other type of datathat a program might need to store.

Programming languages always have commands for getting datainto and out of variables and for doing
computations with data. For example, the following "assignment statement,” which might appear in a Java
program, tells the computer to take the number stored in the variable named "principal”, multiply that
number by 0.07, and then store the result in the variable named "interest”:

interest = principal * 0.07;

There are also "input commands' for getting data from the user or from files on the computer's disks and
"output commands' for sending datain the other direction.

These basic commands -- for moving data from place to place and for performing computations -- are the
building blocks for all programs. These building blocks are combined into complex programs using control
structures and subroutines.

A program is a sequence of instructions. In the ordinary "flow of control,” the computer executes the
instructions in the sequence in which they appear, one after the other. However, thisis obviously very
limited: the computer would soon run out of instructions to execute. Control structures are special
instructions that can change the flow of control. There are two basic types of control structure: |oops, which
allow a sequence of instructions to be repeated over and over, and branches, which allow the computer to
decide between two or more different courses of action by testing conditions that occur as the program is
running.

For example, it might be that if the value of the variable "principa” is greater than 10000, then the
"interest” should be computed by multiplying the principal by 0.05; if not, then the interest should be
computed by multiplying the principal by 0.04. A program needs some way of expressing this type of
decision. In Java, it could be expressed using the following "if statement”:

if (principal > 10000)

interest = principal * 0.05;
el se

interest = principal * 0.04;

(Don't worry about the details for now. Just remember that the computer can test a condition and decide

http://math.hws.edu/eck/cs124/javanotes3/cl/s4.html (1 of 2) [6/10/2004 8:37:35 AM]

Java Programing: Section 1.4

what to do next on the basis of that test.)

L oops are used when the same task has to be performed more than once. For example, if you want to print
out amailing label for each name on amailing list, you might say, "Get the first name and address and print
the label; get the second name and address and print the label; get the third name and address and print the
label..." But this quickly becomes ridiculous -- and might not work at al if you don't know in advance how
many names there are. What you would like to say is something like "While there are more names to
process, get the next name and address, and print the label." A loop can be used in a program to express
such repetition.

Large programs are so complex that it would be almost impossible to write them if there were not some
way to break them up into manageable "chunks." Subroutines provide one way to do this. A subroutine
consists of the instructions for performing some task, grouped together as a unit and given a name. That
name can then be used as a substitute for the whole set of instructions. For example, suppose that one of the
tasks that your program needs to perform isto draw a house on the screen. Y ou can take the necessary
instructions, make them into a subroutine, and give that subroutine some appropriate name -- say,
"drawHouseg()". Then anyplace in your program where you need to draw a house, you can do so with the
single command:

dr awHouse() ;
Thiswill have the same effect as repeating all the house-drawing instructions in each place.

The advantage here is not just that you save typing. Organizing your program into subroutines also helps
you organize your thinking and your program design effort. While writing the house-drawing subroutine,
you can concentrate on the problem of drawing a house without worrying for the moment about the rest of
the program. And once the subroutine is written, you can forget about the details of drawing houses -- that
problem is solved, since you have a subroutine to do it for you. A subroutine becomes just like a built-in
part of the language which you can use without thinking about the details of what goes on "inside" the
subroutine.

Variables, types, loops, branches, and subroutines are the basis of what might be called "traditional
programming.” However, as programs become larger, additional structure is needed to help deal with their
complexity. One of the most effective tools that has been found is object-oriented programming, which is
discussed in the next section.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/cl/s4.html (2 of 2) [6/10/2004 8:37:35 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.5

Section 1.5
Objects and Object-oriented Programming

PROGRAMS MUST BE DESIGNED. No one can just sit down at the computer and compose a program

of any complexity. The discipline called software engineering is concerned with the construction of correct,
working, well-written programs. The software engineer tends to use accepted and proven methods for
analyzing the problem to be solved and for designing a program to solve that problem.

During the 1970s and into the 80s, the primary software engineering methodology was structured
programming. The structured programming approach to program design was based on the following advice:
To solve alarge problem, break the problem into several pieces and work on each piece separately; to solve
each piece, treat it as anew problem which can itself be broken down into smaller problems; eventually,
you will work your way down to problems that can be solved directly, without further decomposition. This
approach is called top-down programming.

There is nothing wrong with top-down programming. It is a valuable and often-used approach to
problem-solving. However, it isincomplete. For one thing, it deals amost entirely with producing the
instructions necessary to solve a problem. But as time went on, people realized that the design of the data
structuresfor aprogram was as least as important as the design of subroutines and control structures.
Top-down programming doesn't give adequate consideration to the data that the program manipul ates.

Another problem with strict top-down programming is that is makesiit difficult to reuse work done for other
projects. By starting with a particular problem and subdividing it into convenient pieces, top-down
programming tends to produce a design that is unique to that problem. It is unlikely that you will be able to
take alarge chunk of programming from another program and fit it into your project, at least not without
extensive modification. Producing high-quality programsis difficult and expensive, so programmers and
the people who employ them are always eager to reuse past work.

So, in practice, top-down design is often combined with bottom-up design. In bottom-up design, the
approach isto start "at the bottom," with problems that you already know how to solve (and for which you
might already have areusable software component at hand). From there, you can work upwards towards a
solution to the overall problem.

The reusable components should be as "modular" as possible. A module is a component of alarger system
that interacts with the rest of the system in asimple, well-defined, straightforward manner. Theideais that
amodule can be "plugged into" a system. The details of what goes on inside the module are not important
to the system as awhole, aslong as the module fulfills its assigned role correctly. Thisis called information
hiding, and it is one of the most important principles of software engineering.

One common format for software modulesisto contain some data, along with some subroutines for
manipulating that data. For example, a mailing-list module might contain alist of names and addresses
along with a subroutine for adding a new name, a subroutine for printing mailing labels, and so forth. In
such modules, the dataitself is often hidden inside the module; a program that uses the module can then
mani pul ate the data only indirectly, by calling the subroutines provided by the module. This protects the
data, since it can only be manipulated in known, well-defined ways. And it makesit easier for programs to
use the module, since they don't have to worry about the details of how the datais represented. Information
about the representation of the datais hidden.

Modules that could support this kind of information-hiding became common in programming languagesin
the early 1980s. Since then, amore advanced form of the same idea has more or less taken over software
engineering. Thislatest approach is called object-oriented programming, often abbreviated as OOP.

The central concept of object-oriented programming is the object, which is a kind of module containing

http://math.hws.edu/eck/cs124/javanotes3/c1/s5.html (1 of 3) [6/10/2004 8:37:35 AM]

Java Programing: Section 1.5

data and subroutines. The point-of-view in OOP is that an object is akind of self-sufficient entity that has
an internal state (the datait contains) and that can respond to messages (calls to its subroutines). A mailing
list object, for example, has a state consisting of alist of names and addresses. If you send it a message
telling it to add aname, it will respond by modifying its state to reflect the change. If you send it a message
telling it to print itself, it will respond by printing out itslist of names and addresses.

The OOP approach to software engineering isto start by identifying the objects involved in a problem and
the messages that those objects should respond to. The program that resultsis a collection of objects, each
with its own data and its own set of responsibilities. The objects interact by sending messages to each other.
There is not much "top-down" in such a program, and people used to more traditional programs can have a
hard time getting used to OOP. However, people who use OOP would claim that object-oriented programs
tend to be better models of the way the world itself works, and that they are therefore easier to write, easier
to understand, and more likely to be correct.

Y ou should think of objects as "knowing" how to respond to certain messages. Different objects might
respond to the same message in different ways. For example, a"print" message would produce very
different results, depending on the object it is sent to. This property of objects -- that different objects can
respond to the same message in different ways -- is called polymorphism.

It iscommon for objectsto bear akind of "family relationship” to one another. Objects that contain the
same type of data and that respond to the same messages in the same way belong to the same class. (In
actual programming, the classis primary; that is, aclassis created and then one or more objects are created
using that class as atemplate.) But objects can be similar without being in exactly the same class.

For example, consider a drawing program that lets the user draw lines, rectangles, ovals, polygons, and
curves on the screen. In the program, each visible object on the screen could be represented by a software
object in the program. There would be five classes of objects in the program, one for each type of visible
object that can be drawn. All the lines would belong to one class, all the rectangles to another class, and so
on. These classes are obviously related; all of them represent "drawable objects." They would, for example,
all presumably be able to respond to a"draw yourself" message. Another level of grouping, based on the
data needed to represent each type of object, isless obvious, but would be very useful in a program: We can
group polygons and curves together as "multipoint objects," while lines, rectangles, and ovals are
"two-point objects.” (A lineis determined by its endpoints, a rectangle by two of its corners, and an oval by
two corners of the rectangle that containsit.) We could diagram these relationships as follows:

DrawableObhject

MultipointOtject TwoPointObject

Polyzon Curve Line Eectangle| |Owval

DrawableObject, MultipointObject, and TwoPointObject would be classes in the program.

MultipointObject and TwoPointObject would be subclasses of DrawableObject. The class Line would be a
subclass of TwoPointObject and (indirectly) of DrawableObject. A subclass of aclassis said to inherit the
properties of that class. The subclass can add to its inheritance and it can even "override” part of that
inheritance (by defining a different response to some method). Nevertheless, lines, rectangles, and so on are
drawable objects, and the class DrawableObject expresses this relationship.

Inheritance is a powerful means for organizing a program. It is also related to the problem of reusing

http://math.hws.edu/eck/cs124/javanotes3/c1/s5.html (2 of 3) [6/10/2004 8:37:35 AM]

Java Programing: Section 1.5

software components. A classis the ultimate reusable component. Not only can it be reused directly if it fits
exactly into a program you are trying to write, but if it just almost fits, you can still reuse it by defining a
subclass and making only the small changes necessary to adapt it exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a partial solution to the software
reuse problem. Objects, classes, and object-oriented programming will be important themes throughout the
rest of thistext.

[Next Section | Previous Section | Chapter Index | Main Index |

http://math.hws.edu/eck/cs124/javanotes3/c1/s5.html (3 of 3) [6/10/2004 8:37:35 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.6

Section 1.6
The Modern User Interface

\WWHEN COMPUTERS WERE FIRST INTRODUCED, ordinary people -- including most programmers -

couldn't get near them. They were locked up in rooms with white-coated attendants who would take your
programs and data, feed them to the computer, and return the computer's response some time later. When
timesharing -- where the computer switches its attention rapidly from one person to another -- was invented
in the 1960s, it became possible for several people to interact directly with the computer at the same time.
On atimesharing system, users sit at "terminals’ where they type commands to the computer, and the
computer types back its response. Early personal computers also used typed commands and responses,
except that there was only one person involved at atime. Thistype of interaction between a user and a
computer is called acommand-line interface.

Today, of course, most people interact with computers in acompletely different way. They use a Graphical
User Interface, or GUI. The computer draws interface components on the screen. The components include
things like windows, scroll bars, menus, buttons, and icons. Usually, a mouse is used to manipulate such
components. Assuming that you are reading these notes on a computer, you are no doubt familiar with the
basics of graphical user interfaces.

A lot of GUI interface components have become fairly standard. That is, they have similar appearance and
behavior on many different computer platforms including Macintosh, Windows 3.1, Windows 98, and
various UNIX window systems. Java programs, which are supposed to run on many different platforms
without modification to the program, can use all the standard GUI components. They might vary in
appearance from platform to platform, but their functionality should be identical on any computer on which
the program runs.

Below isavery simple Java program -- actually an "applet,” since it isrunning right here in the middle of a
page -- that shows a few standard GUI interface components. There are four components that you can
interact with: a button, a checkbox, atext field, and a pop-up menu. These components are labeled. There
are afew other componentsin the applet. The labels themselves are components (even though you can't
interact with them). The lower half of the applet is atext area component, that can display multiple lines of
text. In fact, in Java terminology, the whole applet isitself considered to be a"component.” Try clicking on
the button and on the checkbox, and try selecting an item from the pop-up menu. Y ou can typein the text
field, but you might have to click on it first to activate it:

Sorry, your browser doesn't do Java.
Here iswhat the applet looked like
on my computer:

http://math.hws.edu/eck/cs124/javanotes3/c1/s6.html (1 of 3) [6/10/2004 8:37:36 AM]

Java Programing: Section 1.6

Push Buttan : Click el

Checkbo: : E Click me!
TetField: |Tuped Text |
Fop-up Menu: Third Option

Button was clicked. i

tern "Third Option" zelected from pop-up rmenu.

Checkbo: was turned on.

Pressed return in TextField with contents: Typed Text
>

Asyou experiment with the other components, you'll find that messages are displayed in the text area. What
happens is that when you perform certain actions, such as clicking on a button, you generate "events." For
each event, amessage is sent to the applet telling it that the event has occurred, and the applet responds
according to its program. In fact, the program consists mainly of "event handlers" that tell the applet how to
respond to various types of events. In this example, the applet has been programmed to respond to each
event by displaying a message in the text area.

The use of the term "message” here is deliberate. Messages, as you saw in the previous section, are sent to
objects. In fact, Java GUI components are implemented as objects. Java includes many predefined classes
that represent various types of GUI components. Some of these classes are subclasses of others. Hereisa

diagram showing some of these classes and their relationships.

Component

N

Button| |[Container| |[Label| |TextCommponent| |Checkbox

/

Witidow Fanel TextArea TextFisld

Dialog Frame| [APplet

Don't worry about the details for now, but try to get some feel about how object-oriented programming and
inheritance are used here. Note that all the GUI classes are subclasses, directly or indirectly, of aclass
called Conponent . Two of the direct subclasses of Conponent themselves have subclasses. The classes
Text Ar ea and Text Fi el d, which have certain behaviors in common, are grouped together as
subclasses of Text Conponent . The class named Cont ai ner refersto components that can contain
other components. The Appl et classis, indirectly, a subclass of Cont ai ner since applets can contain

http://math.hws.edu/eck/cs124/javanotes3/c1/s6.html (2 of 3) [6/10/2004 8:37:36 AM]

Java Programing: Section 1.6
components such as buttons and text fields.
Just from this brief discussion, perhaps you can see how GUI programming can make effective use of

object-oriented design. In fact, GUI's, with their "visible objects," are probably a major factor contributing
to the popularity of OOP.

Programming with GUI components and events is one of the most interesting aspects of Java. However, we
will spend several chapters on the basics before returning to this topic in Chapter 6.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c1/s6.html (3 of 3) [6/10/2004 8:37:36 AM]

http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 1.7

Section 1.7
The Internet and the World-Wide Web

COM PUTERS CAN BE CONNECTED together on networks. A computer on a network can

communicate with other computers on the same network by exchanging data and files or by sending and
receiving messages. Computers on a network can even work together on alarge computation.

Today, millions of computers throughout the world are connected to a single huge network called the
Internet. New computers are being connected to the Internet every day. In fact, a computer can join the
Internet temporarily by using a modem to establish a connection through tel ephone lines.

There are elaborate protocols for communication over the Internet. A protocol is simply a detailed
specification of how communication isto proceed. For two computers to communicate at all, they must
both be using the same protocols. The most basic protocols on the Internet are the Internet Protocol (1P),
which specifies how datais to be physically transmitted from one computer to another, and the
Transmission Control Protocol (TCP), which ensures that data sent using IP isreceived in its entirety and
without error. These two protocols, which are referred to collectively as TCP/IP, provide afoundation for
communication. Other protocols use TCP/IP to send specific types of information such asfiles and
electronic mail.

All communication over the Internet isin the form of packets. A packet consists of some data being sent
from one computer to another, along with addressing information that indicates where on the Internet that
datais supposed to go. Think of a packet as an envelope with an address on the outside and a message on
theinside. (The message is the data.) The packet also includes a"return address,” that is, the address of the
sender. A packet can hold only alimited amount of data; longer messages must be divided among several
packets, which are then sent individually over the net and reassembled at their destination.

Every computer on the Internet has an | P address, a number that identifiesit uniquely among all the
computers on the net. The IP address is used for addressing packets. A computer can only send datato
another computer on the Internet if it knows that computer's | P address. Since people prefer to use names
rather than numbers, many computers are also identified by names, called domain names. For example, the
main computer at Hobart and William Smith Colleges has the domain name hws3.hws.edu. (Domain names
arejust for convenience; your computer still needs to know I P addresses before it can communicate. There
are computers on the Internet whose job it is to translate domain names to IP addresses. When you use a
domain name, your computer sends a message to a domain name server to find out the corresponding IP
address. Then, your computer uses the | P address, rather than the domain name, to communicate with the
other computer.)

The Internet provides a number of services to the computers connected to it (and, of course, to the users of
those computers). These services use TCP/IP to send various types of data over the net. Among the most
popular services are Telnet, electronic mail, FTP, and the World-Wide Web.

Telnet allows a person using one computer to log on to another computer. (Of course, that person needs to
know a user name and password for an account on the other computer.) Telnet provides only a
command-line interface. Essentially, the first computer acts as aterminal for the second. Telnet is often
used by people who are away from home to access their computer accounts back home -- and they can do
so from any computer on the Internet, anywhere in the world.

Electronic mail, or email, provides person-to-person communication over the Internet. An email messageis
sent by a particular user of one computer to a particular user of another computer. Each person isidentified
by a unique email address, which consists of the domain name of the computer where they receive their
mail together with their user name or personal name. The email address has the form
"username@domain.name”. For example, my own email addressis: eck@hws.edu. Email is actually

http://math.hws.edu/eck/cs124/javanotes3/c1/s7.html (1 of 2) [6/10/2004 8:37:37 AM]

Java Programing: Section 1.7

transferred from one computer to another using a protocol called SMTP (Simple Mail Transfer Protocol).
Email might still be the most common and important use of the Internet, although it has certainly been
challenged in popularity by the World-Wide Web.

FTP (File Transport Protocol) is designed to copy files from one computer to another. Aswith Telnet, an
FTP user needs a user name and password to get access to a computer. However, many computers have
been set up with special accounts that can be accessed through FTP with the user name "anonymous" and
any password. This so-called anonymous FTP can be used to make files on one computer publically
available to anyone with Internet access.

The World-Wide Web (WWW) is based on pages which can contain information of many different kinds as
well as links to other pages. These pages are viewed with a\Web browser program such as Netscape or
Internet Explorer. Many people seem to think that the World-Wide Web is the Internet, but it'sreally just a
graphical user interface to the Internet. The pages that you view with a Web browser are just files that are
stored on computers connected to the Internet. When you tell your Web browser to load a page, it contacts
the computer on which the page is stored and transfersit to your computer using a protocol known asHTTP
(HyperText Transfer Protocol). Any computer on the Internet can publish pages on the World-Wide Web.
When you use a Web browser, you have access to a huge sea of interlinked information that can be
navigated with no special computer expertise. The Web is the most exciting part of the Internet and is
driving the Internet to a truly phenomenal rate of growth. If it fulfillsits promise, the Web might become a
universal and fundamental part of everyday life.

| should note that atypical Web browser can use other protocols besides HTTP. For example, it can aso
use FTPto transfer files. The traditional user interface for FTP was a command-line interface, so among all
the other thingsit does, a Web browser provides a modern graphical user interface for FTP. (Thisfact
should help you understand that FTP is not a program. It is a set of standards for a certain type of
communication between computers. To use FTP, you need a program that implements those standards.
Different FTP programs can present you with very different user interfaces. Similarly, different Web
browser programs can present very different interfaces to the user, but they must all use HTTP to get
information from the Web.)

Now just what, you might be thinking, does all this have to do with Java? In fact, Javaisintimately
associated with the Internet and the World-Wide Web. As you have seen in the previous section, special
Java programs called applets are meant to be transmitted over the Internet and displayed on Web pages. A
Web server transmits a Java applet just as it would transmit any other type of information. A Web browser
that understands Java -- that is, that includes an interpreter for the Java virtual machine -- can then run the
applet right on the Web page. Since applets are programs, they can do almost anything, including complex
interaction with the user. With Java, a Web page becomes more than just a passive display of information.
It becomes anything that programmers can imagine and implement.

Its association with the Web is not Java's only advantage. But many good programming languages have
been invented only to be soon forgotten. Java has had the good luck to ride on the coattails of the Web's
immense and increasing popularity.

End of Chapter 1

[Next Chapter | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c1/s7.html (2 of 2) [6/10/2004 8:37:37 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Chapter 1 Quiz

Quiz Questions
For Chapter 1

THIS PAGE CONTAINS A SAMPLE quiz on material from Chapter 1 of this on-line Java textbook. Y ou

should be able to answer these questions after studying that chapter. Sample answersto all the quiz
guestions can be found here.

Question 1: One of the components of acomputer isits CPU. What isa CPU and what role doesiit play in
acomputer?

Question 2: Explain what is meant by an "asynchronous event.” Give some examples.
Question 3: What is the difference between a"compiler" and an "interpreter”?
Question 4: Explain the difference between high-level languages and machine language.

Question 5: If you have the source code for a Java program, and you want to run that program, you will
need both a compiler and an interpreter. What does the Java compiler do, and what does the Java interpreter
do?

Question 6: What is a subroutine?
Question 7: Javais an object-oriented programming language. What is an object?

Question 8: What isavariable? (There are four different ideas associated with variablesin Java. Try to
mention all four aspectsin your answer. Hint: One of the aspectsisthe variable's name.)

Question 9: Javais a"platform-independent language.” What does this mean?

Question 10: What is the "Internet"? Give some examples of how it isused. (What kind of services does it
provide?)

[Answers | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c1/quiz.html [6/10/2004 8:37:37 AM]

http://math.hws.edu/eck/cs124/javanotes3/c1/index.html
http://math.hws.edu/eck/cs124/javanotes3/c1/quiz-answers.html
http://math.hws.edu/eck/cs124/javanotes3/c1/quiz-answers.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Chapter 2 Index

Chapter 2

Programming in the Small |
Names and Things

ON A BASIC LEVEL (the level of machine language), a computer can perform only very simple

operations. A computer performs complex tasks by stringing together large numbers of such operations.
Such tasks must be "scripted” in complete and perfect detail by programs. Creating complex programs will
never bereally easy, but the difficulty can be handled to some extent by giving the program a clear overall
structure. The design of the overall structure of aprogram iswhat | call "programming in the large.”

Programming in the small, which is sometimes called coding, would then refer to filling in the details of
that design. The details are the explicit, step-by-step instructions for performing fairly small-scale tasks.
When you do coding, you are working fairly "close to the machine,” with some of the same concepts that
you might use in machine language: memory locations, arithmetic operations, loops and decisions. In a
high-level language such as Java, you get to work with these concepts on alevel several steps above
machine language. However, you still have to worry about getting all the details exactly right.

This chapter and the next examine the facilities for programming in the small in the Java programming
language. Don't be misled by the term "programming in the small" into thinking that this material is easy or
unimportant. This material is an essential foundation for al types of programming. If you don't understand
it, you can't write programs, no matter how good you get at designing their large-scale structure.

Contents of Chapter 2:

» Section 1: The Basic Java Application
 Section 2: Variables and the Primitive Types
« Section 3: Strings, Objects, and Subroutines
» Section 4: Text Input and Output

« Section 5: Details of Expressions

« Programming Exercises

o Quiz on this Chapter

[First Section | Next Chapter | Previous Chapter | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/ [6/10/2004 8:39:31 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html

Java Programing: Section 2.1

Section 2.1
The Basic Java Application

A PROGRAM IS A SEQUENCE OF INSTRUCTIONS that a computer can execute to perform some

task. A simple enough idea, but for the computer to make any use of the instructions, they must be written
in aform that the computer can use. This means that programs have to be written in programming
languages. Programming languages differ from ordinary human languages in being completely
unambiguous and very strict about what isand is not allowed in a program. The rules that determine what is
allowed are called the syntax of the language. Syntax rules specify the basic vocabulary of the language and
how programs can be constructed using things like loops, branches, and subroutines. A syntactically correct
program is one that can be successfully compiled or interpreted; programs that have syntax errors will be
rejected (hopefully with a useful error message that will help you fix the problem).

S0, to be a successful programmer, you have to develop a detailed knowledge of the syntax of the
programming language that you are using. However, syntax is only part of the story. It's not enough to write
aprogram that will run. Y ou want a program that will run and produce the correct result! That is, the
meaning of the program has to be right. The meaning of aprogram isreferred to asits semantics. A
semantically correct program is one that does what you want it to.

When | introduce a new language feature in these notes, | will explain both the syntax and the semantics of
that feature. Y ou should memorize the syntax; that's the easy part. Then you should try to get afeeling for
the semantics by following the examples given, making sure that you understand how they work, and
maybe writing short programs of your own to test your understanding.

Of course, even when you've become familiar with all the individual features of the language, that doesn't
make you a programmer. Y ou still have to learn how to construct complex programs to solve particular
problems. For that, you'll need both experience and taste. Y ou'll find hints about software devel opment
throughout this textbook.

We begin our exploration of Java with the problem that has become traditional for such beginnings. to write
aprogram that displays the message "Hello World!". This might seem like atrivial problem, but getting a
computer to do thisisreally abig first step in learning a new programming language (especialy if it's your
first programming language). It means that you understand the basic process of:

1. getting the program text into the computer,
2. compiling the program, and
3. running the compiled program.

The first time through, each of these steps will probably take you a few triesto get right. | can't tell you the
details here of how you do each of these steps; it depends on the particular computer and Java programming
environment that you are using. (See Appendix 2 for information on some common Java programming
environments.) But in general, you will type the program using some sort of text editor and save the
program in afile. Then, you will use some command to try to compile thefile. You'll either get a message
that the program contains syntax errors, or you'll get a compiled version of the program. In the case of Java,
the program is compiled into Java bytecode, not into machine language. Finally, you can run the compiled
program by giving some appropriate command. For Java, you will actually use an interpreter to execute the
Java bytecode. Y our programming environment might automate some of the steps for you, but you can be
sure that the same three steps are being done in the background.

Hereis a Java program to display the message "Hello World!". Don't expect to understand what's going on
here just yet -- some of it you won't really understand until afew chapters from now:

public class Hellowrld {

http://math.hws.edu/eck/cs124/javanotes3/c2/s1.html (1 of 3) [6/10/2004 8:39:32 AM]

Java Programing: Section 2.1

/1 A programto display the nessage
/1 "Hello World!" on standard out put

public static void main(String[] args) {
Systemout.println("Hello World!'");
}

} /'l end of class HelloWwrld

The command that actually displays the message is:
Systemout.println("Hello World!");

This command is an example of a subroutine call statement. It uses a"built-in subroutine” named
System out . pri nt | n todo the actual work. Recall that a subroutine consists of the instructions for
performing some task, chunked together and given a name. That name can be used to "call" the subroutine
whenever that task needs to be performed. A built-in subroutine is one that is already defined as part of the
language and therefore automatically available for use in any program.

When you run this program, the message "Hello World!" (without the quotes) will be displayed on standard
output. Unfortunately, | can't say exactly what that means! Javais meant to run on many different
platforms, and standard output will mean different things on different platforms. However, you can expect
the message to show up in some convenient place. (If you use acommand-line interface, like that in Sun
Microsystem's Java Devel opment Kit, you type in acommand to tell the computer to run the program. The
computer will type the output from the program, Hello World!, on the next line.)

Y ou must be curious about all the other stuff in the above program. Part of it consists of comments.
Commentsin aprogram are entirely ignored by the computer; they are there for human readers only. This
doesn't mean that they are unimportant. Programs are meant to be read by people as well as by computers,
and without comments, a program can be very difficult to understand. Java has two types of comments. The
first type, used in the above program, begins with // and extends to the end of aline. The computer ignores
the // and everything that follows it on the same line. Java has another style of comment that can extend
over many lines. That type of comment begins with /* and ends with */.

Everything else in the program is required by the rules of Java syntax. All programming in Javais done
inside "classes." Thefirst line in the above program says that thisis a class named Hel | oVor | d.
"HelloWorld," the name of the class, also serves as the name of the program. Not every classis a program.
In order to define a program, a class must include a subroutine called mai n, with adefinition that takes the
form:

public static void main(String[] args) {
statenents
}

When you tell the Java interpreter to run the program, the interpreter callsthe mai n() subroutine, and the
statements that it contains are executed. These statements make up the script that tells the computer exactly
what to do when the program is executed. The mai n() routine can call subroutines that are defined in the
same class or even in other classes, but it isthemai n() routine that determines how and in what order the
other subroutines are used.

Theword "public’ in thefirst line of mai n() meansthat this routine can be called from outside the
program. Thisis essential because the mai n() routineis called by the Java interpreter. The remainder of
thefirst line of the routine is harder to explain at the moment; for now, just think of it as part of the required
syntax. The definition of the subroutine -- that is, the instructions that say what it does -- consists of the
sequence of "statements' enclosed between braces, { and }. Here, I've used statements as a placeholder for
the actual statements that make up the program. Throughout this textbook, | will always use a similar
format: anything that you seein this style of text (which isgreen if your browser supports colored text) isa

http://math.hws.edu/eck/cs124/javanotes3/c2/s1.html (2 of 3) [6/10/2004 8:39:32 AM]

Java Programing: Section 2.1
placeholder that describes something you need to type when you write an actual program.
As noted above, a subroutine can't exist by itself. It hasto be part of a"class'. A program is defined by a
public class that takes the form:
public class program nane {

opti onal -vari abl e-decl arati ons- and- subr outi nes

public static void main(String[] args) {
statenents
}

opti onal - vari abl e-decl arati ons- and- subr out i nes

}

The name on the first line is the name of the program, as well as the name of the class. If the name of the
classis HelloWorld, then the class should be saved in afile called Hel | oWor | d. j ava. When thisfileis
compiled, another file named Hel | oWor | d. cl ass will be produced. This classfile,

Hel | oWor | d. cl ass, contains the Java bytecode that is executed by a Javainterpreter.

Hel | oWor | d. j ava iscalled the source code for the program. To execute the program, you only need the
compiled cl ass file, not the source code.

Also note that according to the above syntax specification, a program can contain other subroutines besides
mai n(), aswell asthings called "variable declarations.” Y ou'll learn more about these later (starting with
variables, in the next section).

By the way, recall that one of the neat features of Javaisthat it can be used to write applets that can run on
pages in a Web browser. Applets are very different things from stand-al one programs such as the
HellowWorld program, and they are not written in the same way. For one thing, an applet doesn't have a

mai n() routine. Appletswill be covered in Chapter 6 and Chapter 7. In the meantime, you will see applets
in this text that simulate stand-alone programs. The applets you see are not really the same as the
stand-alone programs that they simulate, since they run right on a Web page, but they will have the same
behavior as the programs | describe. Here, just for fun, is an applet smulating the Hel | oWor | d program.
To run the program, click on the button:

Sorry, your browser doesn't
support Java.

[Next Section | Previous Chapter | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/s1.html (3 of 3) [6/10/2004 8:39:32 AM]

http://math.hws.edu/eck/cs124/javanotes3/c6/index.html
http://math.hws.edu/eck/cs124/javanotes3/c7/index.html
http://math.hws.edu/eck/cs124/javanotes3/c1/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 2.2

Section 2.2
Variables and the Primitive Types

NAM ES ARE FUNDAMENTAL TO PROGRAMMING. In programs, names are used to refer to many different

sorts of things. In order to use those things, a programmer must understand the rules for giving names to things and
the rules for using the names to work with those things. That is, the programmer must understand the syntax and the
semantics of names.

According to the syntax rules of Java, aname is a sequences of one or more characters. It must begin with aletter and
must consist entirely of letters, digits, and the underscore character *_'. For example, here are some legal names:

N n rate x15 quite_a_l ong_nane Hel | oWorl d

Uppercase and lowercase letters are considered to be different, so that Hel | oWor | d, hel | owor | d,
HELLOWORLD, and hEI | oWbr LD are all distinct names. Certain names are reserved for specia usesin Java, and
cannot be used by the programmer for other purposes. These reserved wordsinclude: cl ass, publ i c, st ati c,
i f,el se,whil e, and severa dozen other words.

Javaisactualy pretty liberal about what counts as a letter or adigit. Java uses the Unicode character set, which
includes thousands of characters from many different languages and different alphabets, and many of these characters
count as letters or digits. However, | will be sticking to what can be typed on aregular English keyboard.

Finally, I'll note that often things are referred to by "compound names® which consist of several ordinary names
separated by periods. You've aready seen an example: Syst em out . pri nt | n. Theideahereisthat thingsin Java
can contain other things. A compound nameis akind of path to an item through one or more levels of containment.
Thename Syst em out . pri nt | n indicates that something called "System" contains something called "out" which
in turn contains something called "printIn”. I'll use the term identifier to refer to any name -- single or compound --
that can be used to refer to something in Java. (Note that the reserved words are not identifiers, since they can't be
used as names for things.)

Programs manipulate data that are stored in memory. In machine language, data can only be referred to by giving the
numerical address of the location in memory where it is stored. In ahigh-level language such as Java, names are used
instead of numbersto refer to data. It is the job of the computer to keep track of where in memory the dataiis actually
stored; the programmer only has to remember the name. A name used in thisway -- to refer to data stored in memory
--iscaled avariable.

Variables are actually rather subtle. Properly speaking, avariableis not a name for the dataitself but for alocation in
memory that can hold data. Y ou should think of avariable as a container or box where you can store data that you
will need to use later. The variable refers directly to the box and only indirectly to the datain the box. Since the data
in the box can change, a variable can refer to different data values at different times during the execution of the
program, but it always refers to the same box. Confusion can arise, especially for beginning programmers, because
when avariableis used in aprogram in certain ways, it refers to the container, but when it is used in other ways, it
refersto the data in the container. Y ou'll see examples of both cases below.

(Inthisway, avariable is something like the title, "The President of the United States." Thistitle can refer to different
people at different time, but it always refers to the same office. If | say "the President went fishing," | mean that Bill
Clinton went fishing. But if | say "Donald Trump wants to be President” | mean that he wants to fill the office, not
that he wants to be Bill Clinton.)

In Java, the only way to get datainto avariable -- that is, into the box that the variable names -- is with an assignment
statement. An assignment statement takes the form:

variable = expression;
where expression represents anything that refersto or computes a data value. When the computer comes to an

assignment statement in the course of executing a program, it evaluates the expression and puts the resulting data
value into the variable. For example, consider the simple assignment statement

http://math.hws.edu/eck/cs124/javanotes3/c2/s2.html (1 of 5) [6/10/2004 8:39:33 AM]

Java Programing: Section 2.2

rate = 0.07;

The variablein this assignment statement isr at e, and the expression is the number 0.07. The computer executes
this assignment statement by putting the number 0.07 in the variable r at e, replacing whatever was there before.
Now, consider the following more complicated assignment statement, which might come later in the same program:

interest = rate * principal;

Here, the value of theexpression"rat e * pri nci pal " isbeing assigned to the variablei nt er est . Inthe
expression, the* isa"multiplication operator" that tells the computer to multiply r at e timespri nci pal . The
namesr at e and pri nci pal arethemselvesvariables, and it isreally the values stored in those variables that are to
be multiplied. We see that when avariable is used in an expression, it is the value stored in the variable that matters;
in this case, the variable seemsto refer to the datain the box, rather than to the box itself. When the computer
executes this assignment statement, it takes the value of r at e, multipliesit by the value of pri nci pal , and stores
the answer in the box referred to by i nt er est .

(Note, by the way, that an assignment statement is a command that is executed by the computer at acertaintime. Itis
not a statement of fact. For example, suppose a program includes the statement "rat e = 0. 07; ". If the statement
"interest = rate * principal;"isexecuted later in the program, can we say that thepri nci pal is
multiplied by 0.07? No! The value of r at e might have been changed in the meantime by another statement. The
meaning of an assignment statement is completely different from the meaning of an equation in mathematics, even
though both use the symbol "=".)

A variablein Javais designed to hold only one particular type of data; it can legally hold that type of data and no
other. The compiler will consider it to be a syntax error if you try to violate thisrule. We say that Javais a strongly
typed language because it enforces thisrule.

There are eight so-called primitive types built into Java. The primitive types are named byt e, short,i nt,| ong,
fl oat, doubl e, char, and bool ean. Thefirst four types hold integers (whole numbers such as 17, -38477, and
0). The four integer types are distinguished by the ranges of integers they can hold. Thef | oat and doubl e types
hold real numbers (such as 3.6 and -145.99). Again, the two real types are distinguished by their range and accuracy.
A variable of type char holds a single character from the Unicode character set. And avariable of type bool ean
holds one of the two logical valuest r ue or f al se.

Any data value stored in the computer's memory must be represented as a binary number, that is as a string of zeros
and ones. A single zero or oneis called abit. A string of eight bitsis called a byte. Memory isusually measured in
terms of bytes. Not surprisingly, the byt e datatype refersto a single byte of memory. A variable of type byt e holds
astring of eight bits, which can represent any of the integers between -128 and 127, inclusive. (There are 256 integers
in that range; eight bits can represent 256 -- two raised to the power eight -- different values.) Asfor the other integer
types,

« short correspondsto two bytes (16 bits). Variables of type shor t have valuesin the range -32768 to

32767.

« i nt correspondsto four bytes (32 bits). Variables of typei nt have values in the range -2147483648 to
2147483647.

« | ong correspondsto eight bytes (64 bits). Variables of typel ong have valuesin the range
-9223372036854775808 to 9223372036854775807.

Y ou don't have to remember these numbers, but they do give you some idea of the size of integers that you can work
with. Usually, you should just stick to thei nt datatype, which is good enough for most purposes.

Thef | oat datatypeisrepresented in four bytes of memory, using a standard method for encoding real numbers.
The maximum value for af | oat isabout 10 raised to the power 38. A f | oat can have about 7 significant digits.
(So that 32.3989231134 and 32.3989234399 would both have to be rounded off to about 32.398923 in order to be
stored in avariable of typef | oat .) A doubl e takes up 8 bytes, can range up to about 10 to the power 308, and has
about 15 significant digits. Ordinarily, you should stick to the doubl e type for real values.

A variable of type char occupiestwo bytesin memory. The value of achar variableisasingle character such as A,

* X, or aspace character. The value can also be a specia character such atab or a carriage return or one of the many
Unicode characters that come from different languages. When a character istyped into a program, it must be

http://math.hws.edu/eck/cs124/javanotes3/c2/s2.html (2 of 5) [6/10/2004 8:39:33 AM]

Java Programing: Section 2.2

surrounded by single quotes; for example: 'A’, *', or 'x". Without the quotes, A would be an identifier and * would be
amultiplication operator. The quotes are not part of the value and are not stored in the variable; they are just a
convention for naming a particular character constant in a program.

A name for aconstant value is called aliteral. A literal iswhat you have to type in a program to represent avalue. 'A’
and *' areliterals of type char , representing the character values A and *. Certain special characters have special
literals that use a backslash, \, as an "escape character”. In particular, atabisrepresented as' \ t ' , acarriage return as
"\r',alinefeedas' \ n' , the single quote character as' \ ' ' , and the backslash itself as' \ \ ' . Note that even
though you type two characters between the quotesin' \ t ' , the value represented by thisliteral isasingletab
character.

Numeric literals are alittle more complicated than you might expect. Of course, there are the obvious literals such as
317 and 17.42. But there are other possibilities for expressing numbersin a Java program. First of al, real numbers
can be represented in an exponentia form such as 1.3e12 or 12.3737e-108. The "el2" and "e-108" represent powers
of 10, so that 1.3e12 means 1.3 times 1012 and 12.3737e-108 means 12.3737 times 10-108, This format is used for
very large and very small numbers. Any numerical literal that contains a decimal point or exponential is aliteral of
typedoubl e. To make aliteral of typef | oat , you have to append an "F" or "f" to the end of the number. For
example, "1.2F" stands for 1.2 considered as avalue of typef | oat . (Occasionally, you need to know this because
the rules of Java say that you can't assign avalue of type doubl e to avariable of typef | oat , so you might be
confronted with a ridiculous-seeming error message if you try to do something like"f | oat x = 1. 2;". You have
tosay "fl oat x = 1.2F;".Thisisonereasonwhy | advise sticking to type doubl e for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such as 177777 and -32 are literals of type
byt e, short, ori nt, depending on their size. Y ou can make aliteral of typel ong by adding "L" as a suffix. For
example: 17L or 728476874368L . As another complication, Java allows octa (base-8) and hexadecimal (base-16)
literals. (I don't want to cover base-8 and base-16 in these notes, but in case you run into them in other people's
programs, it's worth knowing that a zero at the beginning of an integer makes it an octal literal, asin 045 or 077. A
hexadecimal literal begins with Ox or 0X, asin 0x45 or OxFF7A. By the way, the octal literal 045 represents the
number 37, not the number 45.)

For thetype bool ean, there are precisely two literals. t r ue and f al se. These literals are typed just as |'ve written
them here, without quotes, but they represent values, not variables. Boolean values occur most often as the val ues of
conditional expressions. For example,

rate > 0.05

is a boolean-valued expression that evaluatestot r ue if the value of the variabler at e is greater than 0.05, and to
f al se if thevaueof r at e isnot greater than 0.05. Asyou'll seein Chapter 3, boolean-valued expressions are used

extensively in control structures. Of course, boolean values can also be assigned to variables of type bool ean.

Java has other typesin addition to the primitive types, but al the other types represent objects rather than "primitive"
data values. For the most part, we are not concerned with objects for the time being. However, there is one predefined
object type that is very important: thetype St ri ng. A St ri ng isasequence of characters. Y ou've already seen a
string literal: "Hello World!". The double quotes are part of the literal; they have to be typed in the program.
However, they are not part of the actual string value, which consists of just the characters between the quotes. Within
astring, special characters can be represented using the backslash notation. Within this context, the double quoteis
itself a special character. For example, to represent the string value

| said, "Areyou listening!"
with alinefeed at the end, you would have to type the literal:
"I said, \"Areyou listening'\"\n"

Because strings are objects, their behavior in programsis peculiar in some respects (to someone who is not used to
objects). I'll have more to say about them in the next section.

A variable can be used in aprogram only if it hasfirst been declared. A variable declaration statement is used to
declare one or more variables and to give them names. When the computer executes a variable declaration, it sets
aside memory for the variable and associates the variable's name with that memory. A simple variable declaration

http://math.hws.edu/eck/cs124/javanotes3/c2/s2.html (3 of 5) [6/10/2004 8:39:33 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 2.2

takes the form:

type-name variable-name-or-names,

The variable-name-or -names can be a single variable name or alist of variable names separated by commas. (Well
see later that variable declaration statements can actually be somewhat more complicated than this.) Good
programming style is to declare only one variable in a declaration statement, unless the variables are closely related in
some way. For example:

i nt nunber O St udent s;
String nane;

doubl e x, v;
bool ean i sFi ni shed;
char firstlnitial, mddlelnitial, lastlnitial;

In this chapter, we will only use variables declared inside the mai n() subroutine of a program. Variables declared
inside a subroutine are called local variables for that subroutine. They exist only inside the subroutine, whileitis
running, and are completely inaccessible from outside. V ariable declarations can occur anywhere inside the
subroutine, as long as each variable is declared before it is used in any expression. Some people like to declare all the
variables at the beginning of the subroutine. Otherslike to wait to declare a variable until it is needed. My preference:
Declare important variables at the beginning of the subroutine, and use a comment to explain the purpose of each
variable. Declare "utility variables' which are not important to the overall logic of the subroutine at the point in the
subroutine where they are first used. Here is a simple program using some variables and assignment statements:

public class Interest {

/*

*/

This class inplenents a sinple programthat

will conpute the amount of interest that is

earned on $17,000 invested at an interest

rate of 0.07 for one year. The interest and
the value of the investnent after one year are
printed to standard out put.

public static void main(String[] args) {

/* Declare the variables. */

doubl e pri nci pal ; /'l The val ue of the investnent.
doubl e rate; // The annual interest rate.
doubl e interest; /'l Interest earned in one year.

/* Do the conputations. */

princi pal = 17000;

rate = 0.07;
interest = principal * rate; /| Conpute the interest.
principal = principal + interest;

/1 Conpute value of investnent after one year, with interest.
/1 (Note: The new val ue replaces the old value of principal.)

/* Qutput the results. */

Systemout.print("The interest earned is $");
Systemout. println(interest);

Systemout. print("The value of the investnent after one year is $");

Systemout. println(principal);

} /1 end of main()

http://math.hws.edu/eck/cs124/javanotes3/c2/s2.html (4 of 5) [6/10/2004 8:39:33 AM]

Java Programing: Section 2.2

} /1 end of class Interest

And hereis an applet that simulates this program:

Sorry, your browser doesn't
support Java.

This program uses severa subroutine call statements to display information to the user of the program. Two different
subroutines are used: Syst em out . pri nt and Syst em out . pri nt | n. The difference between theseis that
System out . pri nt| n adds acarriage return after the end of the information that it displays, while

Syst em out . pri nt doesnot. Thus, thevalueof i nt er est , which is displayed by the subroutine call
"System out. println(interest);", followsonthe same line after the string displayed by the previous
statement. Note that the value to be displayed by Syst em out . pri nt or System out . pri ntl nisprovidedin
parentheses after the subroutine name. Thisvalue is called a parameter to the subroutine. A parameter provides a
subroutine with information it needs to perform its task. In a subroutine call statement, any parameters are listed in
parentheses after the subroutine name. Not all subroutines have parameters. If there are no parameters in a subroutine
call statement, the subroutine name must be followed by an empty pair of parentheses.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/s2.html (5 of 5) [6/10/2004 8:39:33 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 2.3

Section 2.3
Strings, Objects, and Subroutines

THE PREVIOUS SECTION introduced the eight primitive data types and thetype St ri ng. Thereisa

fundamental difference between the primitive types and the St r i ng type: Values of type St r i ng are objects.
While we will not study objects in detail until Chapter 5, it will be useful for you to know alittle about them
and about a closely related topic: classes. Thisis not just because strings are useful but because objects and
classes are essential to understanding another important programming concept, subroutines.

Recall that a subroutine is a set of program instructions that have been chunked together and given aname. In
Chapter 4, you'll learn how to write your own subroutines, but you can get alot done in a program just by
calling subroutines that have already been written for you. In Java, every subroutineis contained in aclassor in
an object. Some classes that are standard parts of the Java language contain predefined subroutines that you can
use. A value of type St r i ng, which is an object, contains subroutines that can be used to manipul ate that
string. You can cal all these subroutines without understanding how they were written or how they work.
Indeed, that's the whole point of subroutines: A subroutineisa"black box" which can be used without knowing
what goes on inside.

Classesin Java have two very different functions. First of all, a class can group together variables and
subroutines that are contained in that class. These variables and subroutines are called static members of the
class. You've seen one example: In aclass that defines a program, the mai n() routineis a static member of the
class. The parts of aclass definition that define static members are marked with the reserved word "st at i ¢,
just likethe mai n() routine of a program. However, classes have a second function. They are used to describe
objects. In thisrole, the class of an object specifies what subroutines and variables are contained in that object.
The classisatype -- in the technical sense of a specification of a certain type of datavalue -- and the object isa
value of that type. For example, St ri ng isactually the name of aclassthat isincluded as a standard part of the
Javalanguage. It isalso atype, and actual stringssuchas™ Hel | o Wor | d" arevauesof type St ri ng.

So, every subroutine is contained either in aclass or in an object. Classes contain subroutines called static
member subroutines. Classes aso describe objects and the subroutines that are contained in those objects.

This dual use can be confusing, and in practice most classes are designed to perform primarily or exclusively in
only one of the two possible roles. For example, although the St r i ng class does contain afew rarely-used
static member subroutines, it exists mainly to specify alarge number of subroutines that are contained in objects
of type St r i ng. Another standard class, named Mat h, exists entirely to group together a number of static
member subroutines that compute various common mathematical functions.

To begin to get ahandle on al of this complexity, let'slook at the subroutine Syst em out . pri nt asan
example. Asyou have seen earlier in this chapter, this subroutine is used to display information to the user. For
example, System out . print ("Hell o Worl d") displaysthe message, Hello World.

Syst emisone of Javas standard classes. One of the static member variablesin this classis named out . Since
thisvariable is contained in the class Sy st em its full name -- which you have to use to refer to it in your
programs-- isSyst em out . Thevariable Syst em out refersto an object, and that object in turn contains a
subroutine named pr i nt . The compound identifier Syst em out . pri nt refersto the subroutine pri nt in
the object out intheclassSyst em

(Asan aside, | will note that the object referred to by Syst em out isan object of theclassPr i nt St r eam
Pri nt St r eamisanother classthat is astandard part of Java. Any object of type Pri nt St r eamisa
destination to which information can be printed; any object of type Pr i nt St r eamhasapr i nt subroutine
that can be used to send information to that destination. The object Syst em out isjust one possible
destination, and Syst em out . pri nt isthe subroutine that sends information to that destination. Other
objects of type Pr i nt St r eammight send information to other destinations such asfiles or across a network to

http://math.hws.edu/eck/cs124/javanotes3/c2/s3.html (1 of 5) [6/10/2004 8:39:34 AM]

http://math.hws.edu/eck/cs124/javanotes3/c5/index.html
http://math.hws.edu/eck/cs124/javanotes3/c4/index.html

Java Programing: Section 2.3

other computers. Thisis object-oriented programming: Many different things which have something in common
-- they can al be used as destinations for information -- can al be used in the same way -- through apr i nt
subroutine. The Pr i nt St r eamclass expresses the commonalities among all these objects.)

Since class names and variable names are used in similar ways, it might be hard to tell which iswhich. All the
built-in, predefined namesin Java follow the rule that class names begin with an upper case letter while variable
names begin with alower case letter. While thisis not aformal syntax rule, | recommend that you follow it in
your own programming. Subroutine names should also begin with lower case letters. There is no possibility of
confusing a variable with a subroutine, since a subroutine name in a program is always followed by a left
parenthesis.

Classes can contain static member subroutines, as well as static member variables. For example, the Syst em
class contains a subroutine named exi t . In aprogram, of course, this subroutine must be referred to as

Syst em exi t . Calling this subroutine will terminate the program. Y ou could use it if you had some reason to
terminate the program before the end of the mai n routine. (For historical reasons, this subroutine takes an
integer as a parameter, so the subroutine call statement might look like"Syst em exi t (0); " or

"System exit(1);". The parameter tells the computer why the program is being terminated. A parameter
value of 0 indicates that the program is ending normally. Any other value indicates that the program is being
terminated because an error has been detected.)

Every subroutine performs some specific task. For some subroutines, that task isto compute or retrieve some
data value. Subroutines of thistype are called functions. We say that a function returns avalue. The returned
value must then be used somehow in the program.

Y ou are familiar with the mathematical function that computes the square root of a number. Java has a
corresponding function called Mat h. sgr t . Thisfunction is a static member subroutine of the class named
Mat h. If x isany numerical value, then Mat h. sgrt (x) computes and returns the square root of that value.
Since Mat h. sqrt (x) representsavalue, it doesn't make senseto put it on aline by itself in a subroutine call
statement such as

Mat h. sgrt (x); /1l This doesn't nake sense!

What, after all, would the computer do with the value computed by the function in this case? Y ou have to tell
the computer to do something with the value. Y ou might tell the computer to display it:

Systemout.print(Math.sqrt(x)); // D splay the square root of

or you might use an assignment statement to tell the computer to store that value in avariable:
| engt hOF Si de = Mat h. sqrt (x);
The function call Mat h. sgrt (x) representsavaue of type doubl e, and it can be used anyplace where a
numerical value of type double could be used.
The Mat h class contains many static member functions. Here is alist of some of the more important of them:
« Mat h. abs(x) , which computes the absolute value of x.

« Theusual trigonometric functions, Mat h. si n(x), Mat h. cos(x),and Mat h. t an(x) . (For all the
trigonometric functions, angles are measured in radians, not degrees.)

« Theinverse trigonometric functions arcsin, arccos, and arctan, which are written as: Mat h. asi n(x) ,
Mat h. acos(x),and Mat h. at an(x) .

« Theexponential function Mat h. exp(x) for computing the number e raised to the power x, and the
natural logarithm function Mat h. | og(x) for computing the logarithm of x in the base e.

o Mat h. pow x, y) for computing x raised to the power y.

« Mat h. fl oor (x),whichroundsx down to the nearest integer value that is less than or equal to x.
(For example, Mat h. f 1 oor (3. 76) is3.0.)

« Mat h. random() , which returns arandomly chosen doubl e intherange0. 0 <=

http://math.hws.edu/eck/cs124/javanotes3/c2/s3.html (2 of 5) [6/10/2004 8:39:34 AM]

Java Programing: Section 2.3

Mat h. randon() < 1. 0. (The computer actually calculates so-called "pseudorandom” numbers,
which are not truly random but are random enough for most purposes.)

For these functions, the type of the parameter -- the value inside parentheses -- can be of any numeric type. For
most of the functions, the value returned by the function is of type doubl e no matter what the type of the
parameter. However, for Mat h. abs(x) , the value returned will be the sametypeasx. If x isof typei nt ,
then soisMat h. abs(x) . (So, for example, while Mat h. sqrt (9) isthedoubl e value 3.0,

Mat h. abs(9) isthei nt value9.)

Note that Mat h. r andon{) does not have any parameter. Y ou still need the parentheses, even though there's
nothing between them. The parentheses let the computer know that this is a subroutine rather than a variable.
Another example of a subroutine that has no parametersisthe function System current TineM | I i s(),
from the Sy st emclass. When this function is executed, it retrieves the current time, expressed as the number
of milliseconds that have passed since a standardized base time (the start of the year 1970 in Greenwich Mean
Time, if you care). One millisecond is one thousandth second. The value of

System current TimreM | 1i s() isof typel ong. Thisfunction can be used to measure the time that it
takes the computer to perform atask. Just record the time at which the task is begun and the time at which it is
finished and take the difference.

Here is a sample program that performs afew mathematical tasks and reports the time that it takes for the
program to run. On some computers, the time reported might be zero, because it istoo small to measurein
milliseconds. Even if it's not zero, you can be sure that most of the time reported by the computer was spent
doing output or working on tasks other than the program, since the calculations performed in this program
occupy only atiny fraction of a second of a computer's time.

public class Ti nedConputation {

/[* This program perfornms sonme mat hemati cal conputations and displ ays
the results. It then reports the nunber of seconds that the
conput er spent on this task.

*/

public static void main(String[] args) {

long startTinme; // Starting tinme of program in mlliseconds.

| ong endTi ne; /1 Time when conputations are done, in mlliseconds.
doubl e ti ne; /1 Time difference, in seconds.

startTime = SystemcurrentTimeM | 1is();

doubl e wi dth, height, hypotenuse; // sides of a triangle
width = 42.0;

hei ght = 17.0;

hypot enuse = Math.sqrt(w dth*wi dth + hei ght *hei ght);

Systemout.print("Atriangle with sides 42 and 17 has hypotenuse ");

System out. printl n(hypot enuse);

Systemout. println("\nMat hematically, sin(x)*sin(x) +

+ "cos(x)*cos(x) - 1 should be 0.");

Systemout.printin("Let's check this for x = 1:");
System out . print (" sin(l)*sin(l) + cos(1l)*cos(1l) - 1is ");
Systemout. println(Mth.sin(1l)*Mth.sin(1)

+ Math.cos(1)*Math.cos(1) - 1);

Systemout.println("(There can be round-off errors when "

+ " conputing with real nunbers!)");

Systemout.print("\nHere is a random nunber: ");

http://math.hws.edu/eck/cs124/javanotes3/c2/s3.html (3 of 5) [6/10/2004 8:39:34 AM]

Java Programing: Section 2.3

Systemout. println(Mth.random());

endTime = SystemcurrentTimeM I 1is();
time = (endTinme - startTine) / 1000. 0;

Systemout.print("\nRun time in seconds was: ");
Systemout.printin(tinmnme);

} /1 end main()

} /1 end class TimedConputation

Hereisasimulated version of this program. If you run it several times, you should see a different random
number in the output each time.

Sorry, your browser doesn't
support Java.

A value of type St r i ng isan object. That object contains data, namely the sequence of characters that make
up the string. It also contains subroutines. All of these subroutines are in fact functions. For example, | engt h
is asubroutine that computes the length of a string. Suppose that st r isavariablethat referstoa St r i ng. For
example, st r might have been declared and assigned avalue as follows:

String str;
str = "Seize the day!";

Thenstr. | engt h() isafunction call that represents the number of charactersin the string. The value of
str.length() isani nt.Notethat thisfunction has no parameter; the string whose length is being
computed isst r. Thel engt h subroutineis defined by the class St r i ng, and it can be used with any value
of type St ri ng. It can even be used with St r i ng literals, which are, after al, just constant values of type
St ri ng. For example, you could have a program count the charactersin "Hello World" for you by saying

Systemout. print("The nunber of characters in ");
Systemout.printin("the string \"Hello World\" is ");
Systemout.printin("Hello World".length());

The St ri ng classdefinesalot of functions. Here are some that you might find useful. Assumethat s1 and s2
refer to values of type St r i ng:

o sl. equal s(s2) isafunction that returnsabool ean value. It returnst r ue if s1 consists of
exactly the same sequence of charactersass?2, and returnsf al se otherwise.

« sl. equal sl gnoreCase(s2) isanother boolean-valued function that checks whether s1 isthe
same string as s 2, but this function considers upper and lower case letters to be equivalent. Thus, if s1
is"cat", thensl. equal s("Cat ") isf al se, whilesl. equal sl gnoreCase("Cat") istrue.

« sl. 1 ength(),asmentioned above, is an integer-valued function that gives the number of characters
ins1.

« sl1. char At (N),whereNisan integer, returns avalue of type char . It returns the N-th character in
the string. Positions are numbered starting with 0, so s1. char At (0) isthe actually thefirst character,
sl. char At (1) isthesecond, and so on. Thefina positioniss1. 1 ength() - 1. For example, the
valueof "cat". char At (1) is'a. Anerror occursif the value of the parameter is less than zero or
greater thans1. 1l ength() - 1.

e sl.substring(N, M, whereNand Mare integers, returns avalue of type St r i ng. The returned
value consists of the charactersins1 in positions N, N+1,..., M 1. Note that the character in position M
isnot included. The returned value is called a substring of s1.

e sl.indexO (s2) returnsan integer. If s2 occurs as asubstring of s1, then the returned value isthe

http://math.hws.edu/eck/cs124/javanotes3/c2/s3.html (4 of 5) [6/10/2004 8:39:34 AM]

Java Programing: Section 2.3

starting position of that substring. Otherwise, the returned valueis-1. Y ou can also use
sl.indexO (ch) tosearchfor aparticular character, ch, ins1. To find the first occurrence of x at
or after position N, you canusesl. i ndexOF (x, N) .

« sl. conpareTo(s2) isaninteger-valued function that compares the two strings. If the strings are
equal, the value returned is zero. If s1 islessthan s2, the value returned is a number less than zero, and
if s1 isgreater than s2, the value returned is some number greater than zero. (If both of the strings
consist entirely of lowercase letters, then "less than" and "greater than" refer to aphabetical order.
Otherwise, the ordering is more complicated.)

« sl.toUpperCase() isaStri ng-vaued function that returns a new string that isequal tos 1,
except that any lower case lettersin s 1 have been converted to upper case. For example,
"Cat".toUpperCase() isthe string "CAT". Thereisalso amethod s1. t oLower Case() .

e« sl.trim() isaStri ng-valued function that returns a new string that is equal to s1 except that any
non-printing characters such as spaces and tabs have been trimmed from the beginning and from the end
of the string. Thus, if s1 hasthevalue"fred ", thens1. tri n() isthestring "fred".

For the methods s 1. t oUpper Case(),sl.toLower Case(),andsl.trim), notethat thevaueof s1
is not changed. Instead a new string is created and returned as the value of the function. The returned value
could be used, for example, in an assignment statement suchas"s2 = sl1.toLower Case(); ".

Hereis another extremely useful fact about strings. Y ou can use the plus operator, +, to concatenate two strings.
The concatenation of two stringsis a new string consisting of all the characters of the first string followed by all
the characters of the second string. For example, "Hello" + "World" evaluates to "HelloWorld". (Gotta watch
those spaces, of course.) Let's suppose that nane isavariable of type St r i ng and that it already refersto the
name of the person using the program. Then, the program could greet the user by executing the statement:

Systemout.printin("Hello, " + nanme + Pl eased to neet you!");

Even more surprising is that you can concatenate val ues belonging to one of the primitive typesontoaSt r i ng
using the + operator. The value of primitive type is converted to a string, just asit would be if you printed it to
the standard output, and then it is concatenated onto the string. For example, the expression "Number" + 42
evaluates to the string "Number42". And the statements

Systemout.print("After ");

System out . print(years);
Systemout.print(" years, the value is ");
System out. print (principal);

can be replaced by the single statement:

Systemout.print("After " + years +
" years, the value is

+ principal);

Obvioudly, thisis very convenient. It would have shortened severa of the examples used earlier in this chapter.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/s3.html (5 of 5) [6/10/2004 8:39:34 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 2.4

Section 2.4
Text Input and Output

FOR SOME UNFATHOMABLE REASON, Java seemsto lack any reasonable built-in subroutines for

reading data typed in by the user. You've already seen that output can be displayed to the user using the
subroutine Syst em out . pri nt . Thissubroutineis part of a pre-defined object called Syst em out .
The purpose of this object is precisely to display output to the user. There is a corresponding object called
Syst em i n that exists to read datainput by the user, but it provides only very primitive input facilities, and
it requires some advanced Java programming skillsto use it effectively.

Thereis some excuse for this, since Javais meant mainly to write programs for Graphical User Interfaces,
and those programs have their own style of input/output, which isimplemented in Java. However, basic
support is needed for input/output in old-fashioned non-GUI programs. Fortunately, it is possible to extend
Java by creating new classes that provide subroutines that are not available in the classes which are a
standard part of the language. As soon as anew classis available, the subroutines that it contains can be used
in exactly the same way as built-in routines.

For example, I've written a class called Text | Othat defines subroutines for reading values typed by the
user. The subroutinesin this class make it possible to get input from the standard input object, Syst em i n,
without knowing about the advanced aspects of Java that you would need to know to use System i n
directly. Text | Oaso contains a set of output subroutines. The output subroutines are similar to those
provided in Syst em out , but they provide afew additional features. Y ou can use whichever set of output
subroutines you prefer, and you can even mix them in the same program.

To usethe Text | Oclass, you must make sure that the classis available to your program. What this means
depends on the Java programming environment that you are using. See Appendix 2 for information about
programming environments. In general, you just have to add the compiled file, Text | O. cl ass, tothe
directory that contains your main program. Y ou can obtain the compiled class file by compiling the source
code, TextlO.java.

The input routinesin the Text | Oclass are static member functions. (Static member functions were
introduced in the previous section.) Let's suppose that you want your program to read an integer typed in by
the user. The Text | Oclass contains a static member function named get | nt that you can usefor this
purpose. Since thisfunction is contained in the Text | Oclass, you haveto refer to it in your program as
Text | O. get | nt. The function has no parameters, so acall to the function takes the form

"Text | O get I nt()". Thisfunction call representsthei nt value typed by the user, and you have to do
something with the returned value, such as assign it to avariable. For example, if user | nput isavariable
of typei nt (created with adeclaration statement "i nt user | nput ; "), then you could use the
assignment statement

userlnput = Textl O getlnt();

When the computer executes this statement, it will wait for the user to type in an integer value. The value
typed will be returned by the function, and it will be stored in the variable, user | nput . Hereis acomplete
program that uses Text | O. get | nt to read a number typed by the user and then prints out the square of
the number that the user types.

public class PrintSquare {
public static void main(String[] args) {

/1l A programthat conputes and prints the square
/1 of a nunber input by the user.

http://math.hws.edu/eck/cs124/javanotes3/c2/s4.html (1 of 5) [6/10/2004 8:39:35 AM]

http://math.hws.edu/eck/cs124/javanotes3/source/TextIO.java

Java Programing: Section 2.4

int userlnput; // the nunber input by the user
i nt square; /[l the userlnput, nultiplied by itself

Systemout.print("Please type a nunber: ");
userlnput = Textl O getlnt();

square = userlnput * userlnput;

Systemout. print("The square of that nunber is ");
System out. println(square);

} /1 end of main()

} //end of class PrintSquare

Here's an applet that simulates this program. When you run the program, it will display the message "Please
type anumber: " and will pause until you type aresponse. (If the applet does not respond to your typing, you
might haveto click on it to activate it.)

Sorry, your browser doesn't
support Java.

The Text | Oclass contains static member subroutines Text | O. put and Text | O. put | n that can be
used in the sameway as Syst em out . pri nt and Syst em out . pri nt | n. For example, although
thereis no particular advantage in doing so in this case, you could replace the two lines

Systemout. print("The square of that nunber is ");
System out. println(square);
with
Text |1 O put ("The square of that nunber is ");
Text | O putl n(square);

For the next few chapters, | will use Text | Ofor input in al my examples, and | will often useit for output.
Keep in mind that Text | Ocan only be used inaprogramif Text | O. cl ass isavailable to that program.
It isnot built into Java, asthe Syst emclassis.

Let'slook alittle more closely at the built-in output subroutines Syst em out . pri nt and

System out . pri nt | n. Each of these subroutines can be used with one parameter, where the parameter
can be any value of type byt e, short,i nt,l ong, fl oat,doubl e, char, bool ean,or Stri ng.
(These are the eight primitive types plusthetype St r i ng.) That is, you can say

"System out. print(x);"or"Systemout. println(x);", wherex isany expression whose
valueis of one of these types. The expression can be a constant, a variable, or even something more
complicated such as2* di st ance*t i ne. Infact, there are actually several different subroutinesto handle
the different parameter types. Thereisone Syst em out . pri nt for printing values of type doubl e, one
for values of typei nt , another for values of type St r i ng, and so on. These subroutines can have the same
name since the computer can tell which one you mean in a given subroutine call statement, depending on the
type of parameter that you supply. Having several subroutines of the same name that differ in the types of
their parametersis called overloading. Many programming languages do not permit overloading, but it is
common in Java programs.

The difference between Syst em out . pri nt and Syst em out . pri ntl nisthat

System out . pri nt | n outputs a carriage return after it outputs the specified parameter value. Thereisa
version of Syst em out . pri nt | n that has no parameters. This version smply outputs a carriage return,
and nothing else. Of course, a subroutine call statement for this version of the program looks like

"System out. println();", withempty parentheses. Note that "Syst em out . pri ntl n(x);"is
exactly equivalent to"Syst em out . print (x); Systemout.println();". (Thereisnoversion

http://math.hws.edu/eck/cs124/javanotes3/c2/s4.html (2 of 5) [6/10/2004 8:39:35 AM]

Java Programing: Section 2.4

of Syst em out . pri nt without parameters. Do you see why?)

As mentioned above, the Text | Osubroutines Text | O. put and Text | O. put | n can be used as
replacementsfor Syst em out . pri nt and Syst em out . pri nt| n. However, Text | Ogoes beyond
Syst em out by providing additional, two-parameter versions of put and put | n. You can use subroutine
call statements of theform "Text | O. put (X, n) ;" and"Text | O. put | n(x, n) ; ", where the second
parameter, n, is an integer-valued expression. Theideaisthat n isthe number of characters that you want to
output. If X takes up fewer than n characters, then the computer will add some spaces at the beginning to
bring the total up to n. (If x already takes up more than n characters, the computer will just print out more
characters than you ask for.) This feature is useful, for example, when you are trying to output neat columns
of numbers, and you know just how many characters you need in each column.

The Text | Oclassisalittle more versatile at doing output thanis Syst em out . However, it'sinput for
which wereally need it.

With Text | O, input is done using functions. For example, Text | O. get | nt () , which was discussed
above, makes the user typein avalue of typei nt and returns that input value so that you can use it in your
program. Text | Oincludes several functions for reading different types of input values. Here are examples
of using each of them:

b = Text!1 QO getByte(); // value read is a byte

i = Text|Q get Short(); /1 value read is a short

j = TextlO getlnt(); /1l value read is an int

k = Text1Q getLong(); /1l value read is a |ong

X = Text!| QO get Float (); // value read is a float
y = Textl1 O getDouble(); // value read is a double
a = Text| QO getBoolean(); // value read is a bool ean
c = Textl QO getChar(); // value read is a char

w = Text | O getWord(); /1 value read is a String
s = Text1 O getln(); /1l value read is a String

For these statements to be legal, the variables on the | eft side of each assignment statement must be of the
same type as that returned by the function on the right side.

When you call one of these functions, you are guaranteed that it will return alegal value of the correct type.
If the user typesin anillegal value asinput -- for example, if you ask for abyt e and the user typesin a
number that is outside the legal range of -128 to 127 -- then the computer will ask the user to re-enter the
value, and your program never seesthefirst, illegal value that the user entered.

You'll notice that there are two input functions that return Strings. The first, get Wor d() , returns a string
consisting of non-blank characters only. When it iscalled, it skips over any spaces and carriage returns typed
in by the user. Then it reads non-blank characters until it gets to the next space or carriage return. It returns a
St ri ng consisting of all the non-blank charactersthat it has read. The second input function, get | n(),
simply returns a string consisting of all the characters typed in by the user, including spaces, up to the next
carriage return. It gets an entire line of input text. The carriage return itself is not returned as part of the input
string, but it isread and discarded by the computer. Note that the String returned by this function might be
the empty string, " ", which contains no characters at all.

All the other input functionslisted -- get Byt e(), get Short (),getlnt(),getLong(),

get Fl oat (), get Doubl e(), get Bool ean(), andget Char () -- behavelikeget Wor d() . Thatis,
they will skip past any blanks and carriage returnsin the input before reading a value. However, they will
not skip past other characters. If you try to read two i nt s and the user types "2,3", the computer will read
the first number correctly, but when it tries to read the second number, it will see the comma. It will regard
this as an error and will force the user to retype the number. If you want to input several numbers from one
line, you should make sure that the user knows to separate them with spaces, not commas. Alternatively, if
you want to require a comma between the numbers, use get Char () to read the comma before reading the

http://math.hws.edu/eck/cs124/javanotes3/c2/s4.html (3 of 5) [6/10/2004 8:39:35 AM]

Java Programing: Section 2.4

second number.

(There is another character input function, Text | O. get AnyChar () , which does not skip past blanks or
carriage returns. It simply reads and returns the next character typed by the user. This could be any character,
including a space or a carriage return. If the user typed a carriage return, then the char returned by

get Char () isthe specia linefeed character \n'. Thereisaso afunction, Text | O. peek() , that let'syou
look ahead at the next character in the input without actually reading it. After you "peek” at the next
character, it will still be there when you read the next item from input. This allows you to look ahead and see
what's coming up in the input, so that you can take different actions depending on what's there.)

The semantics of input is much more complicated than the semantics of output. The first time the program
tries to read input from the user, the computer will wait while the user typesin an entire line of input.

Text | Ostoresthat linein achunk of internal memory called the input buffer. Input is actually read from the
buffer, not directly from the user's typing. The user only gets to type when the buffer is empty. Thisletsyou
read several numbers from one line of input. However, if you only want to read in one number and the user
typesin extra stuff on the line, then you could be in trouble. The extra stuff will still be there the next time
you try to read something from input. (The symptom of this trouble is that the computer doesn't pause where
you think it should to let the user type something in. The computer had stuff left over in the input buffer from
the previous line that the user typed.) To help you avoid this, there are versions of the Text | Oinput
functions that read a data value and then discard any leftover stuff on the same line:

b = TextlQ getlnByte(); /1 value read is a byte
i = TextlQ getlnShort(); I/l value read is a short
j = TextlO getlnint(); /1l value read is an int
k = Text!lQ getlnLong(); /1 value read is a |ong
X = Text!| O getlnFloat(); /'l value read is a float
y = Textl1 O getlnDouble(); // value read is a double
a = Textl QO getlnBoolean(); // value read is a bool ean
c = Textl O getlnChar(); /1 value read is a char
w = Text 1O getl nWword(); /1l value read is a String

Note that calling get | nDoubl e() , for example, is equivalent to first calling get Doubl e() and then

callingget | n() toread any remaining data on the same line, including the end-of-line character itself. |
strongly advise you to use the "getIn" versions of the input routines, rather than the "get" versions, unless
you really want to read several items from the same line of input.

Y ou might be wondering why there are only two output routines, put and put | n, which can output data
values of any type, while there is a separate input routine for each data value. As noted above, in reality there
are many put and put | n routines. The computer can tell them apart based on the type of the parameter that
you provide. However, the input routines don't have parameters, so the different input routines can only be
distinguished by having different names.

Using Text | Ofor input and output, we can now improve the program from Section 2 for computing the

value of an investment. We can have the user typein theinitial value of the investment and the interest rate.
The result is a much more useful program -- for one thing, it makes sense to run more than once!

public class Interest2 {

/*
This class inplements a sinple programthat
wi |l conpute the anpbunt of interest that is
earned on an investnent over a period of
one year. The initial amount of the investnent
and the interest rate are input by the user.
The value of the investnent at the end of the
year is output. The rate nmust be input as a
decimal, not a percentage (for exanple, 0.05,

http://math.hws.edu/eck/cs124/javanotes3/c2/s4.html (4 of 5) [6/10/2004 8:39:35 AM]

Java Programing: Section 2.4

*/

rat her than 5).

public static void main(String[] args) {

doubl e principal; [/ the value of the investnent
doubl e rate; /'l the annual interest rate
doubl e interest; /'l the interest earned during the year

Text1 O put("Enter the initial investnment: ");
principal = Textl QO getl nDoubl e();

Text1 O put ("Enter the annual interest rate: ");
rate = Text1 QO getl nDouble();

interest = principal * rate; /1l compute this year's interest
principal = principal + interest; /1l add it to principal

Text | O put (" The value of the investnment after one year is $");
Text | O putl n(principal);

} /1 end of main()

} /1 end of class Interest2

Try out an equivalent applet here. (If the applet does not respond to your typing, you might have to click on

it to activateit.)

Sorry, your browser doesn't
support Java.

By the way, the applets on this page don't actually use Text | O. The Text | Oclassisonly for usein
programs, not applets. For applets, | have written a separate class that provides similar input/output
capabilitiesin a Graphical User Interface program.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/s4.html (5 of 5) [6/10/2004 8:39:35 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 2.5

Section 2.5
Details of Expressions

THIS SECTION TAKES A CLOSER LOOK at expressions. Recall that an expression is a piece of

program code that represents or computes a value. An expression can be aliteral, avariable, afunction call,
or severa of these things combined with operators such as + and >. The value of an expression can be
assigned to a variable, used as the output value in an output routine, or combined with other valuesinto a
more complicated expression. (The value can even, in some cases, be ignored, if that's what you want to do;
this is more common than you might think.) Expressions are an essential part of programming. So far, these
notes have dealt only informally with expressions. This section tells you the more-or-less complete story.

The basic building blocks of expressions are literals (suchas 674, 3. 14,true,and' X'), variables, and
function calls. Recall that afunction is a subroutine that returns avalue. Y ou've already seen some
examples of functions: the input routines from the Text | Oclass and the mathematical functions from the
Mat h class.

Literals, variables, and function calls are simple expressions. More complex expressions can be built up by
using operators to combine simpler expressions. Operators include + for adding two numbers, > for
comparing two values, and so on. When several operators appear in an expression, there is a question of
precedence, which determines how the operators are grouped for evaluation. For example, in the expression
"A + B * C', B*Ciscomputed first and then the result is added to A. We say that multiplication (*) has
higher precedence than addition (+). If the default precedence is not what you want, you can use
parentheses to explicitly specify the grouping you want. For example, you coulduse"(A + B) * C'if
you want to add A to B first and then multiply the result by C.

Therest of this section gives details of operators in Java. The number of operatorsin Javais quite large, and
I will not cover them all here. Most of the important ones are here; afew will be covered in later chapters as
they become relevant.

Arithmetic Operators

Arithmetic operators include addition, subtraction, multiplication, and division. They are indicated by +, -,
*,and/ . These operations can be used on values of any numeric type: byt e, short,int,| ong, fl oat,
or doubl e. When the computer actually calculates one of these operations, the two values that it combines
must be of the same type. If your program tells the computer to combine two values of different types, the
computer will convert one of the values from one type to another. For example, to compute 37.4 + 10, the
computer will convert the integer 10 to areal number 10.0 and will then compute 37.4 + 10.0. (The
computer'sinternal representations for 10 and 10.0 are very different, even though people think of them as
representing the same number.) Ordinarily, you don't have to worry about type conversion, because the
computer does it automatically.

When two numerical values are combined (after doing type conversion on one of them, if necessary), the
answer will be of the same type. If you multiply twoi nt s, youget ani nt ; if you multiply two doubl es,
you get adoubl e. Thisiswhat you would expect, but you have to be very careful when you use the
division operator / . When you divide two integers, the answer will always be an integer; if the quotient has
afractional part, it is discarded. For example, thevalue of 7/ 2 is 3, not 3. 5. If Nisan integer variable,
then N/ 100 isaninteger, and 1/ Nisequal to zero for any N greater than one! Thisfact isacommon
source of programming errors. Y ou can force the computer to compute areal number as the answer by
making one of the operands real: For example, when the computer evaluates 1. 0/ N, it first convertsNto a
real number in order to match the type of 1. 0, so you get area number as the answer.

Java also has an operator for computing the remainder when one integer is divided by another. This

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (1 of 6) [6/10/2004 8:39:36 AM]

Java Programing: Section 2.5

operator isindicated by % If A and B are integers, then A % B represents the remainder when A isdivided
by B. For example, 7 % 2 is1, while34577 % 100is77,and50 % 8 is2. A common use of %isto
test whether a given integer iseven or odd. Nisevenif N % 2 iszero, anditisoddif N % 2 is1. More
generally, you can check whether an integer Nis evenly divisible by an integer Mby checking whether N %
Mis zero.

Finally, you might need the unary minus operator, which takes the negative of a number. For example, - X
has the samevalue as (- 1) * X. For completeness, Java also has a unary plus operator, asin +X, even
though it doesn't really do anything.

Increment and Decrement

You'l find that adding 1 to avariable is an extremely common operation in programming. Subtracting 1
from avariableis aso pretty common. Y ou might perform the operation of adding 1 to a variable with
assignment statements such as:

counter = counter + 1;
goal sScored = goal sScored + 1;

The effect of the assignment statement x = X + 1 isto takethe old value of the variable x, compute the
result of adding 1 to that value, and store the answer as the new value of x. The same operation can be
accomplished by writing x++ (or, if you prefer, ++x). This actually changes the value of x, so that it has
the same effect aswriting"x = x + 1". Thetwo statements above could be written

count er ++;
goal sScor ed++;

Similarly, you could write x- - (or - - X) to subtract 1 from x. That is, x- - performs the same computation
asXx = X - 1.Adding1 toavariableis called incrementing that variable, and subtracting 1 is called
decrementing. The operators ++ and - - are called the increment operator and the decrement operator,
respectively. These operators can be used on variables belonging to any of the numerical types and also on
variables of typechar .

Usually, the operators ++ or - - , are used in statements like "x++;" or "x- - ;". These statements are
commands to change the value of x. However, it isalso legal to use x++, ++x, X--,0r--Xx as
expressions, or as parts of larger expressions. That is, you can write things like:

y = X++;

y = ++X;

Text1 O putln(--x);

z = (++x) * (y--);

The statement "'y = x++;" has the effects of adding 1 to the value of x and, in addition, assigning some
valuetoy. Thevaue assigned to y isthe value of the expression x++, which is defined to be the old value
of x, beforethe 1 isadded. Thus, if the value of x is 6, the statement "y = x++;" will change the value of
x to 7 and will change the value of y to 6. On the other hand, the value of ++x is defined to be the new
value of x, after the 1 isadded. Soif x is6, then the statement "y = ++x;" changes the values of both x
andy to 7. The decrement operator, - - , worksin asimilar way.

This can be confusing. My adviceis. Don't be confused. Use ++ and - - only in stand-alone statements, not
in expressions. | will follow this advice in all the examples in these notes.

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (2 of 6) [6/10/2004 8:39:36 AM]

Java Programing: Section 2.5

Relational Operators

Java has boolean variables and boolean-valued expressions that can be used to express conditions that can
be either t r ue or f al se. Oneway to form aboolean-valued expression is to compare two values using a
relational operator. Relational operators are used to test whether two values are equal, whether one valueis
greater than another, and so forth. The relation operatorsin Javaare: ==, ! =, <, >, <=, and >=. The
meanings of these operators are:

A == Is A "equal to" B?

Al=B Is A "not equal to" B?

A<B Is A "less than" B?

A>B Is A "greater than" B?

A<= B Is A "less than or equal to" B?

A >=B Is A "greater than or equal to" B?

These operators can be used to compare values of any of the numeric types. They can also be used to
compare values of type char . For characters, < and > are defined according the numeric Unicode values of
the characters. (This might not always be what you want. It is not the same as a phabetical order because all
the upper case letters come before all the lower case letters.)

When using boolean expressions, you should remember that as far as the computer is concerned, thereis
nothing special about boolean values. In the next chapter, you will see how to use them in loop and branch
statements. But you can also assign boolean-valued expressions to boolean variables, just as you can assign
numeric values to numeric variables.

By the way, the operators == and != can be used to compare boolean values. Thisis occasionally useful.
For example, can you figure out what this does:

bool ean saneSi gn;
sameSign = ((x > 0) == (y > 0));

One thing that you cannot do with the relational operators <, >, <=, and <= isto use them to compare
valuesof type St ri ng. You can legally use==and ! = to compare St r i ngs, but because of peculiarities
in the way objects behave, they might not give the results you want. (The == operator checks whether two
objects are stored in the same memory location, rather than whether they contain the same value.
Occasionally, for some objects, you do want to make such a check -- but rarely for strings. I'll get back to
thisin alater chapter.) Instead, you should use the subroutinesequal s() , equal sl gnor eCase(), and
conpar eTo() , which were described in Section 3, to comparetwo St r i ngs.

Boolean Operators

In English, complicated conditions can be formed using the words "and", "or", and "not.” For example, "If
thereisatest and you did not study for it...". "And", "or", and "not" are boolean operators, and they exist in
Javaaswell asin English.

In Java, the boolean operator "and" is represented by &&. The && operator is used to combine two boolean
values. Theresult isaso aboolean value. Theresultist r ue if both of the combined valuesaret r ue, and
theresult isf al se if either of the combined valuesisf al se. For example, "(x == 0) && (y ==

0) "istrue if and only if both x isequal to 0 and y isequal to 0.

The boolean operator "or" isrepresented by | | . (That's supposed to be two of the vertical line characters,
| J"A || B"istrue if either Aistrue orBistrue,orif botharetrue."A || B"isfal se only if
both A and B are false.

The operators && and | | are said to be short-circuited versions of the boolean operators. This means that

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (3 of 6) [6/10/2004 8:39:36 AM]

Java Programing: Section 2.5

the second operand of && or | | isnot necessarily evaluated. Consider the test
(x '=0) && (y/x > 1)

Suppose that the value of x isin fact zero. In that case, the division x/ y isillegal, since division by zerois
not allowed. However, the computer will never perform the division, since when the computer evaluates (x
I = 0),itfindsthat theresultisf al se, and soitknowsthat ((x ! = 0) &&anything) hasto befalse.
Therefore, it doesn't bother to evaluate the second operand, (x/y > 1) . The evaluation has been
short-circuited and the division by zero is avoided. Without the short-circuiting, there would have been a
division-by-zero error. (This may seem like atechnicality, and it is. But at times, it will make your
programming life alittle easier. To be even more technical: There are actually non-short-circuited versions
of & and | | , which are written as & and | . Don't use them unless you have a particular reason to do so.)

The boolean operator "not" isaunary operator. In Java, it isindicated by ! and iswritten in front of its
single operand. For example, if t est isaboolean variable, then

test = | test;

will reverse the value of test, changing it fromt rue tof al se, or fromf al se totr ue.

Conditional Operator

Any good programming language has some nifty little features that aren't really necessary but that let you
feel cool when you use them. Java has the conditional operator. It's aternary operator -- that is, it has three
operands -- and it comes in two pieces, ? and :, that have to be used together. It takes the form

boolean-expression ? expression-1 : expression-2

The computer tests the value of boolean-expression. If thevalueist r ue, it evaluates expression-1,;
otherwise, it evaluates expression-2. For example:

next = (N%2 ==0) ? (N2) : (3*N+l);

will assign thevalue N/ 2 to next if Niseven (thatis,if N % 2 == 0istrue), andit will assign the
value (3* N+1) tonext if Nisodd.

Assignment Operators

Y ou are aready familiar with the assignment statement, which uses the symbol "=" to assign the value of an
expression to avariable. In fact, = isreally an operator in the sense that an assignment can itself be used as
an expression or as part of a more complex expression. The value of an assignment such as A=B is the same
asthe value that isassigned to A. So, if you want to assign the value of B to A and test at the same time
whether that value is zero, you could say:

if ((A=B) == 0)
Usualy, | would say, don't do thingslike that!

In general, the type of the expression on the right-hand side of an assignment statement must be the same as
the type of the variable on the left-hand side. However, in some cases, the computer will automatically
convert the value computed by the expression to match the type of the variable. Consider the list of numeric
types: byt e, short,int,l ong,fl oat,doubl e. A value of atypethat occurs earlier in thislist can be
converted automatically to a value that occurs later. For example:

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (4 of 6) [6/10/2004 8:39:36 AM]

Java Programing: Section 2.5

int A

doubl e X;

short B;

A= 17,

X =A /1 OK; Ais converted to a double
B = A /'l illegal; no automatic conversion

/1 fromint to short

Theideaisthat conversion should only be done automatically when it can be done without changing the
semantics of the value. Any i nt can be converted to adoubl e with the same numeric value. However,
therearei nt valuesthat lie outside the legal range of shor t s. There is simply no way to represent the
i nt 100000 asashort, for example, since the largest value of typeshort is32767.

In some cases, you might want to force a conversion that wouldn't be done automatically. For this, you
could use what is called atype cast. A type cast isindicated by putting atype name, in parentheses, in front
of the value you want to convert. For example,

int A

short B;

A = 17,

B = (short)A;, // OK Ais explicitly type cast

/1 to a value of type short

Y ou can do type casts from any numeric type to any other numeric type. However, you should note that you
might change the numeric value of a number by type-casting it. For example, (short) 100000 is 34464.
(The 34464 is obtained by taking the 4-bytei nt 100000 and throwing away two of those bytesto obtain a
short -- you'velost the real information that was in those two bytes.)

As another example of type casts, consider the problem of getting arandom integer between 1 and 6. The
function Mat h. r andom() givesarea number between 0.0 and 0.9999..., and so 6* Mat h. r andomn() is
between 0.0 and 5.999.... The type-cast operator, (i nt), can be used to convert this to an integer:
(int)(6*Math. randon()) . A real number is cast to an integer by discarding the fractional part. Thus,
(int)(6*Mat h. randon()) isoneof theintegers0, 1, 2, 3, 4, and 5. To get a number between 1 and

6, wecanadd 1. "(i nt) (6*Mat h. randon()) + 1"

Y ou can also type-cast between the type char and the numeric types. The numeric value of achar isits
Unicode code number. For example, (char) 97 is'a' ,and (i nt)"' +' is43.

Java has several variations on the assignment operator, which exist to save typing. For example, "A += B"
isdefined to bethesameas"A = A + B". Every operator in Javathat applies to two operands givesrise
to asimilar assignment operator. For example:

X -=Y,; /'l sanme as: X =X -y,
X *=vy; /|l sanme as: X =X *vy,;
X /=y, /] same as: X =x 1y,
X % vy; /'l sanme as: X =X %vy; (for integers x and vy)
q &&= p; /[l sane as: g =09 & p; (for booleans g and p)

The combined assignment operator += even works with strings. Y ou will recall from Section 3 that when

the + operator is used with a string as the first operand, it represents concatenation. Sincestr += X is
equivalenttostr = str + X, when+=isused with astring on the left-hand side, it appends the value
on the right-hand side onto the string. For example, if st r hasthe value "tire", then the statement st r +=
"d'; changesthevaueof str to"tired".

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (5 of 6) [6/10/2004 8:39:36 AM]

Java Programing: Section 2.5

Precedence Rules

If you use several operatorsin one expression, and if you don't use parentheses to explicitly indicate the
order of evaluation, then you have to worry about the precedence rules that determine the order of
evaluation. (Advice: don't confuse yourself or the reader of your program; use parentheses liberally.)

Hereisalisting of the operators discussed in this section, listed in order from highest precedence (evaluated
first) to lowest precedence (evaluated last):

Unary operators: ++, --, !, unary - and +, type-cast
Mul tiplication and division: *, [, %

Addi ti on and subtraction: +, -

Rel ati onal operators: <, >, <=, >=

Equality and inequality: ==, I=

Bool ean and: &&

Bool ean or: |]

Condi ti onal operator: ?:

Assi gnnent operators: = += -= *= [= U

Operators on the same line have the same precedence. When they occur together, unary operators and
assignment operators are evaluated right-to-left, and the remaining operators are evaluated left-to-right. For
example, A* B/ Cmeans (A* B) / C, while A=B=C means A=(B=C) . (Can you see how the expression
A=B=C might be useful, given that the value of B=C as an expression is the same as the value that is
assigned to B?)

End of Chapter 2

[Next Chapter | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/s5.html (6 of 6) [6/10/2004 8:39:36 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Chapter 2 Exercises

Programming Exercises
For Chapter 2

THIS PAGE CONTAINS programming exercises based on material from Chapter 2 of this on-line Java
textbook. Each exercise has alink to a discussion of one possible solution of that exercise.

Exercise 2.1: Write aprogram that will print your initials to standard output in letters that are nine lines
tall. Each big letter should be made up of abunch of *'s. For example, if your initials were "DJE", then the
output would look something like:

Kk kkk*k EE R I I I S S I S S S R R I I S S S S
* % * % * % * %

* % * % * % * %

* % * % * % * %

* * * * * * *kkhkkkkkk*x

* * * * * * * * * *

* % * % * % * % * %

* % * % * % * % * %

*kk k% * k k% *kkkkkkkkk*k

See the solution!

Exercise 2.2: Write aprogram that simulates rolling apair of dice. Y ou can simulate rolling one die by
choosing one of theintegers 1, 2, 3, 4, 5, or 6 at random. The number you pick represents the number on the
die after itisrolled. As pointed out in Section 5, The expression

(int)(Math.random()*6) + 1

does the computation you need to select arandom integer between 1 and 6. Y ou can assign thisvalueto a
variable to represent one of the dice that is being rolled. Do this twice and add the results together to get the
total roll. Y our program should report the number showing on each die as well as the total roll. For
example:

The first die conmes up 3
The second die cones up 5
Your total roll is 8

(Note: Theword "dice" isaplural, asin "two dice.” The singular is"die.")

See the solution!

Exercise 2.3: Write aprogram that asks the user's name, and then greets the user by name. Before
outputting the user's name, convert it to upper case letters. For example, if the user's nameis Fred, then the
program should respond "Hello, FRED, nice to meet you!".

See the solution!

Exercise 2.4: Write a program that helps the user count his change. The program should ask how many
quarters the user has, then how many dimes, then how many nickels, then how many pennies. Then the

http://math.hws.edu/eck/cs124/javanotes3/c2/exercises.html (1 of 2) [6/10/2004 8:39:36 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-1-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-2-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-3-answer.html

Java Programing: Chapter 2 Exercises

program should tell the user how much money he has, expressed in dollars.

See the solution!

Exercise 2.5: If you have N eggs, then you have N 12 dozen eggs, with N¥d.2 eggs left over. (Thisis
essentially the definition of the/ and %operators for integers.) Write a program that asks the user how
many eggs she has and then tells the user how many dozen eggs she has and how many extra eggs are left
over.

A gross of eggsisequal to 144 eggs. Extend your program so that it will tell the user how many gross, how
many dozen, and how many left over eggs she has. For example, if the user says that she has 1342 eggs,
then your program would respond with

Your nunber of eggs is 9 gross, 3 dozen, and 10
since 1342 isequal to 9%144 + 3*12 + 10.

See the solution!

[Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/exercises.html (2 of 2) [6/10/2004 8:39:36 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-4-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-5-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Chapter 2 Quiz

Quiz Questions
For Chapter 2

THIS PAGE CONTAINS A SAMPLE quiz on material from Chapter 2 of this on-line Java textbook. Y ou

should be able to answer these questions after studying that chapter. Sample answersto all the quiz
guestions can be found here.

Question 1: Briefly explain what is meant by the syntax and the semantics of a programming language.
Give an example to illustrate the difference between a syntax error and a semantics error.

Question 2: What does the computer do when it executes a variable declaration statement. Give an
example.

Question 3: What is atype, as this term relates to programming?

Question 4: One of the primitive typesin Javais boolean. What isthe bool ean type? Where are boolean
values used? What are its possible values?

Question 5: Give the meaning of each of the following Java operators:
a) ++
b) &&
c)!=

Question 6: Explain what is meant by an assignment statement, and give an example. What are assignment
statements used for?

Question 7: What is meant by precedence of operators?
Question 8: What isaliteral?
Question 9: In Java, classes have two fundamentally different purposes. What are they?

Question 10: What is the difference between the statement "x = Text | O. get Doubl e() ; " and the
statement "x = Text | O. get | nDoubl e() ;"

[Answers | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c2/quiz.html [6/10/2004 8:39:37 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/quiz-answers.html
http://math.hws.edu/eck/cs124/javanotes3/c2/quiz-answers.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Chapter 3 Index

Chapter 3

Programming in the Small I
Control

THE BASIC BUILDING BLOCKS of programs -- variables, expressions, assignment statements, and

subroutine call statements -- were covered in the previous chapter. Starting with this chapter, we look at
how these building blocks can be put together to build complex programs with more interesting behavior.

Since we are still working on the level of "programming in the small” in this chapter, we are interested in
the kind of complexity that can occur within a single subroutine. On this level, complexity is provided by
control structures. The two types of control structures, loop and branches, can be used to repeat a sequence
of statements over and over or to choose among two or more possible courses of action. Javaincludes
several control structures of each type, and we will look at each of them in some detail.

This chapter will also begin the study of program design. Given a problem, how can you come up with a
program to solve that problem? We'll ook at a partial answer to this question in Section 2. In the following
sections, we'll apply the techniques from Section 2 to a variety of examples.

Contents of Chapter 3:

« Section 1:Blocks, Loops, and Branches

« Section 2:Algorithm Devel opment

o Section3:Thewhi | e anddo. . whi | e Statements
o Section4:Thef or Statement

o Section5:Thei f Statement

o Section6:Theswi t ch Statement

« Section 7:Introduction to Applets and Graphics

« Programming Exercises

o Quiz on this Chapter

[First Section | Next Chapter | Previous Chapter | Main Index |

http://math.hws.edu/eck/cs124/javanotes3/c3/ [6/10/2004 8:40:34 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html

Java Programing: Section 3.1

Section 3.1
Blocks, Loops, and Branches

THE ABILITY OF A COMPUTER TO PERFORM complex tasksis built on just afew ways of combining

simple commands into control structures. In Java, there are just six such structures -- and, in fact, just three
of them would be enough to write programs to perform any task. The six control structures are: the block, the
while loop, the do..while loop, the for loop, the if statement, and the switch statement. Each of these
structuresis considered to be asingle "statement,” but each isin fact a structured statement that can contain
one or more other statements inside itself.

The block isthe simplest type of structured statement. Its purpose is simply to group a sequence of
statements into a single statement. The format of ablock is:

{
}

That is, it consists of a sequence of statements enclosed between a pair of braces, "{" and "}". (Infact, it is
possible for a block to contain no statements at all; such ablock is called an empty block, and can actually be
useful at times. An empty block consists of nothing but an empty pair of braces.) Block statements usually
occur inside other statements, where their purpose isto group together several statementsinto a unit.
However, ablock can be legally used wherever a statement can occur. Thereis one place where ablock is
required: Asyou might have already noticed in the case of the mai n subroutine of a program, the definition
of asubroutineisablock, sinceit is a sequence of statements enclosed inside a pair of braces.

statenents

| should probably note at this point that Javais what is called afree-format language. There are no syntax
rules about how the language has to be arranged on a page. So, for example, you could write an entire block
on onelineif you want. But as a matter of good programming style, you should lay out your program on the
page in away that will make its structure as clear as possible. In general, this means putting one statement
per line and using indentation to indicate statements that are contained inside control structures. Thisisthe
format that | will generally use in my examples.

Here are two examples of blocks:

{
Systemout.print("The answer is ");
System out. println(ans);
}
{ I/ This block exchanges the values of x and y
int tenp; /[l A tenporary variable for use in this block.
tenp = Xx; /'l Save a copy of the value of x in tenp.
X =Y, /1 Copy the value of y into x.
y = tenp; /'l Copy the value of tenp into vy.

}

In the second example, avariable, t enp, isdeclared inside the block. Thisis perfectly legal, and it is good
styleto declare avariable inside ablock if that variable is used nowhere else but inside the block. A variable
declared inside a block is completely inaccessible and invisible from outside that block. When the computer
executes the variable declaration statement, it allocates memory to hold the value of the variable. When the
block ends, that memory is discarded (that is, made available for reuse). The variableis said to be local to the
block. There isageneral concept called the "scope” of an identifier. The scope of an identifier isthe part of
the program in which that identifier is valid. The scope of avariable defined inside ablock islimited to that

http://math.hws.edu/eck/cs124/javanotes3/c3/s1.html (1 of 5) [6/10/2004 8:40:35 AM]

Java Programing: Section 3.1

block, and more specifically to the part of the block that comes after the declaration of the variable.

The block statement by itself really doesn't affect the flow of control in a program. The five remaining
control structures do. They can be divided into two classes: loop statements and branching statements. Y ou
really just need one control structure from each category in order to have a completely general-purpose
programming language. More than that is just convenience. In this section, I'll introduce thewhi | e loop and
thei f statement. I'll give the full details of these statements and of the other three control structuresin later
sections.

A while loop is used to repeat a given statement over and over. Of course, its not likely that you would want
to keep repeating it forever. That would be an infinite loop, which is generally abad thing. (Thereisan old
story about computer pioneer Grace Murray Hopper, who read instructions on a bottle of shampoo telling her
to "lather, rinse, repeat.” Asthe story goes, she claims that she tried to follow the directions, but she ran out
of shampoo. (In case you don't get it, thisis ajoke about the way that computers mindlessly follow
instructions.))

To be more specific, awhi | e loop will repeat a statement over and over, but only so long as a specified
condition remains true. A whi | e loop has the form:

whi | e (bool ean-expression)
st at enent

Since the statement can be, and usually is, ablock, many whi | e loops have the form:

whi | e (bool ean-expression) {
statenents
}

The semantics of this statement go like this: When the computer comesto awhi | e statement, it evaluates
the boolean-expression, which yields either t r ue or f al se asthevalue. If thevalueisf al se, the
computer skips over the rest of the whi | e loop and proceeds to the next command in the program. If the
value of the expressionist r ue, the computer executes the statement or block of statementsinside the
loop. Then it returns to the beginning of thewhi | e loop and repeats the process. That is, it re-evaluates the
boolean-expression, endsthe loop if thevalueisf al se, and continuesit if thevaueist r ue. Thiswill
continue over and over until the value of the expression isf al se; if that never happens, then there will be
an infinite loop.

Hereisan example of awhi | e loop that simply prints out the numbers 1, 2, 3, 4, 5:

i nt nunber; [l The nunber to be printed.

nunmber = 1; /1l Start with 1.

while (nunber <6) { // Keep going as long as nunber is < 6.
System out. printl n(nunber);
nunber = nunmber + 1; // Go on to the next nunber.

}
System out . println("Done!");

Thevariable nunber isinitialized with the value 1. So the first time through the whi | e loop, when the
computer evaluates the expression "number < 6", it is asking whether 1 islessthan 6, whichist r ue. The
computer therefor proceeds to execute the two statements inside the loop. The first statement prints out "1".
The second statement adds 1 to nunber and stores the result back into the variable nunber ; the value of
nunber has been changed to 2. The computer has reached the end of the loop, so it returns to the beginning
and asks again whether nunber islessthan 6. Once again thisis true, so the computer executes the loop
again, thistime printing out 2 as the value of nunber and then changing the value of nunber to 3. It
continues in thisway until eventualy nunber becomes equal to 6. At that point, the expression "number <
6" evauatesto f al se. So, the computer jumps past the end of the loop to the next statement and prints out
the message "Done!". Note that when the loop ends, the value of nunber is6, but the last value that was

http://math.hws.edu/eck/cs124/javanotes3/c3/s1.html (2 of 5) [6/10/2004 8:40:35 AM]

Java Programing: Section 3.1

printed was 5.

By the way, you should remember that you'll never see awhi | e loop standing by itself in areal program. It
will always be inside a subroutine which isitself defined inside some class. As an example of awhi | e loop
used inside a complete program, here is alittle program that computes the interest on an investment over
severa years. Thisis an improvement over examples from the previous chapter that just reported the results
for one year:

public class Interest3 {

/*
This class inplements a sinple programthat
will conmpute the amount of interest that is
earned on an investnent over a period of
5 years. The initial armount of the investnent
and the interest rate are input by the user.
The value of the investnent at the end of each
year is output.

*/

public static void main(String[] args) {

doubl e principal; [// The value of the investnent.
doubl e rate; /] The annual interest rate.

/* Get the initial investnent and interest rate fromthe user. */

Text1 O put("Enter the initial investment: ");
principal = Textl O getl nDouble();

Text1 O put ("Enter the annual interest rate: ");
rate = Text! O getl nDoubl e();

/* Simulate the investnent for 5 years. */
int years; [/ Counts the nunber of years that have passed.

years = O;

while (years < 5) {
double interest; // Interest for this year.
interest = principal * rate;
principal = principal + interest; /[l Add it to principal
years = years + 1; /1 Count the current year.
System out. print("The value of the investnent after ");
System out . print(years);
Systemout.print(" years is $");
System out. println(principal);

} /1 end of while |oop

} /1 end of main()

} // end of class Interest3

And here is the applet which simulates this program:

Sorry, your browser doesn't

http://math.hws.edu/eck/cs124/javanotes3/c3/s1.html (3 of 5) [6/10/2004 8:40:35 AM]

Java Programing: Section 3.1

support Java.

Y ou should study this program, and make sure that you understand what the computer does step-by-step asiit
executes thewhi | e loop.

An if statement tells the computer to take one of two aternative courses of action, depending on whether the
value of a given boolean-valued expression istrue or false. It is an example of a"branching” or "decision”
statement. Ani f statement has the form:

if (bool ean-expression)
st at enent

el se
st at enent

When the computer executesani f statement, it evaluates the boolean expression. If thevalueist r ue, the
computer executes the first statement and skips the statement that followsthe "el se". If the value of the
expressionisf al se, then the computer skips the first statement and executes the second one. Note that in
any case, one and only one of the two statementsinsidethei f statement is executed. The two statements
represent alternative courses of action; the computer decides between these courses of action based on the
value of the boolean expression.

In many cases, you want the computer to choose between doing something and not doing it. Y ou can do this
withani f statement that omitsthe el se part:
if (bool ean-expression)
st at enent

To execute this statement, the computer evaluates the expression. If thevalueist r ue, the computer
executes the statement that is contained inside thei f statement; if thevalueisf al se, the computer skips

that statement.
Of course, either or both of the statement'sinani f statement can be ablock, sothat ani f statement often
looks like:
if (bool ean-expression) {
st at enent s
}
el se {
st at ement s
}
or:

if (bool ean-expression) {
stat enents
}

Asan example, hereisani f statement that exchanges the value of two variables, x andy, but only if x is
greater than y to begin with. After thisi f statement has been executed, we can be sure that the value of x is
definitely less than or equal to the value of y:

it (x>y) {
int tenp; /'l A tenporary variable for use in this bl ock.
tenp = Xx; /'l Save a copy of the value of x in tenp.
X =Y; /| Copy the value of y into x.
y = tenp; /'l Copy the value of tenp into vy.
}

Finally, hereisan exampleof ani f statement that includesan el se part. Seeif you can figure out what it

http://math.hws.edu/eck/cs124/javanotes3/c3/s1.html (4 of 5) [6/10/2004 8:40:35 AM]

Java Programing: Section 3.1
does, and why it would be used:

if (years >1) { [// handle case for 2 or nore years
Systemout. print("The value of the investnent after ");
System out. print(years);
Systemout.print(" years is $");

else { [// handle case for 1 year

System out. print("The value of the investnment after 1 year is $");
} /1 end of if statenent
Systemout.println(principal); // this is done in any case

I'll have more to say about control structures later in this chapter. But you aready know the essentials. If you
never learned anything more about control structures, you would already know enough to perform any
possible computing task. Simple looping and branching are all you really need!

[Next Section | Previous Chapter | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s1.html (5 of 5) [6/10/2004 8:40:35 AM]

http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.2

Section 3.2
Algorithm Development

PROGRAM MING ISDIFFICULT (like many activities that are useful and worthwhile -- and like most of

those activities, it can also be rewarding and alot of fun). When you write a program, you have to tell the
computer every small detail of what to do. And you have to get everything exactly right, since the computer
will blindly follow your program exactly as written. How, then, do people write any but the most smple
programs? It's not a big mystery, actually. It's a matter of learning to think in the right way.

A program is an expression of an idea. A programmer starts with ageneral idea of atask for the computer
to perform. Presumably, the programmer has some idea of how to perform the task by hand, at least in
genera outline. The problem isto flesh out that outline into a complete, unambiguous, step-by-step
procedure for carrying out the task. Such a procedureis called an "algorithm.” (Technically, an algorithm is
an unambiguous, step-by-step procedure that terminates after a finite number of steps; we don't want to
count procedures that go on forever.) An agorithm is not the same as a program. A program iswritten in
some particular programming language. An algorithm is more like the idea behind the program, but it's the
idea of the steps the program will take to perform its task, not just the idea of the task itself. The steps of
the algorithm don't have to befilled in in complete detail, as long as the steps are unambiguous and it's clear
that carrying out the steps will accomplish the assigned task. An algorithm can be expressed in any
language, including English. Of course, an algorithm can only be expressed as a program if all the details
have been filled in.

So, where do algorithms come from? Usually, they have to be developed, often with alot of thought and
hard work. Skill at algorithm devel opment is something that comes with practice, but there are techniques
and guidelines that can help. I'll talk here about some techniques and guidelines that are relevant to
"programming in the small,” and | will return to the subject several timesin later chapters.

When programming in the small, you have afew basicsto work with: variables, assignment statements, and
input-output routines. Y ou might also have some subroutines, objects, or other building blocks that have
already been written by you or someone else. (Input/output routines fall into this class, actually.) Y ou can
build sequences of these basic instructions, and you can also combine them into more complex control
structures such aswhi | e loopsandi f statements.

Suppose you have atask in mind that you want the computer to perform. One way to proceed isto writea
description of the task, and take that description as an outline of the algorithm you want to develop. Then
you can refine and elaborate that description, gradually adding steps and detail, until you have a complete
algorithm that can be translated directly into programming language. This method is called stepwise
refinement, and it is atype of top-down design. As you proceed through the stages of stepwise refinement,
you can write out descriptions of your algorithm in pseudocode -- informal instructions that imitate the
structure of programming languages without the complete detail and perfect syntax of actual program code.

As an example, let's see how one might develop the program from the previous section, which computes the
value of an investment over five years. The task that you want the program to perform is. "Compute and
display the value of an investment for each of the next five years, where the initial investment and interest
rate are to be specified by the user." Y ou might then write -- or at least think -- that this can be expanded as:

Get the user's input

Comput e the value of the investnent after 1 year
Di spl ay the val ue

Conmpute the value after 2 years

Di splay the val ue

Conpute the value after 3 years

Di spl ay the val ue

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (1 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

Conmpute the value after 4 years
Di splay the val ue
Conpute the value after 5 years
Di spl ay the val ue

Thisis correct, but rather repetitive. And seeing that repetition, you might notice an opportunity to use a
loop. A loop would take less typing. More important, it would be more general: Essentially the same loop
will work no matter how many years you want to process. So, you might rewrite the above sequence of
steps as:

Get the user's input

while there are nore years to process:
Comput e the value after the next year
Di spl ay the val ue

Now, for acomputer, we'll have to be more explicit about how to "Get the user's input,” how to "Compute
the value after the next year,” and what it means to say "there are more years to process.” We can expand
the step, "Get the user'sinput” into

Ask the user for the initial i1nvestnent
Read the user's response

Ask the user for the interest rate
Read the user's response

Tofill in the details of the step "Compute the value after the next year," you have to know how to do the
computation yourself. (Maybe you need to ask your boss or professor for clarification?) Let's say you know
that the value is computed by adding some interest to the previous value. Then we can refine thewhi | e
loop to:

while there are nore years to process:
Conpute the interest
Add the interest to the val ue
Di spl ay the val ue

Asfor testing whether there are more years to process, the only way that we can do that is by counting the
years ourselves. This displays avery common pattern, and you should expect to use something similar in a
lot of programs: We have to start with zero years, add one each time we process ayear, and stop when we
reach the desired number of years. So the whi | e loop becomes:

years = 0
while years < 5:
years = years + 1
Conmput e the interest
Add the interest to the val ue
Di spl ay the val ue

We till have to know how to compute the interest. Let's say that the interest is to be computed by
multiplying the interest rate by the current value of the investment. Putting this together with the part of the
algorithm that get's the user's inputs, we have the complete algorithm:

Ask the user for the initial investnent
Read the user's response
Ask the user for the interest rate
Read the user's response
years = 0
whil e years < b:
years = years + 1
Conmpute interest = value * interest rate
Add the interest to the val ue
Di spl ay the val ue

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (2 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

Finally, we are at the point where we can trand ate pretty directly into proper programming-language
syntax. We still have to choose names for the variables, decide exactly what we want to say to the user, and
so forth. Having done this, we could express our algorithm in Java as:

doubl e principal, rate, interest; // declare the variables
int years;
Systemout.print("Type initial investnent: ");
princi pal = Textl O getl nDoubl e();
Systemout.print("Type interest rate: ");
rate = Text| O getl nDoubl e();
years = 0O;
while (years < 5) {

years = years + 1,

interest = principal * rate;

principal = principal + interest;

System out. println(principal);

}

This till needs to be wrapped inside a complete program, it still needs to be commented, and it really needs
to print out more information for the user. But it's essentially the same program as the one in the previous
section. (Note that the pseudocode algorithm uses indentation to show which statements are inside the loop.
In Java, indentation is completely ignored by the computer, so you need a pair of braces to tell the computer
which statements are in the loop. If you leave out the braces, the only statement inside the loop would be
"years = years + 1;".Theother statementswould only be executed once, after the loop ends. The
nasty thing is that the computer won't notice this error for you, like it would if you left out the parentheses
around"(years < 5)". The parentheses are required by the syntax of thewhi | e statement. The braces
are only required semantically. The computer can recognize syntax errors but not semantic errors.)

One thing you should have noticed here is that my original specification of the problem -- "Compute and
display the value of an investment for each of the next five years' -- was far from being complete. Before
you start writing a program, you should make sure you have a complete specification of exactly what the
program is supposed to do. In particular, you need to know what information the program is going to input
and output and what computation it is going to perform. Here is what a reasonably complete specification of
the problem might look like in this example:

"Write a program that will compute and display the value of an investment for each of the
next five years. Each year, interest is added to the value. The interest is computed by
multiplying the current value by afixed interest rate. Assume that the initial value and the
rate of interest are to be input by the user when the program is run.”

Let's do another example, working this time with a program that you haven't already seen. The assignment
here is an abstract mathematical problem that is one of my favorite programming exercises. Thistime, well
start with a more complete specification of the task to be performed:

"Given apositive integer, N, define the '3N+1' sequence starting from N asfollows: If N is
an even number, then divide N by two; but if N isodd, then multiply N by 3 and add 1.
Continue to generate numbersin thisway until N becomes equal to 1. For example, starting
from N = 3, which is odd, we multiply by 3 and add 1, giving N = 3*3+1 = 10. Then, since
N iseven, we divide by 2, giving N = 10/2 = 5. We continue in this way, stopping when we
reach 1, giving the complete sequence: 3, 10, 5, 16, 8, 4, 2, 1.

"Write aprogram that will read a positive integer from the user and will print out the 3N+1
sequence starting from that integer. The program should also count and print out the number
of termsin the sequence.”

A general outline of the algorithm for the program we want is:

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (3 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

Get a positive integer N fromthe user;
Comput e, print, and count each nunber in the sequence;
Qut put the nunber of terns;

The bulk of the program isin the second step. We'll need a loop, since we want to keep computing numbers
until we get 1. To put thisin terms appropriate for awhi | e loop, we want to continue as long as the
number isnot 1. So, we can expand our pseudocode algorithm to:

Get a positive integer N fromthe user;
while Nis not 1:

Conmpute N = next term

Qut put N

Count this term
Qut put the nunber of terns;

In order to compute the next term, the computer must take different actions depending on whether N is even
or odd. Weneed ani f statement to decide between the two cases.

CGet a positive integer N fromthe user;
while Nis not 1:
if Nis even:

Compute N = N 2;
el se

Conmpute N =3 * N + 1;
Qut put N

Count this term
Qut put the nunber of terns;

We are almost there. The one problem that remains is counting. Counting means that you start with zero,
and every time you have something to count, you add one. We need a variable to do the counting. (Again,
thisis a common pattern that you should expect to see over and over.) With the counter added, we get:

Get a positive integer N fromthe user;
Let counter = O;
while Nis not 1:

if Nis even:

Compute N = N 2;
el se

Conpute N =3 * N + 1;
Qut put N,

Add 1 to counter;
Qut put the counter;

We still have to worry about the very first step. How can we get a positive integer from the user? If we just
read in anumber, it's possible that the user might type in a negative number or zero. If you follow what
happens when the value of N is negative or zero, you'll see that the program will go on forever, since the
value of N will never become equal to 1. Thisis bad. In this case, the problem is probably no big deal, but
in genera you should try to write programs that are fool proof. One way to fix thisisto keep reading in
numbers until the user typesin a positive number:

Ask user to input a positive nunber;
Let N be the user's response;
while N is not positive:

Print an error nessage;

Read anot her value for N;
Let counter = O;
while Nis not 1:

if Nis even:

Compute N = N 2;

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (4 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

el se
Conmpute N =3 * N + 1;
Qut put N
Add 1 to counter;
Qut put the counter;

Thefirst whi | e loop will end only when N is a positive number, as required. (A common beginning
programmer's error istouseani f statement instead of awhi | e statement here: "If N is not positive, ask
the user to input another value." The problem arisesif the second number input by the user isalso
non-positive. Thei f statement is only executed once, so the second input number is never tested. With the
whi | e loop, after the second number isinput, the computer jJumps back to the beginning of the loop and
tests whether the second number is positive. If not, it asks the user for athird number, and it will continue
asking for numbers until the user enters an acceptable input.)

Here is a Java program implementing this algorithm. It uses the operators <= to mean "is less than or equal
to" and ! = to mean "is not equal to." To test whether N iseven, ituses"N % 2 == 0". All the operators
used here were discussed in Section 2.5.

public class ThreeN {

/* This programprints out a 3N+1 sequence
starting froma positive integer specified
by the user. It also counts the nunber
of terms in the sequence, and prints out
t hat nunber. */

public static void main(String[] args) {

int N, /1l for conputing terns in the sequence
int counter; // for counting the terns

Text1 O put("Starting point for sequence: ");
N = Textl Q. getlnlnt();
while (N <= 0) {
Text1 O put ("The starting point nust be positive. "
+ " Please try again: ");
N = Textl O . getlnlnt();

/1 At this point, we knowthat N> 0

counter = 0;
while (N!= 1) {
if (N%2 == 0)
N=N/ 2
el se
N=3%* N+ 1;
Text 1 O putl n(N);
counter = counter + 1;

}

Text1 O putln();

Text1 O put (" There were ");

Text | O put (counter);

Text1 O putln(" terns in the sequence.");

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (5 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

} /1 end of main()

} // end of class ThreeN

Asusual, you can try thisout in an applet that ssimulates the program. Try different starting valuesfor N,
including some negative values:

Sorry, your browser doesn't
support Java.

Two final notes on this program: First, you might have noticed that the first term of the sequence -- the
value of N input by the user -- is not printed or counted by this program. Isthisan error? It's hard to say.
Was the specification of the program careful enough to decide? Thisis the type of thing that might send you
back to the boss/professor for clarification. The problem (if it isone!) can be fixed easily enough. Just
replace the line "counter = 0" before the while loop with the two lines:

Text1 O putl n(N); /1l print out initial term
counter = 1; // and count it

Second, there is the question of why this problemisat all interesting. Well, it'sinteresting to
mathematicians and computer scientists because of a simple question about the problem that they haven't
been able to answer: Will the process of computing the 3N+1 sequence finish after a finite number of steps
for al possible starting values of N? Although individual sequences are easy to compute, no one has been
able to answer the general question. (To put this another way, no one knows whether the process of
computing 3N+1 sequences can properly be called an algorithm, since an algorithm is required to terminate
after afinite number of steps!)

Coding, Testing, Debugging

It would be nice if, having developed an algorithm for your program, you could relax, press a button, and
get a perfectly working program. Unfortunately, the process of turning an algorithm into Java source code
doesn't always go smoothly. And when you do get to the stage of a working program, it's often only
working in the sense that it does something. Unfortunately not what you want it to do.

After program design comes coding: tranglating the design into a program written in Java or some other
language. Usually, no matter how careful you are, afew syntax errors will creep in from somewhere, and
the Java compiler will reject your program with some kind of error message. Unfortunately, while a
compiler will always detect syntax errors, it's not very good about telling you exactly what's wrong.
Sometimes, it's not even good about telling you where the real error is. A spelling error or missing "{" on
line 45 might cause the compiler to choke on line 105. Y ou can avoid lots of errors by making sure that you
really understand the syntax rules of the language and by following some basic programming guidelines.
For example, | never type a"{" without typing the matching "}". Then | go back and fill in the statements
between the braces. A missing or extra brace can be one of the hardest errorsto find in alarge program.
Always, always indent your program nicely. If you change the program, change the indentation to match.
It's worth the trouble. Use a consistent naming scheme, so you don't have to struggle to remember whether
you called that variablei nt er estr at e ori nt er est Rat e. In general, when the compiler gives
multiple error messages, don't try to fix the second error message from the compiler until you've fixed the
first one. Once the compiler hitsan error in your program, it can get confused, and the rest of the error
messages might just be guesses. Maybe the best adviceis. Take the time to understand the error before you
try to fix it. Programming is not an experimental science.

When your program compiles without error, you are still not done. Y ou have to test the program to make
sure it works correctly. Remember that the goal is not to get the right output for the two sample inputs that
the professor gave in class. The goal is a program that will work correctly for all reasonable inputs. Ideally,
when faced with an unreasonable input, it will respond by gently chiding the user rather than by crashing.

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (6 of 7) [6/10/2004 8:40:36 AM]

Java Programing: Section 3.2

Test your program on awide variety of inputs. Try to find a set of inputs that will test the full range of
functionality that you've coded into your program. As you begin writing larger programs, write them in
stages and test each stage along the way. Y ou might even have to write some extra code to do the testing --
for example to call a subroutine that you've just written. Y ou don't want to be faced, if you can avoid it,
with 500 newly written lines of code that have an error in there somewhere.

The point of testing isto find bugs -- semantic errors that show up as incorrect behavior rather than as
compilation errors. And the sad fact is that you will probably find them. Again, you can minimize bugs by
careful design and careful coding, but no one has found away to avoid them altogether. Once you've
detected a bug, it's time for debugging. Y ou have to track down the cause of the bug in the program'’s source
code and eliminate it. Debugging is a skill that, like other aspects of programming, requires practice to
master. So don't be afraid of bugs. Learn from them. One essentia debugging skill is the ability to read
source code -- the ability to put aside preconceptions about what you think it does and to follow it the way
the computer does -- mechanically, step-by-step -- to seewhat it really does. Thisis hard. | can still
remember the time | spent hours looking for abug only to find that aline of code that | had looked at ten
times had a"1" where it should have had an "i", or the time when | wrote a subroutine named

W ndowCl osi ng which would have done exactly what | wanted except that the computer was looking for
wi ndowCl osi ng (with alower case "w"). Sometimes it can help to have someone who doesn't share your
preconceptions look at your code.

Often, it'sa problem just to find the part of the program that contains the error. Most programming
environments come with a debugger, which is a program that can help you find bugs. Typically, your
program can be run under the control of the debugger. The debugger allows you to set "breakpoints’ in your
program. A breakpoint is a point in the program where the debugger will pause the program so you can look
at the values of the program's variables. Theideais to track down exactly when things start to go wrong
during the program'’s execution. The debugger will also let you execute your program one line at atime, so
that you can watch what happensin detail once you know the general areain the program where the bug is
lurking.

I will confessthat | only rarely use debuggers myself. A more traditional approach to debugging isto insert
debugging statements into your program. These are output statements that print out information about the
state of the program. Typically, a debugging statement would say something like
Systemout.println("At start of while loop, N =" + N).Youneedtobeableto
tell where in your program the output is coming from, and you want to know the value of important
variables. Sometimes, you will find that the computer isn't even getting to a part of the program that you
think it should be executing. Remember that the goal isto find the first point in the program where the state
is not what you expect it to be. That's where the bug is.

And finally, remember the golden rule of debugging: If you are absolutely sure that everything in your
program isright, and if it still doesn't work, then one of the things that you are absolutely sure of iswrong.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s2.html (7 of 7) [6/10/2004 8:40:36 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.3

Section 3.3
The whi | e and do. . whi | e Statements

STATEM ENTSIN JAVA CAN BE either simple statements or compound statements. Simple statements,

such as assignments statements and subroutine call statements, are the basic building blocks of a program.
Compound statements, such aswhi | e loopsandi f statements, are used to organize simple statements
into complex structures, which are called control structures because they control the order in which the
statements are executed. The next four sections explore the details of all the control structures that are
available in Java, starting with the whi | e statement and the do. . whi | e statement in this section. At the
sametime, we'll look at examples of programming with each control structure and apply the techniques for
designing algorithms that were introduced in the previous section.

The whi | e Statement

Thewhi | e statement was already introduced in Section 1. A whi | e loop has the form

whi |l e (bool ean-expression)
st at enent

The statement can, of course, be a block statement consisting of several statements grouped together
between a pair of braces. This statement is called the body of the loop. The body of the loop is repeated as
long as the boolean-expression istrue. This boolean expression is called the continuation condition, or
more simply the test, of the loop. There are afew points that might need some clarification. What happens
if the condition isfalsein thefirst place, before the body of the loop is executed even once? In that case, the
body of the loop is never executed at all. The body of awhile loop can be executed any number of times,
including zero. What happens if the condition is true, but it becomes false somewhere in the middle of the
loop body? Does the loop end as soon as this happens? It does not, because the computer continues
executing the body of the loop until it gets to the end. Only then does it jump back to the beginning of the
loop and test the condition, and only then can the loop end.

Let'slook at atypical problem that can be solved using awhi | e loop: finding the average of a set of
positive integers entered by the user. The average is the sum of the integers, divided by the number of
integers. The program will ask the user to enter one integer at atime. It will keep count of the number of
integers entered, and it will keep arunning total of all the numbersit has read so far. Here is a pseudocode
algorithm for the program:

Let sum= 0
Let count =0
while there are nore integers to process:
Read an i nteger
Add it to the sum
Count it
Di vide sum by count to get the average
Print out the average

But how can we test whether there are more integers to process? A typical solution isto tell the user to type
in zero after all the data have been entered. Thiswill work because we are assuming that al the data are
positive numbers, so zero isnot alegal datavalue. The zero is not itself part of the datato be averaged. It's
just there to mark the end of the real data. A data value used in thisway is sometimes called a sentinel
value. So now thetest in the while loop becomes "while the input integer is not zero". But there is another
problem! Thefirst time the test is evaluated, before the body of the loop has ever been executed, no integer
has yet been read. Thereisno "input integer” yet, so testing whether the input integer is zero doesn't make

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (1 of 6) [6/10/2004 8:40:37 AM]

Java Programing: Section 3.3

sense. So, we have to do something befor e the while loop to make sure that the test makes sense. Setting
things up so that thetest in awhi | e loop makes sense the first time it is executed is called priming the
loop. In this case, we can simply read the first integer before the beginning of the loop. Hereisarevised
algorithm:

Let sum= 0
Let count =0
Read an i nt eger
while the integer is not zero:
Add the integer to the sum
Count it
Read an i nteger
Di vide sum by count to get the average
Print out the average

Notice that I've rearranged the body of the loop. Since an integer is read before the loop, the loop has to
begin by processing that integer. At the end of the loop, the computer reads a new integer. The computer
then jumps back to the beginning of the loop and tests the integer that it has just read. Note that when the
computer finally reads the sentinel value, the loop ends before the sentinel value is processed. It is not
added to the sum, and it is not counted. Thisisthe way it's supposed to work. The sentinel is not part of the
data. The original algorithm, even if it could have been made to work without priming, was incorrect since
it would have summed and counted all the integers, including the sentinel. (Since the sentinel is zero, the
sum would still be correct, but the count would be off by one. Such so-called off-by-one errors are very
common. Counting turns out to be harder than it looks!)

We can easily turn the algorithm into a complete program. Note that the program cannot use the statement
"average = suni count ;" to compute the average. Since sumand count are both variables of type
i nt,thevalue of sum count isaninteger. The average should be area number. We've seen this
problem before: we have to convert one of thei nt valuesto adoubl e to force the computer to compute
the quotient as areal number. This can be done by type-casting one of the variables to type doubl e. The
type cast "(double)sum” converts the value of sumto areal number, so in the program the average is
computed as"aver age = ((doubl e)sum / count;". Another solution in this case would have
been to declare sumto be avariable of type doubl e in thefirst place.

One other issueis addressed by the program: If the user enters zero as the first input value, there are no data
to process. We can test for this case by checking whether count isstill equal to zero after the whi | e loop.
This might seem like a minor point, but a careful programmer should cover al the bases.

Hereisthe program and an applet that simulatesiit:

public class Conput eAverage {

/* This programreads a sequence of positive integers input
by the user, and it will print out the average of those
integers. The user is pronpted to enter one integer at a
time. The user nust enter a O to mark the end of the
data. (The zero is not counted as part of the data to
be averaged.) The program does not check whether the
user's input is positive, so it will actually work for
both positive and negative input val ues.

*/

public static void main(String[] args) {

i nt i nput Nunber ; /1l One of the integers input by the user.
int sum /'l The sum of the positive integers.

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (2 of 6) [6/10/2004 8:40:37 AM]

Java Programing: Section 3.3

i nt count; /1 The nunber of positive integers.
doubl e aver age; /'l The average of the positive integers.
/* Initialize the summati on and counting variables. */
sum = O;

count = O0;

/* Read and process the user's input. */

Text 1 O put ("Enter your first positive integer: ");
i nput Nunber = Text1 QO getlnint();

whil e (inputNunmber !'= 0) {

sum += i nput Nunber ; /1 Add i nputNunber to running sum

count ++; /'l Count the input by adding 1 to count.
Text |1 O put ("Enter your next positive integer, or 0 to end: ");
i nput Nunber = Textl O getlnlnt();

}
/* Display the result. */
if (count ==
Text1 O putln("You didn't enter any data!");
el se {
average = ((double)sum / count;
Text1 O putln();
Text1 O putl n("You entered " + count + " positive integers.");
Text1 O putl n("Their average is " + average + ".");
}

} /1 end main()

} /1 end class ConputeAverage

Sorry, your browser doesn't
support Java.

The do. . whi | e Statement

Sometimes it is more convenient to test the continuation condition at the end of aloop, instead of at the
beginning, asisdoneinthewhi | e loop. Thedo. . whi | e statement isvery similar to thewhi | e
statement, except that the word "while," along with the condition that it tests, has been moved to the end.
Theword "do" is added to mark the beginning of the loop. A do. . whi | e statement has the form

do

st at enent

whil e (bool ean-expression);

or, since, as usual, the statement can be a block,

do {

statenents

} while (bool ean-expression);

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (3 of 6) [6/10/2004 8:40:37 AM]

Java Programing: Section 3.3

Note the semicolon, *;', at the end. This semicolon is part of the statement, just as the semicolon at the end
of an assignment statement or declaration is part of the statement. Omitting it isasyntax error. (More
generdly, every statement in Java ends either with a semicolon or aright brace, }'.)

To execute ado loop, the computer first executes the body of the loop -- that is, the statement or statements
inside the loop -- and then it evaluates the boolean expression. If the value of the expressionist r ue, the
computer returns to the beginning of the do loop and repeats the process; if thevalueisf al se, it endsthe
loop and continues with the next part of the program. Since the condition is not tested until the end of the
loop, the body of ado loop is executed at |east once.

For example, consider the following pseudocode for a game-playing program. The do loop makes sense
here instead of awhi | e loop because with the do loop, you know there will be at least one game. Also, the
test that is used at the end of the loop wouldn't even make sense at the beginning:

do {
Play a Gane
Ask user if he wants to play another gane
Read the user's response

} while (the user's response is yes);

Let's convert thisinto proper Java code. Since | don't want to talk about game playing at the moment, let's
say that we have aclass named Checker s, and that the Checker s class contains a static member
subroutine named pl ayGane() that plays one game of checkers against the user. Then, the pseudocode
"Play agame" can be expressed as the subroutine call statement "Checker s. pl ayGane() ; ". Weneed a
variable to store the user's response. The Text | Oclass makesit convenient to use abool ean variableto
store the answer to ayes/no question. The input function Text | O. get | nBool ean() alowsthe user to
enter the value as"yes' or "no". "Yes' isconsidered to bet r ue, and "no" is considered to bef al se. So,
the algorithm can be coded as

bool ean wantsToContinue; // True if user wants to play again.
do {

Checkers. pl ayGane() ;

Text1 O put ("Do you want to play again? ");

want sToConti nue = Text| O getl nBool ean();
} while (wantsToContinue == true);

When the value of thebool ean variableissettot r ue, it isasignal that the loop should end. When a
bool ean variableisused in thisway -- asasignal that is set in one part of the program and tested in
another part -- it is sometimes called aflag or flag variable (in the sense of asignal flag).

By the way, a more-than-usually-pedantic programmer would sneer at the test "whi | e

(want sToCont i nue == true)". Thistest isexactly equivalent to "whi | e

(want sToCont i nue) ". Testing whether "want sToCont i nue == true" istrue amountsto the
same thing as testing whether "want sToCont i nue" istrue. A little less offensive is an expression of the
form"fl ag == fal se", wheref | ag isaboolean variable. Thevaueof "f | ag == fal se"is
exactly the same asthevalueof "! f | ag", where! isthe boolean negation operator. So you can write
"while (!flag)"insteadof "while (flag == fal se)",andyoucanwrite"if (!flag)"
instead of "i f (flag == fal se)".

Although ado. . whi | e statement is sometimes more convenient than awhi | e statement, having two
kinds of loops does not make the language more powerful. Any problem that can be solved using

do. . whi | e loops can aso be solved using only whi | e statements, and vice versa. In fact, if
doSomething represents any block of program code, then

do {
doSonet hi ng
} while (bool ean-expression);

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (4 of 6) [6/10/2004 8:40:37 AM]

Java Programing: Section 3.3

has exactly the same effect as

doSonet hi ng

whil e (bool ean-expression) {
doSonet hi ng

}

Similarly,

whil e (bool ean-expression) {
doSonet hi ng
}

can be replaced by

if (bool ean-expression) {
do {
doSonet hi ng
} while (bool ean-expression);

}

without changing the meaning of the program in any way.

The br eak and cont i nue Statements

The syntax of thewhi | e anddo. . whi | e loops allows you to test the continuation condition at either the
beginning of aloop or at the end. Sometimes, it is more natural to have the test in the middle of the loop, or
to have several tests at different placesin the same loop. Java provides a general method for breaking out of
the middle of any loop. It's called the br eak statement, which takes the form

br eak;

When the computer executes abr eak statement in aloop, it will immediately jump out of the loop. It then
continues on to whatever follows the loop in the program. Consider for example:

while (true) { // looks like it will run forever!
Text1 O put ("Enter a positive nunber: ");
N = Textl O . getlnlnt();
if (N> 0) /1l input is OK junmp out of |oop
br eak;
Text 1 O putl n("Your answer nust be > 0.");

}

[/ continue here after break

If the number entered by the user is greater than zero, the br eak statement will be executed and the
computer will jJump out of the loop. Otherwise, the computer will print out "Y our answer must be > 0." and
will jump back to the start of the loop to read another input value.

(Thefirst line of the loop, "whi | e (true)" might look abit strange, but it's perfectly legitimate. The
conditionin awhi | e loop can be any boolean-valued expression. The computer evaluates this expression
and checks whether the valueist r ue or f al se. The boolean literal "t r ue" isjust a boolean expression
that always evaluatesto true. So"whi | e (true) " can be used to write an infinite loop, or one that can
be terminated only by abr eak statement.)

A br eak statement terminates the loop that immediately enclosesthe br eak statement. It is possible to
have nested loops, where one loop statement is contained inside another. If you use abr eak statement
inside a nested loop, it will only break out of that loop, not out of the loop that contains the nested |oop.

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (5 of 6) [6/10/2004 8:40:37 AM]

Java Programing: Section 3.3

Thereis something called a"labeled break" statement that allows you to specify which loop you want to
break. | won't give the details here; you can look them up if you ever need them.

Thecont i nue statement isrelated to br eak, but lesscommonly used. A cont i nue statement tells the
computer to skip the rest of the current iteration of the loop. However, instead of jumping out of the loop
altogether, it jumps back to the beginning of the loop and continues with the next iteration (after evaluating
the loop's continuation condition to see whether any further iterations are required).

br eak and cont i nue can beusedinwhi | e loopsand do. . whi | e loops. They can also beused in

f or loops, which are covered in the next section. In Section 6, we'll seethat br eak can also be used to
break out of aswi t ch statement. Note that when abr eak occursinsideani f statement, it breaks out of
theloop or swi t ch statement that containsthei f statement. If thei f statement is not contained inside a
loop or swi t ch, thenthei f statement cannot legally contain abr eak statement. A similar consideration
appliesto cont i nue statements.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s3.html (6 of 6) [6/10/2004 8:40:37 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.4

Section 3.4
The f or Statement

WE TURN IN THIS SECTION to another type of loop, thef or statement. Any f or loopisequivalent to

somewhi | e loop, so the language doesn't get any additional power by having f or statements. But for a
certain type of problem, af or loop can be easier to construct and easier to read than the corresponding
whi | e loop. It's quite possible that in real programs, f or loops actually outnumber whi | e loops.

Thef or statement makes a common type of while loop easier to write. Many while loops have the general
form:
initialization
while (continuation-condition) {
statenments
updat e

}

For example, consider this example, copied from an example in Section 2:

years = 0; // initialize the variable years
while (years <5) { /1 condition for continuing | oop

interest = principal * rate; I
principal += interest; /1l do three statenents
Systemout. println(principal); [/

year s++; /'l update the value of the variable, years

}

Thisloop can be written as the following equivalent f or statement:

for (years 0; years < 5; years++) {
i nt erest principal * rate;
principal += interest;
System out. println(principal);

}

The initialization, continuation condition, and updating have al been combined in the first line of thef or
loop. This keeps everything involved in the "control” of the loop in one place, which helps makes the loop
easier to read and understand. Thef or loop is executed in exactly the same way as the original code: The
initialization part is executed once, before the loop begins. The continuation condition is executed before
each execution of the loop, and the loop ends when this condition isf al se. The update part is executed at
the end of each execution of the loop, just before jJumping back to check the condition.

The formal syntax of thef or statement isasfollows:

for (initialization; continuation-condition; update)
st at enent

or, using a block statement:

for (initialization; continuation-condition; update) {
statenments
}

The continuation-condition must be a boolean-valued expression. The initialization can be any expression,

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (1 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

as can the update. Any of the three can be empty. If the continuation condition is empty, it istreated as if it
were"t r ue," so the loop will be repeated forever or until it ends for some other reason, such asabr eak
statement. (Some people like to begin an infinite loop with "f or (; ;) " instead of "whi l e (true)".)

Usually, theinitialization part of af or statement assigns a value to some variable, and the update changes
the value of that variable with an assignment statement or with an increment or decrement operation. The
value of the variable is tested in the continuation condition, and the loop ends when this condition evaluates
tof al se. A variable used in thisway is called aloop control variable. Inthef or statement given above,
the loop control variableisyear s.

Certainly, the most common type of f or loop is the counting loop, where aloop control variable takes on all
integer values between some minimum and some maximum value. A counting loop has the form

for (variable = min; variable <= max; variable++) {
statenents
}

where min and max are integer-valued expressions (usually constants). The variable takes on the values
min, min+1, min+2, ...,max. The value of the loop control variable is often used in the body of the loop. The
f or loop at the beginning of this section is a counting loop in which the loop control variable, year s, takes
onthevaluesl, 2, 3, 4, 5. Hereis an even simpler example, in which the numbers 1, 2, ..., 10 are displayed
on standard output:

for (N=1; N<=10; N++)
Systemout.println(N);

For various reasons, Java programmers like to start counting at O instead of 1, and they tend to usea"<" in
the condition, rather than a"<=". The following variation of the above loop prints out the ten numbers 0, 1,
2,...,9
for (N=0; N<10; Nt+)
Systemout.println(N);

Using < instead of <= in the test, or vice versa, isacommon source of off-by-one errorsin programs. Y ou
should always stop and think, do | want the final value to be processed or not?

It's easy to count down from 10 to 1 instead of counting up. Just start with 10, decrement the loop control
variable instead of incrementing it, and continue as long as the variable is greater than or equal to one.

for (N=10; N>=1; N-)
Systemout.println(N);

Now, in fact, the official syntax of af or statemenent actually allows both the initialization part and the
update part to consist of several expressions, separated by commas. So we can even count up from 1 to 10
and count down from 10 to 1 at the same time!

for (i=1, j=10; i <=10; i++, j--) {
Text1 O put (i, 5); /1l Qutput i in a 5-character w de col um.
Text1 O putln(j,5); // Qutput j in a 5-character col um
Il and end the |ine.
}

Asafina example, let's say that we want to use af or loop print out just the even numbers between 2 and
20, that is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. There are several ways to do this. Just to show how even avery
simple problem can be solved in many ways, here are four different solutions (three of which would get full
credit):

(1) /'l There are 10 nunbers to print.
/'l Use a for loop to count 1, 2,
/1l ..., 10. The nunbers we want

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (2 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

/Il to print are 2*1, 2*2, ... 2*10.

for (N=1; N <= 10; N++) {
Systemout.println(2*N);

}
(2) /'l Use a for |oop that counts
/Il 2, 4, ..., 20 directly by
/1 adding 2 to N each tinme through
/'l the | oop.

for (N=2; N<=20; N= N+ 2) {
Systemout.println(N);
}

(3) /1 Count off all the nunbers
/12, 3, 4, ..., 19, 20, but
/1l only print out the nunbers
/'l that are even.

for (N =2; N <= 20; N++) {
if (N%2==0) // is N even?
Systemout.println(N);

(4) /'l lrritate the professor with
/'l a solution that follows the
/Il letter of this silly assignnent
/1 while making fun of it.

for (N =1; N <= 1; N++)
Systemout.print("2 4 6 8 10 12 ");
Systemout.println("14 16 18 20");

Perhaps it is worth stressing one more time that af or statement, like any statement, never occurs on its own
inareal program. A statement must be inside the mai n routine of a program or inside some other
subroutine. And that subroutine must be defined inside a class. | should also remind you that every variable
must be declared before it can be used, and that includes the loop control variablein af or statement. In all
the examples that you have seen so far in this section, the loop control variables should be declared to be of
typei nt . Itisnot required that aloop control variable be an integer. Here, for example, isaf or loopin
which the variable, ch, isof typechar :

/1 Print out the al phabet on one |ine of output.
char ch; // The loop control vari abl e;
/1 one of the letters to be printed.
for (char ch ="A"; ch <="'2Z; ch++)
System out. print(ch);
Systemout.println();

Let'slook at alesstrivia problem that can be solved with af or loop. If Nand D are positive integers, we
say that Disadivisor of Nif the remainder when Dis divided into Nis zero. (Equivaently, we could say that

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (3 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

Nisan even multiple of D.) In terms of Java programming, Disadivisor of Nif N % Dis zero.

Let'swrite a program that inputs a positive integer, N, from the user and computes how many different
divisors N has. The numbers that could possibly be divisors of Nare 1, 2, ...,N. To compute the number of
divisors of N, we can just test each possible divisor of N and count the ones that actually do divide N evenly.
In pseudocode, the algorithm takes the form

Get a positive integer, N, fromthe user
Let divisorCount =0
for each nunber, testDivisor, in the range from1 to N
if testDivisor is a divisor of N
Count it by adding 1 to divisorCount
Qut put the count

This agorithm displays a common programming pattern that is used when some, but not all, of a sequence of
items are to be processed. The general patternis

for each itemin the sequence:
if the item passes the test:
process it

Thef or loop in our divisor-counting algorithm can be trand ated into Java code as

for (testDivisor = 1; testDivisor <= N, testD visor++) {
if (N%testD visor == 0)
di vi sor Count ++;

}

On amodern computer, thisloop can be executed very quickly. It is not impossible to run it even for the
largest legal i nt value, 2147483647. (If you wanted to run it for even larger values, you could use variables
of typel ong rather thani nt .) However, it does take a noticeable amount of time for very large numbers.
So when | implemented this algorithm, | decided to output a period every time the computer has tested one
million possible divisors. In the improved version of the program, there are two types of counting going on.
We have to count the number of divisors and we also have to count the number of possible divisors that have
been tested. So the program needs two counters. When the second counter reaches 1000000, we output a".'
and reset the counter to zero so that we can start counting the next group of one million. Reverting to
pseudocode, the algorithm now looks like

CGet a positive integer, N, fromthe user
Let di vi sor Count 0 // Nunmber of divisors found.
Let nunber Test ed O // Nunber of possible divisors tested
/1 since the |last period was output.
for each nunber, testDivisor, in the range from1l to N
if testDivisor is a divisor of N
Count it by adding 1 to divisorCount
Add 1 to nunber Tested
i f nunber Tested i s 1000000:
print out a '.'
Let nunberTested = 0
Qut put the count

Finally, we can trandate the algorithm into a complete Java program. Here it is, followed by an applet that
simulates it:

public class CountDi visors {
/* This programreads a positive integer fromthe user.

It counts how many divisors that nunber has, and
then it prints the result.

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (4 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

*/
public static void main(String[] args) {

int N // A positive integer entered by the user.
/! Divisors of this nunber will be counted.

int testDivisor; [// A nunber between 1 and Nthat is a
/'l possible divisor of N

int divisorCount; [/ Nunber of divisors of N that have been found.

i nt nunberTested; // Used to count how many possible divisors
/'l of N have been tested. Wen the nunber
/'l reaches 1000000, a period is output and
/'l the val ue of nunberTested is reset to zero.

/* Get a positive integer fromthe user. */
while (true) {

Text1 O put ("Enter a positive integer: ");
N = Text1 O getlnlint();

if (N> 0)
br eak;
Text | O putl n("That nunber is not positive. Please try again.");
}
/[* Count the divisors, printing a "." after every 1000000 tests. */
di vi sor Count = 0;
nunber Tested = 0O;

for (testDivisor = 1; testDivisor <= N, testD visor++) {
if (N%testDvisor == 0)
di vi sor Count ++;
nunber Test ed++;
i f (nunber Tested == 1000000) {
Text1 O put('.");
nunber Tested = O;
}
}

/* Display the result. */
Text1 O putln();
Text |1 O putl n("The nunber of divisors of " + N
+ " is " + divisorCount);
} /1 end main()
} /1 end class CountDivisors

Sorry, your browser doesn't
support Java.

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (5 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

Nested Loops

Control structures in Java are statements that contain statements. In particular, control structures can contain
control structures. Y ou've already seen several examplesof i f statements inside loops, but any combination
of one control structure inside another is possible. We say that one structure is nested inside another. Y ou
can even have multiple levels of nesting, such asawhi | e loopinsideani f statement inside another

whi | e loop. The syntax of Java does not set alimit on the number of levels of nesting. Asapractical
matter, though, it's difficult to understand a program that has more than afew levels of nesting.

Nested f or loops arise naturally in many algorithms, and it is important to understand how they work. Let's
look at a couple of examples. First, consider the problem of printing out a multiplication table like this one:

2 3 4 5 6 7 8 9 10 11 12
4 6 8 10 12 14 16 18 20 22 24
6 9 12 15 18 21 24 27 30 33 36
8 12 16 20 24 28 32 36 40 44 48
10 15 20 25 30 35 40 45 50 55 60
12 18 24 30 36 42 48 54 60 66 72
14 21 28 35 42 49 56 63 70 77 84
16 24 32 40 48 56 64 72 80 88 96
18 27 36 45 54 63 72 81 90 99 108
10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

O©CoO~NOUITWNPE

The datain the table are arranged into 12 rows and 12 columns. The process of printing them out can be
expressed in a pseudocode algorithm as

for each rowNunmber =1, 2, 3, ..., 12:
Print the first twelve nultiples of rowNunber on one |ine
Qut put a carriage return

Thefirst stepinthef or loop canitself be expressed asaf or loop:

for N=1, 2, 3, ..., 12:
Print N* rowNumber

so arefined algorithm for printing the table has one f or loop nested inside another:

for each rowNunber =1, 2, 3, ..., 12:
for N=1, 2, 3, ..., 12:
Print N * rowNunber
Qut put a carriage return

Assuming that r owNunber and N have been declared to be variables of typei nt , this can be expressed in
Javaas

for (rowNunber = 1; rowNunber <= 12; rowNunber++) {
for (N=1; N«<=12; N+) {
/[l print in 4-character colums
Text1 O put(N * rowNunber, 4);

}
Text1 O putln();

}

This section has been weighed down with lots of examples of numerical processing. For our final example,
let's do some text processing. Consider the problem of finding which of the 26 letters of the alphabet occur in
agiven string. For example, the letters that occur in "Hello World" are D, E, H, L, O, R, and W. More
specifically, we will write a program that will list all the letters contained in a string and will also count the

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (6 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

number of different letters. The string will be input by the user. Let's start with a pseudocode algorithm for
the program.

Ask the user to input a string
Read the response into a variable, str
Let count = 0 (for counting the nunber of different letters)
for each letter of the al phabet:
if the letter occurs in str:

Print the letter

Add 1 to count
Qut put the count

Since we want to process the entire line of text that is entered by the user, we'll use Text | O. get I n() to
read it. Theline that reads "for each letter of the alphabet” can beexpressedas"for (letter="A";
letter<="Z"; |etter++)". Butthebody of thisf or loop needs more thought. How do we check
whether the given letter, | et t er, occursinst r ?Oneideaisto look at each letter in the string in turn, and
check whether that letter isequal to | et t er . We can get thei - th character of st r with the function call
str.char At (i),wherei rangesfromOtostr. | ength() - 1.Onemoredifficulty: A letter such as
‘A’ can occur in st r in either upper or lower case, 'A' or 'a. We have to check for both of these. But we can
avoid this difficulty by converting st r to upper case before processing it. Then, we only have to check for
the upper case letter. We can now flesh out the algorithm fully. Note the use of br eak inthe nested f or
loop. It isrequired to avoid printing or counting a given letter more than once. The br eak statement breaks
out of theinner f or loop, but not the outer f or loop. Upon executing the br eak, the computer continues
the outer loop with the next valueof | et t er .

Ask the user to input a string

Read the response into a variable, str
Convert str to upper case

Let count =0

for letter ="A, 'B, ..., "Z:
for i =0, 1, ..., str.length()-1:
if letter == str.charAt(i):

Print letter

Add 1 to count

break // junp out of the |oop
Qut put the count

Here is the complete program and an applet to simulate it:

public class ListLetters {

/* This programreads a line of text entered by the user.
It prints a list of the letters that occur in the text,
and it reports how many different letters were found.

*/

public static void main(String[] args) {
String str; // Line of text entered by the user.
i nt count; /'l Nunber of different letters found in str.
char letter; // Aletter of the al phabet.

Text1 O putl n("Please type in a line of text.");
str = TextlO. getln();

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (7 of 8) [6/10/2004 8:40:38 AM]

Java Programing: Section 3.4

str = str.toUpper Case();

count = O;
Text |1 O putl n("Your input contains the following letters:");
Text 1O putln();

Text | O put (" ")

for (letter = "A; letter <= "'Z"; letter++) {
int i; // Position of a character in str.
for (i =0; i <str.length(); i++) {

if (letter == str.charAt(i)) {
Text1 O put (letter);
TextI O put (" ");
count ++;
br eak;

}

Text1 O putln();
Text1 O putln();
Text1 O putln("There were " + count + " different letters.");

} /1 end main()

} /1 end class ListLetters

Sorry, your browser doesn't
support Java.

In fact, there is an easier way to determine whether a given letter occursin astring, st r . The built-in
functionstr. i ndexCf (I etter) will return- 1 if | et t er doesnot occur in the string. It returnsa
number greater than or equal to zero if it does occur. So, we could check whether | et t er occursinstr
simply by checking"i f (str.indexOf(letter) >= 0)".If weused thistechnique in the above
program, we wouldn't need anested f or loop. This gives you preview of how subroutines can be used to
deal with complexity.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s4.html (8 of 8) [6/10/2004 8:40:38 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.5

Section 3.5
Thei f Statement

THE FIRST OF THE TWO BRANCHING STATEMENTSin Javaisthei f statement, which you have
already seen in Section 1. It takes the form

i f (bool ean- expressi on)
statenent-1

el se
statenent -2

Asusual, the statementsinsideani f statements can be blocks. Thei f statement represents a two-way
branch. Theel se part of ani f statement -- consisting of the word "else" and the statement that follows it --
can be omitted.

Now, ani f statement is, in particular, a statement. This meansthat either statement-1 or statement-2 in the
abovei f statement canitself beani f statement. A problem arises, however, if statement-lisani f
statement that has no el se part. This specia caseis effectively forbidden by the syntax of Java. Suppose,
for example, that you type

if (x >0)
if (y >0
Systemout.println("First case");
el se
Systemout. println("Second case");

Now, remember that the way you've indented this doesn't mean anything at all to the computer. Y ou might
think that the el se part isthe second half of your "i f (x > 0) " statement, but the rule that the computer
follows attachestheel seto"if (y > 0)", whichiscloser. That is, the computer reads your statement as
if it were formatted:

if ((x >0)
if (y >0
Systemout.println("First case");
el se
System out. println("Second case");

Y ou can force the computer to use the other interpretation by enclosing the nested i f in ablock:
if ((x>0) {
if (y >0)
Systemout.println("First case");

}

el se
System out. println("Second case");

Y ou can check that these two statements have different meanings. If x <= 0, the first statement doesn't
print anything, but the second statement prints " Second case.".

Much more interesting than this technicality is the case where statement-2, the el se part of thei f
statement, isitself ani f statement. The statement would look like this (perhaps without the final else part):
i f (bool ean-expression-1)
statenent-1

el se
i f (bool ean- expression-2)

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (1 of 6) [6/10/2004 8:40:39 AM]

Java Programing: Section 3.5

statenent-2
el se
statenment-3

However, since the computer doesn't care how a program is laid out on the page, thisis amost aways
written in the format:

i f (bool ean- expressi on-1)
statenent-1

el se i f (bool ean-expression-2)
statenent -2

el se
stat enent -3

Y ou should think of this as a single statement representing a three-way branch. When the computer executes
this, one and only one of the three statements -- statement-1, statement-2, or statement-3 -- will be
executed. The computer starts by evaluating boolean-expression-1. If itist r ue, the computer executes
statement-1 and then jumps all the way to the end of the outer if statement, skipping the other two
statements. If boolean-expression-1isf al se, the computer skips statement-1 and executes the second,
nested if statement. To do this, it tests the value of boolean-expression-2 and uses it to decide between
statement-2 and statement-3.

Here is an example that will print out one of three different messages, depending on the value of avariable
namedt enper at ur e:

if (tenperature < 50)
Systemout.println("It's cold.");
else if (tenperature < 80)
Systemout.printIn("It's nice.");
el se
Systemout.printIn("lt's hot.");

If t enper at ur e is, say, 42, thefirst test ist r ue. The computer prints out the message "It's cold", and
skips the rest -- without even evaluating the second condition. For atemperature of 75, thefirst test is

f al se, sothe computer goes on to the second test. Thistest ist r ue, so the computer prints "It's nice" and
skips therest. If the temperature is 173, both of the tests evaluateto f al se, so the computer says "It's hot"
(unlessits circuits have been fried by the heat, that is).

Y ou can go on stringing together "else-if's’ to make multi-way branches with any number of cases:

i f (bool ean-expression-1)
statenent-1

el se i f (bool ean-expression-2)
statenent -2

el se i f (bool ean-expression-3)
statenent -3

/1 (nmore cases)

el se if (bool ean-expressi on-N)
statenent-N

el se
st at ement - (N+1)

The computer evaluates boolean expressions one after the other until it comesto onethat ist r ue. It

executes the associated statement and skips the rest. If none of the boolean expressions evaluatetot r ue,
then the statement in the el se part is executed. This statement is called a multi-way branch because only
one of the statements will be executed. Thefinal el se part can be omitted. In that case, if all the boolean
expressions are false, none of the statements is executed. Of course, each of the statements can be a block,

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (2 of 6) [6/10/2004 8:40:39 AM]

Java Programing: Section 3.5

consisting of anumber of statements enclosed between { and }. (Admittedly, thereislot of syntax here; as
you study and practice, you'll become comfortable with it.)

Asan exampleof usingi f statements, lets suppose that X, y, and z are variables of typei nt , and that each
variable has already been assigned avalue. Consider the problem of printing out the values of the three
variables in increasing order. For examples, if the values are 42, 17, and 20, then the output should be in the
order 17, 20, 42.

One way to approach thisis to ask, where does x belong in thelist? It comesfirst if it's less than both y and
z. It comeslast if it's greater than both y and z. Otherwise, it comes in the middle. We can express this with
a3-way i f statement, but we still have to worry about the order in which'y and z should be printed. In

pseudocode,
if (x <y && x < 2z) {
output x, followed by y and z in their correct order
}
else if (x >y && x > z) {
output y and z in their correct order, followed by x
el se {
output x in between y and z in their correct order
}
Determining the relative order of y and z requires another i f statement, so this becomes
if (x <y && x < 2z) { /1 x conmes first
it (y < 2)
Systemout.println(x +" " +y +" " +2z2);
el se
Systemout.println(x +" " +z +" " +vy);
else if (x >y && x > z) { /'l x cones |ast
it (y <2)
Systemout.println(y +" " +z +" " + x);
el se
Systemout.println(z +" " +y +" " + x);
}
el se { [l x in the mddle
it (y < 2)
Systemout.println(y +" " +x +" " + 2);
el se
Systemout.println(z +" " + x +" " +vy);
}

Y ou might check that this code will work correctly even if some of the values are the same. If the values of
two variables are the same, it doesn't matter which order you print them in.

Note, by the way, that even though you can say in English "if x islessthany and z,", you can't say in Java
"If (x <y && z)". The && operator can only be used between boolean values, so you have to make
separate tests, x<y and x<z, and then combine the two tests with &&.

Thereis an alternative approach to this problem that begins by asking, "which order should x and 'y be
printed in?' Once that's known, you only have to decide where to stick in z. This line of thought leads to
different Java code:

if (x <y) { [/l x cones before y
if (z <x)
Systemout.println(z +" " +x +" " +vy);

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (3 of 6) [6/10/2004 8:40:39 AM]

Java Programing: Section 3.5

elseif (z>y)

Systemout.println(x +" " +y +" " + z);
el se

Systemout.println(x +" " +z +" " +y);

el se { /1l y conmes before x

if (z<y)

Systemout.println(z +" " +y +" " + X);
elseif (z >x)

Systemout.println(y +" " + x +" " + 2z);
el se

Systemout.println(y +" " +z +" " + X);

}

Once again, we see how the same problem can be solved in many different ways. The two approaches to this
problem have not exhausted all the possibilities. For example, you might start by testing whether x is greater
thany. If so, you could swap their values. Once you've done that, you know that x should be printed before

y.

Finally, let's write acomplete program that usesani f statement in an interesting way. | want a program that
will convert measurements of length from one unit of measurement to another, such as miles to yards or
inches to feet. So far, the problem is extremely under-specified. Let's say that the program will only deal
with measurements in inches, feet, yards, and miles. It would be easy to extend it later to deal with other
units. The user will type in ameasurement in one of these units, such as"17 feet" or "2.73 miles'. The output
will show the length in terms of each of the four units of measure. (Thisis easier than asking the user which
unitsto usein the output.) An outline of the processis

Read the user's input nmeasurenent and units of neasure
Express the neasurenent in inches, feet, yards, and mles
Display the four results

The program can read both parts of the user's input from the same line by using Text | O. get Doubl e()
to read the numerical measurement and Text | O. get | nWor d() to read the units of measure. The
conversion into different units of measure can be simplified by first converting the user's input into inches.
From there, it can be converted into feet, yards, and miles. We still have to test the input to determine which
unit of measure the user has specified:

Let measurenent = Text| O get Doubl e()
Let units = Textl O getl nWord()
if the units are inches
Let i nches = neasurenent
else if the units are feet

Let inches = measurenent * 12 /'l 12 inches per foot
else if the units are yards
Let inches = neasurenent * 36 /'l 36 inches per yard

else if the units are mles
Let inches = neasurenent * 12 * 5280 // 5280 feet per nmle

el se

The units are illegal!

Print an error nessage and stop processing
Let feet = inches / 12.0

Let yards = inches / 36.0
Let mles = inches / (12.0 * 5280.0)
Display the results

Sinceuni tsisaString,wecanuseunits. equal s("i nches") tocheck whether the specified unit
of measureis"inches'. However, it would be nice to allow the units to be specified as "inch" or abbreviated

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (4 of 6) [6/10/2004 8:40:39 AM]

Java Programing: Section 3.5

to"in". To alow these three possibilities, wecan checki f (units. equal s("inches") ||
units. equal s("inch") || units.equal s("in")).Iltwouldaso beniceto allow upper case
letters, asin "Inches' or "IN". We can do this by converting uni t s to lower case before testing it or by
substituting the function uni t s. equal sl gnor eCase foruni ts. equal s.

In my final program, | decided to make things more interesting by allowing the user to enter awhole
sequence of measurements. The program will end only when the user inputs 0. To do this, | just have to wrap
the above agorithm inside awhi | e loop, and make sure that the loop ends when the user inputs a 0. Here's
the complete program, followed by an applet that simulatesiit.

public class LengthConverter {

/* This programw || convert neasurenents expressed in inches,
feet, yards, or mles into each of the possible units of
measure. The neasurenent is input by the user, followed by

the unit of nmeasure. For exanple: "17 feet", "1 inch",
"2.73 m". Abbreviations in, ft, yd, and m are accepted.
The programw || continue to read and convert neasurenents

until the user enters an input of O.
*/

public static void main(String[] args) {

doubl e neasurenent; // Nunerical neasurenent, input by user.
String units; /1 The unit of measure for the input, also
/1 speci fied by the user.

doubl e inches, feet, yards, mles; // Measurenent expressed in
/1 each possible unit of
I measur e.

Text 1 O putl n("Enter nmeasurenents in inches, feet, yards, or mles.");
Text |1 O putl n("For exanple: 1 inch 17 feet 2.73 mles");

Text1 O putl n("You can use abbreviations: in ft vyd m");

Text1 O putln("l will convert your input into the other units");

Text | O putl n("of neasure.");

Text I O putln();

while (true) {

/* Get the user's input, and convert units to | ower case. */

Text 1 O put ("Enter your neasurenent, or O to end: ");
measur ement = Text | O get Doubl e();
i f (nmeasurenent == 0)

break; // term nate the while | oop
units = Textl Q getl nWord();
units = units.tolLower Case();

/* Convert the input nmeasurenent to inches. */
if (units.equals("inch") || units.equal s("inches")

|| units.equals("in")) {
i nches = neasurenent;

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (5 of 6) [6/10/2004 8:40:39 AM]

Java Programing: Section 3.5

else if (units.equals("foot") || units.equal s("feet")
|| units.equals("ft")) {
i nches = neasurenent * 12;

else if (units.equals("yard") || units.equal s("yards")
|| units.equal s("yd")) {
i nches = nmeasurenent * 36;

else if (units.equals("mle") || units.equals("mles")
|| units.equals("m")) {
i nches = measurenent * 12 * 5280;

el se {
TextI O putln("Sorry, but I don't understand \""
+ units + "\".");
continue; // back to start of while | oop

}

/* Convert neasurenent in inches to feet, yards, and m | es.
feet = inches / 12

yards i nches / 36;

mles = inches / (12*5280);
/* Qutput neasurenent in terns of each unit of neasure. */

Text1 O putln();

Text1 O putln("That's equivalent to:");
Text 1 O put (i nches, 15);
Text1 O putln(" inches");
Text| O put (feet, 15);
Text1 O putl n(" feet");
Text | O put (yards, 15);
Text1 O putln(" yards");
Text1 O put(mles, 15);
TextI O putln(" mles");
Text1 O putln();

} /1 end while

Text1 O putln();
Text I O putln("OKI' Bye for now. ");

} /1 end main()

} /1 end class LengthConverter

Sorry, your browser doesn't
support Java.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s5.html (6 of 6) [6/10/2004 8:40:39 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.6

Section 3.6
The swi t ch Statement

THE SECOND BRANCHING STATEMENT in Javaisthe swi t ch statement, which isintroduced in

thissection. Theswi t ch isused far less often than thei f statement, but it is sometimes useful for
expressing a certain type of multi-way branch. Since this section wraps up coverage of all of Java's control
statements, I've included a complete list of Java's statement types at the end of the section.

A switch statement allows you to test the value of an expression and, depending on that value, to jump to
some location within the switch statement. The expression must be either integer-valued or
character-valued. It cannot bea St r i ng or areal number. The positions that you can jump to are marked
with "case labels" that take the form: "case constant:". This marks the position the computer jumps to when
the expression evaluates to the given constant. Asthe final casein a switch statement you can, optionally,
use the label "default:", which provides a default jump point that is used when the value of the expression is
not listed in any case label.

A swi t ch statement has the form;

switch (expression) {
case constant-1:
statenments-1
br eak;
case constant - 2:
st atenent s-2
br eak;

/'l (nore cases)

case constant-N:
statenents-N
br eak;
default: // optional default case
stat enent s- (N+1)
} // end of switch statenent

The br eak statements are technically optional. The effect of abr eak isto make the computer jump to the
end of the switch statement. If you leave out the break statement, the computer will just forge ahead after
completing one case and will execute the statements associated with the next case label. Thisisrarely what
you want, but it islegal. (I will note here -- although you won't understand it until you get to the next
chapter -- that inside a subroutine, the br eak statement is sometimes replaced by ar et ur n statement.)

Note that you can leave out one of the groups of statements entirely (including the br eak). Y ou then have
two case labelsin arow, containing two different constants. This just means that the computer will jump to
the same place and perform the same action for each of the two constants.

Hereis an example of a switch statement. Thisis not a useful example, but it should be easy for you to
follow. Note, by the way, that the constants in the case labels don't have to be in any particular order, as
long asthey are al different:

switch (N) { /1 assume N is an integer variable
case 1:
Systemout.println("The nunber is 1.");
br eak;
case 2:

http://math.hws.edu/eck/cs124/javanotes3/c3/s6.html (1 of 4) [6/10/2004 8:40:40 AM]

Java Programing: Section 3.6

case 4:

case 8:
Systemout.println("The nunber is 2, 4, or 8.");
Systemout.println("(That's a power of 2!)");
br eak;

case 3:

case 6:

case 9:
Systemout.println("The nunber is 3, 6, or 9.");
Systemout.println("(That's a nultiple of 3!)");
br eak;

case 5:
Systemout. println("The nunber is 5.");
br eak;

defaul t:
Systemout. println("The nunber is 7,");
Systemout.println(" or is outside the range 1 to 9.");

}

The switch statement is pretty primitive as control structures go, and it's easy to make mistakes when you
useit. Javatakesall its control structures directly from the older programming languages C and C++. The
switch statement is certainly one place where the designers of Java should have introduced some
improvements.

One application of swi t ch statementsisin processing menus. A menu isalist of options. The user selects
one of the options. The computer has to respond to each possible choice in a different way. If the options
are numbered 1, 2, ..., then the number of the chosen option can be usedinaswi t ch statement to select
the proper response.

InaText | O-based program, the menu can be presented as a numbered list of options, and the user can
choose an option by typing in its number. Here is an example that could be used in avariation of the
Lengt hConvert er example from the previous section:

i nt optionNunber; /1 Option nunber from nenu, selected by user.

doubl e neasurenent; // A nunerical measurenent, input by the user.
/1 The unit of neasurenent depends on which
/1 option the user has sel ected.

doubl e i nches; /'l The sanme measurenent, converted into inches.

/* Display nmenu and get user's selected option nunber. */

Text 1 O putl n("What unit of neasurenent does your input use?");
Text1 O putln();

Text1 O putl n(" 1. inches");
Text1 O putln(" 2. feet");
Text 1 O putl n(" 3. yards");
Text 1 O putl n(" 4. mles");

Text 1 O putln();
Text1 O putl n("Enter the nunber of your choice: ");
opti onNunmber = Textl O getlnlint();

/* Read user's neasurenment and convert to i nches. */

switch (optionNunber) {
case 1:

http://math.hws.edu/eck/cs124/javanotes3/c3/s6.html (2 of 4) [6/10/2004 8:40:40 AM]

Java Programing: Section 3.6

Text1 O putl n("Enter the nunber of inches:);
nmeasurenent = Text| O getl| nDoubl e();
i nches = neasurenent;
br eak;

case 2:
Text 1 O putl n("Enter the nunber of feet:);
nmeasurenent = Text| O getl| nDoubl e();
i nches = neasurenent * 12;
br eak;

case 3:
Text1 O putl n("Enter the nunber of yards:);
nmeasur enent = Text| O get| nDoubl e();
i nches = neasurenent * 36;
br eak;

case 4:
Text1 O putl n("Enter the nunber of mles:);
nmeasur enent = Text| O get| nDoubl e();
i nches = neasurenent * 12 * 5280;
br eak;

defaul t:
Text1 O putln("Error! Illegal option nunmber! | quit!");
Systemexit(1l);

} /1 end switch

/* Now go on to convert inches to feet, yards, and mles... */

The Empty Statement

Asafinal notein this section, | will mention one more type of statement in Java: the empty statement. This
is a statement that consists simply of a semicolon. The existence of the empty statement makes the
following legal, even though you would not ordinarily see a semicolon after a}.

if (x < 0) {
X = -X;
b

The semicolonislegal after the}, but the computer considersit to be an empty statement, not part of thei f
statement. Occasionally, you might find yourself using the empty statement when what you mean is, in fact,
"do nothing”. | prefer, though, to use an empty block, consisting of { and } with nothing between, for such
Cases.

Occasionally, stray empty statements can cause annoying, hard-to-find errorsin a program. For example,
the following program segment prints out "Hello" just once, not ten times:
for (int i =0; i < 10; i++);
Systemout.println("Hello");
Why? Because the ";" at the end of the first line is a statement, and it is this statement that is executed ten

times. The Syst em out . pri nt | n statement isnot really insidethef or statement at all, soitis
executed just once, after the f or loop has completed.

http://math.hws.edu/eck/cs124/javanotes3/c3/s6.html (3 of 4) [6/10/2004 8:40:40 AM]

Java Programing: Section 3.6

A List of Java Statement Types

I mention the empty statement here mainly for completeness. Y ou've now seen just about every type of Java
statement. A complete list is given below for reference. The only new itemsin thelist are the
try..catch,throw andsynchroni zed statements, which are related to advanced aspects of Java
known as exception-handling and multi-threading, and the r et ur n statement, whichisused in

subroutines. These will be covered in later sections.

Another possible surpriseiswhat I've listed as "other expression statement,” which reflects the fact that any
expression followed by a semicolon can be used as a statement. To execute such a statement, the computer
simply evaluates the expression, and then ignores the value. Of course, this only makes sense when the
evaluation has a side effect that makes some change in the state of the computer. An example of thisisthe
expression statement "x++;", which has the side effect of adding 1 to the value of x. Similarly, the function
cal "Text 1 O getl n()", whichreadsaline of input, can be used as a stand-alone statement if you want
toread aline of input and discard it. Note that, technically, assignment statements and subroutine call
statements are also considered to be expression statements.
Java statement types:

« declaration statement (for declaring variables)

« assignment statement

« subroutine call statement (including input/output routines)

« Other expression statement (such as "x++;")

« empty statement

« block statement

o Whi | e statement

o do. . whil e statement

o i f statement

o for statement

e SW t ch statement

» break statement (found inloopsand swi t ch statements only)

« conti nue statement (found in loops only)

« ret urn statement (found in subroutine definitions only)

o try..cat ch statement

o t hr owstatement

« synchroni zed statement

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s6.html (4 of 4) [6/10/2004 8:40:40 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 3.7

Section 3.7
Introduction to Applets and Graphics

FOR THE PAST TWO CHAPTERS, you've been learning the sort of programming that is done inside a

single subroutine. In the rest of the text, we'll be more concerned with the larger scale structure of
programs, but the material that you've already learned will be an important foundation for everything to
come.

In this section, before moving on to programming-in-the-large, we'll take alook at how
programming-in-the-small can be used in other contexts besides text-based, command-line-style programs.
WEe'l do this by taking a short, introductory look at applets and graphical programming.

An applet isaJava program that runs on a Web page. An applet is not a stand-alone application, and it does
not havearmai n() routine. In fact, an applet is an object rather than a class. When an applet is placed on a
Web page, it is assigned arectangular area on the page. It isthe job of the applet to draw the contents of
that rectangle. When the region needs to be drawn, the Web page calls a subroutine in the applet to do so.
Thisis not so different from what happens with stand-alone programs. When a program needs to be run, the
system callsthe mai n() routine of the program. Similarly, when an applet needs to be drawn, the Web
page callsthe pai nt () routine of the applet. The programmer specifies what happens when these routines
are called by filling in the bodies of the routines. Programming in the small! Applets can do other things
besides draw themselves, such as responding when the user clicks the mouse on the applet. Each of the
applet's behaviorsis defined by a subroutine in the applet object. The programmer specifies how the applet
behaves by filling in the bodies of the appropriate subroutines.

A very simple applet, which does nothing but draw itself, can be defined by a class that contains nothing
but apai nt () routine. The source code for the class would have the form:

I mport java.awt.*,
i nport java. applet.*;

public class nane-of -appl et extends Applet {

public void paint(Gaphics g) {
statement s
}

}

where name-of-applet is an identifier that names the class, and the statements are the code that actually
draws the applet. Thislooks similar to the definition of a stand-alone program, but there are afew things
here that need to be explained, starting with the first two lines.

When you write a program, there are certain built-in classes that are available for you to use. These built-in
classesinclude Sy st emand Mat h. If you want to use one of these classes, you don't have to do anything
specia. You just go ahead and use it. But Java aso has a large number of standard classes that are there if
you want them but that are not automatically available to your program. (There are just too many of them.)
If you want to use these classes in your program, you have to ask for them first. The standard classes are
grouped into so-called "packages.” Two of these packages are called "java.awt" and "java.applet”. The
directive "import java.awt.*;" makes all the classes from the package java.awt available for use in your
program. The java.awt package contains classes related to graphical user interface programming, including
aclasscaled Gr aphi cs. The G aphi cs classisreferred toin the pai nt () routine above. The
java.applet package contains classes specifically related to applets, including the class named Appl et .

Thefirst line of the class definition above says that the class "extends Appl et ." Appl et isthe standard

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (1 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

class from the java.applet package. It defines all the basic properties and behaviors of applet objects. By
extending the Appl et class, the new class we are defining inherits all those properties and behaviors. We
only have to define the ways in which our class differs from the basic Appl et class. In our case, the only
difference isthat our applet will draw itself differently, so we only have to define the pai nt () routine.
Thisisone of the main advantages of object-oriented programming.

One more thing needs to be mentioned -- and thisis a point where Java's syntax gets unfortunately
confusing. Applets are objects, not classes. Instead of being static members of a class, the subroutines that
define the applet's behavior are part of the applet object. We say that they are "non-static" subroutines. Of
course, objects are related to classes because every object is described by a class. Now hereisthe part that
can get confusing: Even though a non-static subroutine is not actually part of a class (in the sense of being
part of the behavior of the class), it is nevertheless defined in a class (in the sense that the Java code that
defines the subroutine is part of the Java code that defines the class). Many objects can be described by the
same class. Each object has its own non-static subroutine. But the common definition of those subroutines
-- the actual Java source code -- is physically part of the class that describes all the objects. To put it briefly:
static subroutines in a class definition say what the class does; non-static subroutines say what all the
objects described by the class do. An applet'spai nt () routineisaan example non-static subroutine. A
stand-alone program's mai n() routine is an example of a static subroutine. The distinction doesn't really
matter too much at this point: When working with stand-alone programs, mark everything with the reserved
word, "st at i c"; leave it out when working with applets. However, the distinction between static and
non-static will become more important later in the course.

Let'swrite an applet that draws something. In order to write an applet that draws something, you need to
know what subroutines are available for drawing, just asin writing text-oriented programs you need to
know what subroutines are available for reading and writing text. In Java, the built-in drawing subroutines
are found in objects of the class Gr aphi cs, one of the classesin the java.awt package. In an applet's

pai nt () routine, you can usethe Gr aphi cs object g for drawing. (Thisobject is provided asa
parameter to the pai nt () routine when that routineis called.) G- aphi cs objects contain many
subroutines. I'll mention just three of them here. Y ou'll find more listed in Section 6.3.

g. set Col or (c),iscaledto set the color that is used for drawing. The parameter, c isan
object belonging to a class named Col or , another one of the classes in the java.awt
package. About a dozen standard colors are available as static member variablesin the

Col or class. These standard colorsinclude Col or . bl ack, Col or. whi t e,

Col or. red, Col or. green,and Col or. bl ue. For example, if you want to draw in
red, you would say "g. set Col or (Col or. red); ". The specified color is used for all
drawing operations up until the next time set Col or iscalled.

g. drawRect (x, y, w, h) drawsthe outline of arectangle. The parametersx, y, w, and h
must be integers. This draws the outline of the rectangle whose top-left corner isx pixels
from the left edge of the applet and y pixels down from the top of the applet. The width of
the rectangle isw pixels, and the height is h pixels.

g.fillRect(x,y,w h) issimilar todr awRect except that it fillsin the inside of the
rectangle instead of just drawing an outline.

This is enough information to write the applet shown here:

Sorry, your browser doesn't support Java.
But here'sthe picturethat the applet draws:

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (2 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

This applet first fillsits entire rectangular area with red. Then it changes the drawing color to black and
draws a sequence of rectangles where each rectangle is nested inside the previous one. The rectangles can
be drawn with awhi | e loop. Each time through the loop, the rectangle gets smaller and it moves down and
over abit. We'll need variables to hold the width and height of the rectangle and a variable to record how
far the top-left corner of the rectangle is inset from the edges of the applet. The while loop ends when the
rectangle shrinks to nothing. In general outline, the algorithm for drawing the applet is

Set the drawing color to red (using the g.setColor subroutine)
Fill in the entire applet (using the g.fill Rect subroutine)
Set the drawing color to black
Set the top-left corner inset to be 0
Set the rectangle width and height to be as big as the appl et
while the width and height are greater than zero:

draw a rectangle (using the g.drawRect subroutine)

i ncrease the inset

decrease the width and the height

In my applet, each rectangle is 15 pixels away from the rectangle that surroundsit, sothei nset is
increased by 15 each time through the whi | e loop. The rectangle shrinks by 15 pixels on the left and by
15 pixels on the right, so the width of the rectangle shrinks by 30 each time through the loop. The height
also shrinks by 30 pixels each time through the loop.

It isnot hard to code this agorithm into Java and use it to define the pai nt () method of an applet. I've
assumed that the applet has a height of 160 pixels and awidth of 300 pixels. The sizeis actually set in the
source code of the Web page where the applet appears. In order for an applet to appear on a page, the
source code for the page must include a command that specifies which applet to run and how big it should
be. (The commands that can be used on a Web page are discussed in Section 6.2.) It'snot agreat idea to
assume that we know how big the applet is going to be. On the other hand, it's also not a great idea to write
an applet that does nothing but draw a static picture. I'll address both these issues before the end of this
section. But for now, here is the source code for the applet:

i nport java.awt.*;
i nport java. appl et. Appl et ;

public class StaticRects extends Applet {
public void paint(Gaphics g) {
/1 Draw a set of nested black rectangles on a red background.

/'l Each nested rectangle is separated by 15 pixels on
/1l all sides fromthe rectangle that encloses it.

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (3 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

int inset; /'l Gap between borders of appl et
/1l and one of the rectangl es.
int rect Wdth, rectHeight; /'l The size of one of the rectangles.

g. set Col or (Col or. red);
g.fill Rect(0,0,300,160); // Fill the entire applet with red.

g.setCol or(Col or.black); // Draw the rectangles in bl ack.
i nset = 0;

rect Wdth = 299; /'l Set size of first rect to size of applet.
rect Hei ght = 159;

while (rectWdth >= 0 & rectHeight >= 0) {
g.drawRect (i nset, inset, rectWdth, rectHeight);

i nset += 15; /'l Rects are 15 pixels apart.
rect Wdth -= 30; /1 Wdth decreases by 15 pixels

/1l on left and 15 on right.
rect Height -= 30; // Height decreases by 15 pixels

Il on top and 15 on bottom

}
} /1 end paint()

} // end class StaticRects

(You might wonder why theinitial r ect W dt h is set to 299, instead of to 300, since the width of the
applet is 300 pixels. It's because rectangles are drawn as if with a pen whose nib hangs below and to the
right of the point where the pen is placed. If you run the pen exactly along the right edge of the applet, the
lineit drawsis actually outside the applet and therefore is not seen. So instead, we run the pen along aline
one pixel to the left of the edge of the applet. The same reasoning appliestor ect Hei ght . Careful
graphics programming demands attention to details like these.)

When you write an applet, you get to build on the work of the people who wrote the Appl et class. The
Appl et class provides aframework on which you can hang your own work. Any programmer can create
additional frameworks that can be used by other programmers as a basis for writing specific types of applets
or stand-alone programs. One example is the applets in previous sections that simulate text-based programs.
All these applets are based on aclass called Consol eAppl et , which itself is based on the standard

Appl et class. You can write your own console applet by filling in this simple framework (which leaves
out just a couple of bells and whistles):

publ i c class nane-of -appl et extends Consol eAppl et {

public void progran() {
statenments
}

}

The statementsin the pr ogr an() subroutine are executed when the user of the applet clicks the applet's
"Run Program™ button. This "program” can't use Text | Oor Syst em out to do input and output.
However, the Consol eAppl et framework provides an object named consol e for doing text
input/output. This object contains exactly the same set of subroutines asthe Text | Oclass. For example,

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (4 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

where you would say Text | O. put | n("Hel | o Wbr| d") in astand-alone program, you could say
consol e. putl n("Hell o Wbrl d") inaconsoleapplet. Theconsol e object just displays the output
on the applet instead of on standard output. Similarly, you can substitute x = consol e. get I nt () for x
=Text | O getl nt (), and soon. Asasimple example, here's a console applet that gets two numbers
from the user and prints their product:

public class PrintProduct extends Consol eAppl et {
public void progran() {

doubl e x,y; /1 Nunmbers input by the user.
doubl e prod; // The product, x*y.

consol e. put ("What is your first nunber? ");
X = consol e. get | nDoubl e() ;
consol e. put ("What is your second nunber? ");
y = consol e. get| nDoubl e() ;

prod = x * vy;

consol e. putln();
consol e. put ("The product is ");
consol e. putl n(prod);

} /1 end progran()

} /1 end class PrintProduct
And here's what this applet looks like on a Web page:

Sorry, your browser doesn't
support Java.

Now, any console-style applet that you write depends on the Consol eAppl et class, whichisnot a
standard part of Java. This means that the compiled classfile, Consol eAppl et . cl ass must be
available to your applet when it isrun. As amatter of fact, Consol eAppl et usestwo other non-standard
classes, Consol ePanel and Consol eCanvas, sothe compiled classfilesConsol ePanel . cl ass
and Consol eCanvas. cl ass must also be available to your applet. Thisjust means that al four class
files -- your own class and the three classes it depends on -- must be in the same directory with the source
code for the Web page on which your applet appears.

I've written another framework that makes it possible to write applets that display simple animations. An
exampleis given by the applet at the bottom of this page, which is an animated version of the nested
squares applet from earlier in this section.

A computer animation isreally just a sequence of still images. The computer displays the images one after
the other. Each image differs a bit from the preceding image in the sequence. If the differences are not too
big and if the sequence is displayed quickly enough, the eyeistricked into perceiving continuous motion.

In the example, rectangles shrink continually towards the center of the applet, while new rectangles appear
at the edge. The perpetual motion is, of course, anillusion. If you think about it, you'll see that the applet
loops through the same set of images over and over. In each image, there is a gap between the borders of
the applet and the outermost rectangle. This gap gets wider and wider until a new rectangle appears at the
border. Only it's not a new rectangle. What has really happened is that the applet has started over again with
the first image in the sequence.

The problem of creating an animation is really just the problem of drawing each of the still images that

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (5 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

make up the animation. Each still image is called aframe. In my framework for animation, which is based
on anon-standard class called Si npl eAni mat i onAppl et , al you haveto doisfill in the code that says
how to draw one frame. The basic format is as follows:

i nport java.awt.*;
public class nane-of-class extends SinpleAni mati onAppl et {

public void drawFrane(G aphics g) {
statenents // to draw one franme of the animation
}

}

The"i nport java.awt.*; " isrequired to get access to graphics-related classes such as Gr aphi cs
and Col or . You get to fill in any name you want for the class, and you get to fill in the statementsinside
the subroutine. The dr awfFr ame() subroutine will be called by the system each time a frame needs to be
drawn. All you haveto do is say what happens when this subroutine is called. Of course, you have to draw a
different picture for each frame, and to do that you need to know which frame you are drawing. The

Si npl eAni mat i onAppl et provides afunction named get Fr ameNunber () that you can call to find
out which frame to draw. This function returns an integer value that represents the frame number. If the
value returned is 0, you are supposed to draw the first frame; if the valueis 1, you are supposed to draw the
second frame, and so on.

In the sample applet, the thing that differs from one frame to another is the distance between the edges of
the applet and the outermost rectangle. Since the rectangles are 15 pixels apart, this distance increases from
0 to 14 and then jumps back to 0 when a"new" rectangle appears. The appropriate value can be computed
very simply from the frame number, with the statement "i nset = get Fr aneNunber () % 15;". The
value of the expression get Fr ameNunber () % 15 isbetween 0 and 14. When the frame number
reaches 15, the value of get Fr ameNumnber () % 15 jumps back to 0.

Drawing one frame in the sample animated applet is very similar to drawing the single image of the

St ati cRect s applet, as given above. Thepai nt () methodinthe St at i cRect s applet becomes,
with only minor modification, the dr awFr ane() method of my Movi ngRect s animation applet. I've
chosen to make one improvement: The St at i cRect s applet assumes that the applet is 300 by 160 pixels.
The Movi ngRect s applet will work for any applet size. To implement this, the dr awfr anme routine has
to know how big the applet is. My animation framework provides two functions that can be called to get
thisinformation. The function get W dt h() returns an integer value representing the width of the applet,
and the function get Hei ght () returnsthe height. The width and height, together with the frame number,
are used to compute the size of the first rectangle that is drawn. Here is the compl ete source code:

i mport java.awt.*;
public class MyvingRects extends SinpleAni nati onAppl et {
public void drawFrane(G aphics g) {
/'l Draw one franme in the animation by filling in the background
/Il with a solid red and then drawing a set of nested bl ack
/'l rectangles. The frame nunber tells how nuch the first
/'l rectangle is to be inset fromthe borders of the applet.

int wdth; /1 Wdth of the applet, in pixels.
i nt hei ght; /'l Height of the applet, in pixels.

int inset; /'l Gap between borders of applet and a rectangle.

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (6 of 7) [6/10/2004 8:40:41 AM]

Java Programing: Section 3.7

}

/1 The inset for the outernost rectangle goes

/1l fromO to 14 then back to 0, and so on,

Il as the frameNunber varies.
int rect Wdth, rectHeight; /'l The size of one of the rectangles.
wdth = getWdth(); /1 Find out the size of the draw ng area.
hei ght = getHei ght();
g. set Col or (Col or. red); /1 Fill the franme with red.
g.fill Rect (0,0, w dth, hei ght);
g. set Col or (Col or. bl ack); /1 Switch color to bl ack.
i nset = get FraneNunber () % 15; /Il Get the inset for the

Il out er nost rect.

rectWdth = wdth - 2*inset - 1, /'l Set size of outernost rect.

rect Hei ght = height - 2*inset - 1;

while (rectWdth >= 0 & rectHeight >= 0) {
g. drawRect (i nset, i nset,rect Wdt h, rect Hei ght) ;

i nset += 15; /'l Rects are 15 pixels apart.
rect Wdth -= 30; /1 Wdth decreases by 15 pixels

/1 on left and 15 on right.
rectHeight -= 30; // Height decreases by 15 pixels

Il on top and 15 on bottom

}
/'l end drawFrame()

} // end class MvingRects

The point hereisthat by building on an existing framework, you can do interesting things using the type of
local, inside-a-subroutine programming that was covered in Chapters 2 and 3. Asyou learn more about
programming and more about Java, you'll be able to do more on your own -- but no matter how much you
learn, you'll always be dependent on other people's work to some extent.

End of Chapter 3

[Next Chapter | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/s7.html (7 of 7) [6/10/2004 8:40:41 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Chapter 3 Exercises

Programming Exercises
For Chapter 3

THIS PAGE CONTAINS programming exercises based on material from Chapter 3 of this on-line Java
textbook. Each exercise has alink to a discussion of one possible solution of that exercise.

Exercise 3.1: How many times do you haveto roll apair of dice before they come up snake eyes? Y ou
could do the experiment by rolling the dice by hand. Write a computer program that simulates the
experiment. The program should report the number of rolls that it makes before the dice come up snake
eyes. (Note: "Snake eyes' means that both dice show avalue of 1.) Exercise 2.2 explained how to simulate

rolling a pair of dice.

See the solution!

Exercise 3.2: Which integer between 1 and 10000 has the largest number of divisors, and how many
divisors does it have? Write a program to find the answers and print out the results. It is possible that
severa integersin this range have the same, maximum number of divisors. Y our program only hasto print
out one of them. One of the examples from Section 3.4 discussed divisors. The source code for that

example is CountDivisors.java.

Y ou might need some hints about how to find a maximum value. The basic ideais to go through all the
integers, keeping track of the largest number of divisors that you've seen so far. Also, keep track of the
integer that had that number of divisors.

See the solution!

Exercise 3.3: Write aprogram that will evaluate simple expressionssuch as 17 + 3 and 3.14159 * 4.7. The
expressions are to be typed in by the user. The input always consist of a number, followed by an operator,
followed by another number. The operators that are allowed are +, -, *, and /. Y ou can read the numbers
with Text | O. get Doubl e() and the operator with Text | O. get Char () . Your program should read
an expression, print its value, read another expression, print its value, and so on. The program should end
when the user enters 0 as the first number on the line.

See the solution!

Exercise 3.4: Write a program that reads one line of input text and breaks it up into words. The words
should be output one per line. A word is defined to be a sequence of letters. Any charactersin the input that
are not letters should be discarded. For example, if the user inputs the line

He said, "That's not a good idea."

then the output of the program should be

He
sai d
t hat
S

not
a

http://math.hws.edu/eck/cs124/javanotes3/c3/exercises.html (1 of 3) [6/10/2004 8:40:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/ex-2-2-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-1-answer.html
http://math.hws.edu/eck/cs124/javanotes3/source/CountDivisors.java
http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-2-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-3-answer.html

Java Programing: Chapter 3 Exercises

good
I dea

(Animproved version of the program would list "that's" as aword. An apostrophe can be considered to be
part of aword if there is aletter on each side of the apostrophe. But that's not part of the assignment.)

To test whether acharacter isaletter, you mightuse(ch >= "a' && ch <= 'z") || (ch >=
"A && ch <= '"2Z').However, thisonly worksin English and similar languages. A better choiceisto
call the standard function Char act er. i sLetter (ch),whichreturnsabooleanvalueof t rue if chis
aletter and f al se if itisnot. Thisworks for any Unicode character. For example, it counts an accented e,
é, asaletter.

See the solution!

Exercise 3.5: Write an applet that draws a checkerboard. Assume that the size of the applet is 160 by 160
pixels. Each square in the checkerboard is 20 by 20 pixels. The checkerboard contains 8 rows of squares
and 8 columns. The squares are red and black. Here is atricky way to determine whether a given squareis
red or black: If the row number and the column number are either both even or both odd, then the squareis
red. Otherwise, it is black. Note that a square is just arectangle in which the height is equal to the width, so
you can use the subroutineg. fi | | Rect () to draw the squares. Here is an image of the checkerboard:

(To run an applet, you need a Web page to display it. A very simple page will do. Assume that your applet
classiscalled Checker boar d, so that when you compile it you get a class file named
Checker boar d. cl ass Make afilethat contains only the lines:

<appl et code="Checkerboard. cl ass" w dt h=160 hei ght =160>
</ appl et >

Cdl thisfile Checker boar d. ht m . Thisisthe source code for a simple Web page that shows nothing
but your applet. You can open the filein a Web browser or with Sun's appletviewer program. The compiled
classfile, Checker boar d. cl ass, must be in the same directory with the Web-pagefile,

Checker board. htm .)

See the solution!

Exer cise 3.6: Write an animation applet that shows a checkerboard pattern in which the even numbered
rows slide to the left while the odd numbered rows slide to the right. Y ou can assume that the applet is 160
by 160 pixels. Each row should be offset from its usual position by the amount get Fr ameNunber () %
40. Hints: Anything you draw outside the boundaries of the applet will be invisible, so you can draw more
than 8 squaresin arow. You can use negative valuesof x ing. fi |l | Rect (X, y, w, h) . Hereisaworking
solution to this exercise:

http://math.hws.edu/eck/cs124/javanotes3/c3/exercises.html (2 of 3) [6/10/2004 8:40:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-4-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-5-answer.html

Java Programing: Chapter 3 Exercises

Y our applet will extend the non-standard class, Si npl eAni mat i onAppl et , which wasintroduced in
Section 7. When you run your applet, the compiled classfile, Si npl eAni mat i onAppl et . cl ass,
must be in the same directory as your Web-page source file and the compiled class file for your own class.

Assuming that the name of your classis Sl i di ngChecker boar d, then the source file for the Web page
should contain the lines:

<appl et code="Sli di ngChecker board. cl ass" w dt h=160 hei ght =160>
</ appl et >

See the solution!

[Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/exercises.html (3 of 3) [6/10/2004 8:40:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/ex-3-6-answer.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Chapter 3 Quiz

Quiz Questions
For Chapter 3

THIS PAGE CONTAINS A SAMPLE quiz on material from Chapter 3 of this on-line Java textbook. Y ou

should be able to answer these questions after studying that chapter. Sample answersto all the quiz
guestions can be found here.

Question 1: Explain briefly what is meant by "pseudocode" and how isit useful in the development of
algorithms.

Question 2: What is ablock statement? How are block statements used in Java programs.
Question 3: What is the main difference between awhi | e loop and ado. . whi | e loop?
Question 4: What does it mean to prime aloop?

Question 5: Explain what is meant by an animation and how a computer displays an animation.

Question 6: Writeaf or loop that will print out al the multiples of 3 from 3 to 36, that is: 369 12 15 18
21 24 27 30 33 36.

Question 7: Fill inthefollowing mai n() routine so that it will ask the user to enter an integer, read the
user's response, and tell the user whether the number entered is even or odd. (Y ou can use
Text | O get | nt () toreadtheinteger. Recall that an integer nisevenifn %2==0.)

public static void main(String[] args) {

/1 Fill in the body of this subroutine!

Question 8: Show the exact output that would be produced by the following mai n() routine:
public static void main(String[] args) {

int N

N=1;

while (N <= 32) {
N=2*N

Systemout. println(N);
}

Question 9: Show the exact output produced by the following mai n() routine:
public static void main(String[] args) {

int Xx,y;

X = 5;

y = 1;

while (x > 0) {
X =X - 1;
y =y *x
Systemout. println(y);

http://math.hws.edu/eck/cs124/javanotes3/c3/quiz.html (1 of 2) [6/10/2004 8:40:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/quiz-answers.html

Java Programing: Chapter 3 Quiz

Question 10: What output is produced by the following program segment? Why? (Recall that

name. char At (i) isthei-th character in the string, nane.)
String nane;
int i;
bool ean startWrd;

nane = "Richard M Ni xon";
startword = true;
for (i =0; i < name.length(); i++) {

if (startWrd)
System out. println(nanme.charAt(i));

if (nanme.charAt(i) =="'")
startWord = true;
el se

startWord = fal se;

[Answers | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c3/quiz.html (2 of 2) [6/10/2004 8:40:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/quiz-answers.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Chapter 4 Index

Chapter 4

Programming in the Large |
Subroutines

ONE WAY TO BREAK UP A COMPLEX PROGRAM into manageable piecesis to use subroutines. A

subroutine consists of the instructions for carrying out a certain task, grouped together and given a name.
Elsewhere in the program, that name can be used as a stand-in for the whole set of instructions. Asa
computer executes a program, whenever it encounters a subroutine name, it executes all the instructions
necessary to carry out the task associated with that subroutine.

Subroutines can be used over and over, at different places in the program. A subroutine can even be used
inside another subroutine. This allows you to write simple subroutines and then use them to help write more
complex subroutines, which can then be used in turn in other subroutines. In this way, very complex
programs can be built up step-by-step, where each step in the construction is reasonably simple.

As mentioned in Section 3.7, subroutines in Java can be either static or non-static. This chapter covers static

subroutines only. Non-static subroutines, which are used in true object-oriented programming, will be
covered in the next chapter.

Contents of Chapter 4:

« Section 1: Black Boxes

 Section 2: Static Subroutines and Static Variables
o Section 3: Parameters

« Section 4: Return Values

» Section 5: Toolboxes, API's, and Packages

« Section 6: More on Program Design
o Section 7: The Truth about Declarations

« Programming Exercises

« Quiz on this Chapter

[First Section | Next Chapter | Previous Chapter | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c4/ [6/10/2004 8:41:40 AM]

http://math.hws.edu/eck/cs124/javanotes3/c5/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 4.1

Section 4.1
Black Boxes

A SUBROUTINE CONSISTS OF INSTRUCTIONS for performing some task, chunked together and

given aname. "Chunking" allows you to deal with a potentially very complicated task as a single concept.
Instead of worrying about the many, many steps that the computer might have to go though to perform that
task, you just need to remember the name of the subroutine. Whenever you want your program to perform
the task, you just call the subroutine. Subroutines are a major tool for dealing with complexity.

A subroutine is sometimes said to be a"black box" because you can't see what's "inside" it (or, to be more
precise, you usually don't want to see inside it, because then you would have to deal with all the complexity
that the subroutine is meant to hide). Of course, a black box that has no way of interacting with the rest of
the world would be pretty useless. A black box needs some kind of interface with the rest of the world,
which allows some interaction between what's inside the box and what's outside. A physical black box
might have buttons on the outside that you can push, dials that you can set, and slots that can be used for
passing information back and forth. Since we are trying to hide complexity, not create it, we have the first
rule of black boxes:

Theinterface of a black box should befairly straightforward, well-defined, and easy to
under stand.

Are there any examples of black boxes in the real world? Y es; in fact, you are surrounded by them. Y our
television, your car, your VCR, your refrigerator... Y ou can turn your television on and off, change
channels, and set the volume by using elements of the television'sinterface -- dial's, remote control, don't
forget to plug in the power -- without understand anything about how the thing actually works. The same
goesfor aVCR, athough if stories about how hard people find it to set the time on a VCR are true, maybe
the VCR violates the simple interface rule.

Now, a black box does have an inside -- the code in a subroutine that actually performs the task, al the
electronicsinside your television set. The inside of ablack box is called its implementation. The second
rule of black boxesis that

To use ablack box, you shouldn't need to know anything about itsimplementation; all
you need to know isitsinterface.

In fact, it should be possible to change the implementation, as long as the behavior of the box, as seen from
the outside, remains unchanged. For example, when the insides of TV sets went from using vacuum tubes to
using transistors, the users of the sets didn't even need to know about it -- or even know what it means.
Similarly, it should be possible to rewrite the inside of a subroutine, to use more efficient code, for example,
without affecting the programs that use that subroutine.

Of course, to have a black box, someone must have designed and built the implementation in the first place.
The black box idea works to the advantage of the implementor as well as of the user of the black box. After
all, the black box might be used in an unlimited number of different situations. The implementor of the
black box doesn't need to know about any of that. The implementor just needs to make sure that the box
performs its assigned task and interfaces correctly with the rest of the world. Thisisthe third rule of black
boxes:

Theimplementor of a black box should not need to know anything about the larger
systemsin which the box will be used.

In away, ablack box divides the world into two parts: the inside (implementation) and the outside. The
interfaceis at the boundary, connecting those two parts.

http://math.hws.edu/eck/cs124/javanotes3/c4/s1.html (1 of 2) [6/10/2004 8:41:40 AM]

Java Programing: Section 4.1

By the way, you should not think of an interface as just the physical connection between the box and the
rest of the world. The interface also includes a specification of what the box does and how it can be
controlled by using the elements of the physical interface. It's not enough to say that a TV set has a power
switch; you need to specify that the power switch is used to turn the TV on and off!

To put thisin computer science terms, the interface of a subroutine has a semantic as well as a syntactic
component. The syntactic part of the interface tells you just what you have to type in order to call the
subroutine. The semantic component specifies exactly what task the subroutine will accomplish. To write a
legal program, you need to know the syntactic specification of the subroutine. To understand the purpose of
the subroutine and to use it effectively, you need to know the subroutine's semantic specification. | will
refer to both parts of the interface -- syntactic and semantic -- collectively as the contract of the subroutine.

The contract of a subroutine says, essentially, "Here iswhat you have to do to use me, and hereiswhat |
will do for you, guaranteed.” When you write a subroutine, the comments that you write for the subroutine
should make the contract very clear. (I should admit that in practice, subroutines' contracts are often
inadequately specified, much to the regret and annoyance of the programmers who have to use them.)

For the rest of this chapter, | turn from general ideas about black boxes and subroutines in general to the
specifics of writing and using subroutines in Java. But keep the general ideas and principlesin mind. They
are the reasons that subroutines exist in the first place, and they are your guidelines for using them. This
should be especiadly clear in Section 6, where | will discuss subroutines as atool in program devel opment.

Y ou should keep in mind that subroutines are not the only example of black boxes in programming. For
example, aclassisalso ablack box. Well see that a class can have a"public" part, representing its
interface, and a"private" part that is entirely inside its hidden implementation. All the principles of black
boxes apply to classes as well as to subroutines.

[Next Section | Previous Chapter | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c4/s1.html (2 of 2) [6/10/2004 8:41:40 AM]

http://math.hws.edu/eck/cs124/javanotes3/c3/index.html
http://math.hws.edu/eck/cs124/javanotes3/c4/index.html

Java Programing: Section 4.2

Section 4.2
Static Subroutines and Static Variables

EVERY SUBROUTINE IN JAVA MUST BE DEFINED inside some class. This makes Java rather

unusual among programming languages, since most languages allow free-floating, independent subroutines.
One purpose of aclassisto group together related subroutines and variables. Perhaps the designers of Java
felt that everything must be related to something. As aless philosophical motivation, Java's designers wanted
to place firm controls on the ways things are named, since a Java program potentially has access to a huge
number of subroutines scattered all over the Internet. The fact that those subroutines are grouped into named
classes (and classes are grouped into named "packages") helps control the confusion that might result from
so many different names.

A subroutine that is amember of aclassis often called a method, and "method" is the term that most people
prefer for subroutinesin Java. | will start using the term "method" occasionally; however, | will continue to
prefer the term "subroutine” for static subroutines. | will use the term "method" most often to refer to
non-static subroutines, which belong to objects rather than to classes. This chapter will deal with static
subroutines almost exclusively. We'll turn to non-static methods and object-oriented programming in the

next chapter.

A subroutine definition in Java takes the form:

nodifiers return-type subroutine-nanme (paraneter-list) {
statenents
}

It will take us awhile -- most of the chapter -- to get through what all this meansin detail. Of course, you've
already seen examples of subroutines in previous chapters, such asthe mai n() routine of a program and the
pai nt () routine of an applet. So you are familiar with the general format.

The statements between the braces, { and }, make up the body of the subroutine. These statements are the
inside, or implementation part, of the "black box", as discussed in the previous section. They are the
instructions that the computer executes when the method is called. Subroutines can contain any of the
statements discussed in Chapter 2 and Chapter 3.

The modifier s that can occur at the beginning of a subroutine definition are words that set certain
characteristics of the method, such as whether it is static or not. The modifiers that you've seen so far are
"static"and"publi c". Thereareonly about a half-dozen possible modifiers atogether.

If the subroutine is a function, whose job is to compute some value, then the retur n-type is used to specify
the type of value that is returned by the function. We'll be looking at functions and return typesin some
detail in Section 4. If the subroutine is not a function, then the r etur n-type is replaced by the special value
voi d, which indicates that no value is returned. The term "void" is meant to indicate that the return value is
empty or non-existent.

Finally, we come to the parameter -list of the method. Parameters are part of the interface of a subroutine.
They represent information that is passed into the subroutine from outside, to be used by the subroutine's
internal computations. For a concrete example, imagine a class named Tel evi si on that includes a method
named changeChannel () . Theimmediate question is: What channel should it change to? A parameter
can be used to answer this question. Since the channel number is an integer, the type of the parameter would
bei nt , and the declaration of the changeChannel () method might look like

public void changeChannel (i nt channel Num {...}

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (1 of 8) [6/10/2004 8:41:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c5/index.html
http://math.hws.edu/eck/cs124/javanotes3/c2/index.html
http://math.hws.edu/eck/cs124/javanotes3/c3/index.html

Java Programing: Section 4.2

This declaration specifiesthat changeChannel () hasaparameter named channel Numof typei nt .
However, channel Numdoes not yet have any particular value. A value for channel Numis provided
when the subroutineis called; for example: changeChannel (17) ;

The parameter list in a subroutine can be empty, or it can consist of one or more parameter declarations of
theform type parameter-name. If there are several declarations, they are separated by commas. Note that
each declaration can name only one parameter. For example, if you want two parameters of type doubl e,

you haveto say "doubl e x, doubl e y",ratherthan"doubl e x, y".

Parameters are covered in more detail in the next section.

Here are afew examples of subroutine definitions, leaving out the statements that define what the
subroutines do:

public static void playGanme() {
/1 "public" and "static" are nodifiers; "void" is the
/'l return-type; "playGane" is the subroutine-naneg;
[l the paraneter-list is enpty
/'l statenents that define what playGane does go here

}
int getNextN(int N {

/1l there are no nodifiers; "int" in the return-type

/1 "getNextN' is the subroutine-nanme; the paraneter-Iist

/'l includes one paraneter whose nanme is "N' and whose

/[l type is "int"

. /]l statenents that define what get NextN does go here
}

static bool ean | essThan(doubl e x, double y) {
/1l "static" is a nodifier; "boolean" is the
/'l return-type; "lessThan" is the subroutine-nane; the
[l paraneter-list includes two paraneters whose nanes are
/1 "x" and "y", and the type of each of these paraneters
/1 is "double"
/]l statenents that define what | essThan does go here

}

In the second example given here, get Next N, is anon-static method, since its definition does not include
the modifier "st at i ¢" -- and so it's not an example that we should be looking at in this chapter! The other
modifier shown in the examplesis"publ i ¢". This modifier indicates that the method can be called from
anywhere in a program, even from outside the class where the method is defined. There is another modifier,
"pri vat e", which indicates that the method can be called only from inside the same class. The modifiers
publ i c and pri vat e are called access specifiers. If no access specifier is given for amethod, then by
default, that method can be called from anywhere in the "package” that contains the class, but not from
outside that package. (Packages were mentioned in Section 3.7, and you'll learn more about packagesin this
chapter, in Section 5.) There is one other access modifier, pr ot ect ed, which will only become relevant

when we turn to object-oriented programming in Chapter 5.

Note, by the way, that the mai n() routine of a program follows the usual syntax rules for a subroutine. In
public static void main(String[] args) { }

the modifiersare publ i c and st at i c, thereturntypeisvoi d, the subroutine nameismai n, and the
parameter listis"String[] args". Theonly question might be about "St ri ng[] ", which hasto bea
typeif it isto match the format of a parameter list. Infact, St ri ng[] represents aso-called "array type", so

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (2 of 8) [6/10/2004 8:41:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c5/index.html

Java Programing: Section 4.2

the syntax isvalid. We will cover arraysin Chapter 8. (The parameter, ar gs, represents information

provided to the program when the mai n() routineis called by the system. In case you know the term, the
information consists of any "command-line arguments” specified in the command that the user typed to run
the program.)

Y ou've already had some experience with filling in the statements of a subroutine. In this chapter, you'll
learn al about writing your own complete subroutine definitions, including the interface part.

When you define a subroutine, all you are doing istelling the computer that the subroutine exists and what it
does. The subroutine doesn't actually get executed until it iscalled. (Thisistrue even for the mai n()
routine in a class -- even though you don't call it, it is called by the system when the system runs your
program.) For example, the pl ayGane() method defined above could be called using the following
subroutine call statement:

pl ayGane() ;

This statement could occur anywhere in the same class that includes the definition of pl ay Gane() ,
whether inamai n() method or in some other subroutine. Since pl ayGane() isapubl i ¢ method, it can
also be called from other classes, but in that case, you have to tell the computer which class it comes from.
Let's say, for example, that pl ayGane() isdefined in aclass named Poker . Thento call pl ayGane()
from outside the Poker class, you would have to say

Poker . pl ayGane() ;

The use of the class name here tells the computer which classto ook in to find the method. It aso lets you
distinguish between Poker . pl ayGane() and other potential pl ayGanme() methods defined in other
classes, suchasRoul et t e. pl ayGane() or Bl ackj ack. pl ayGane() .

More generdly, a subroutine call statement takes the form
subroutine-name(par ameter s);
if the subroutine that is being called isin the same class, or
class-name.subr outine-name(par ameter s);

if the subroutine is a static subroutine defined elsewhere, in adifferent class. (Non-static methods belong to
objects rather than classes, and they are called using object names instead of class names. More on that later.)
Note that the parameter list can be empty, asinthe pl ayGane() example, but the parentheses must be
there even if there is nothing between them.

It's time to give an example of what a complete program looks like, when it includes other subroutinesin
addition to the mai n() routine. Let's write a program that plays a guessing game with the user. The
computer will choose arandom number between 1 and 100, and the user will try to guessit. The computer
tells the user whether the guessis high or low or correct. If the user gets the number after six guesses or
fewer, the user wins the game. After each game, the user has the option of continuing with another game.

Since playing one game can be thought of as asingle, coherent task, it makes sense to write a subroutine that
will play one guessing game with the user. The mai n() routine will use aloop to cal the pl ayGane()
subroutine over and over, as many times as the user wants to play. We approach the problem of designing the
pl ayGane() subroutinethe same way we writeamai n() routine: Start with an outline of the algorithm
and apply stepwise refinement. Here is a short pseudocode algorithm for a guessing game program:

Pi ck a random nunber
while the ganme is not over:
Get the user's guess

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (3 of 8) [6/10/2004 8:41:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c8/index.html

Java Programing: Section 4.2

Tell the user whether the guess is high, low, or correct.

The test for whether the game is over is complicated, since the game endsiif either the user makes a correct
guess or the number of guessesissix. Asin many cases, the easiest thingto doistousea"whi | e

(true) " loopand use br eak to end the loop whenever we find areason to do so. Also, if we are going to
end the game after six guesses, we'll have to keep track of the number of guesses that the user has made.
Filling out the algorithm gives:

Let conput ersNunber be a random nunber between 1 and 100
Let guessCount = 0
while (true):
CGet the user's guess
Count the guess by adding 1 to guess count
if the user's guess equal s conputer sNunber:
Tell the user he won
break out of the | oop
i f the nunber of guesses is 6:
Tell the user he | ost
break out of the | oop
if the user's guess is |ess than conputersNunber:
Tell the user the guess was | ow
else if the user's guess is higher than conputersNunber
Tell the user the guess was high

With variable declarations added and translated into Java, this becomes the definition of the pl ay Ganre()
routine. A random integer between 1 and 100 can be computed as (i nt) (100 * Mat h. random()) +
1. I've cleaned up the interaction with the user to make it flow better.

static void playGane() {
i nt conputersNunber; // A random nunber picked by the conputer.
i nt usersQuess; /'l A nunber entered by user as a guess.
i nt guessCount; /'l Nunmber of guesses the user has nade.
conput ersNunber = (int) (100 * Math.randon()) + 1
/'l The val ue assigned to conputersNunber is a randomy
/1 chosen integer between 1 and 100, i ncl usive.
guessCount = O;
Text 1 O putln();
Text1 O put ("What is your first guess? ");
while (true) {
users@uess = Textl O getint(); // get the user's guess
guessCount ++;
I f (usersCGuess == conputersNunber) {
Text1 O putln("You got it in " + guessCount
+ " guesses! M nunber was " + conputersNunber);
break; // the ganme is over; the user has won

i f (guessCount == 6) {
TextI O putln("You didn't get the nunber in 6 guesses.");
Text1 O putl n("You | ose. M nunber was " + conputersNunber);
break; // the ganme is over; the user has |ost

}

/1 If we get to this point, the ganme continues.

/1l Tell the user if the guess was too high or too | ow

i f (usersG@uess < conputersNunber)
TextI O put("That's too low. Try again: ");

el se if (usersGuess > conputersNumnber)
TextI O put("That's too high. Try again: ");

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (4 of 8) [6/10/2004 8:41:42 AM]

Java Programing: Section 4.2

}

Text1 O putln();
} /1 end of playGane()

Now, where exactly should you put this? It should be part of the same class asthe mai n() routine, but not
inside the main routine. It is not legal to have one subroutine physically nested inside another. The mai n()

routine will call

pl ayGane(), but not contain it physically. Y ou can put the definition of pl ay Game()

either before or after the mai n() routine. Javais not very picky about having the members of aclassin any

particular order.

It's pretty easy to write the main routine. Y ou've done things like this before. Here's what the complete
program looks like (except that a serious program needs more comments than I've included here).

public class Quessi ngGane {

public static void main(String[] args) {
I

Textl O putln("Let's play a gane. 1'Il pick a nunber between");
Text1 O putln("1 and 100, and you try to guess it.");
bool ean pl ayAgai n;
do {
pl ayGane(); // call subroutine to play one gane
Text 1 O put ("Wuld you like to play again? ");
pl ayAgai n = Text| O. get| nBool ean() ;
} while (playAgain);
Text 1 O putl n("Thanks for playing. Goodbye.");

} /1 end of main()

static void playGane() {

i nt conputersNunber; // A random nunber picked by the conputer.
i nt usersQuess; /'l A nunber entered by user as a guess.
i nt guessCount; /'l Nunmber of guesses the user has nade.
conmput er sNunber = (int) (100 * Math.random()) + 1;
/1 The val ue assigned to conmputersNunber is a randomy
11 chosen integer between 1 and 100, inclusive.
guessCount = O;
Text1 O putln();
Text1 O put ("What is your first guess? ");
while (true) {
usersGuess = Textl1 O getint(); // get the user's guess
guessCount ++;
if (usersCuess == conputersNunmber) {
Text1 O putln("You got it in " + guessCount
+ " guesses! M nunber was " + conputersNunber);
break; // the game is over; the user has won

}

i f (guessCount == 6) {
Text1 O putln("You didn't get the nunber in 6 guesses.");
Text1 O putln("You |l ose. M nunber was " + conputersNunber);
break; // the gane is over; the user has | ost

/1 1f we get to this point, the ganme conti nues.
/'l Tell the user if the guess was too high or too | ow
if (usersCuess < conputersNunber)
Text| O put("That's too low. Try again: ");
el se if (usersG@uess > conput er sNunber)
Text1 O put ("That's too high. Try again: ");

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (5 of 8) [6/10/2004 8:41:42 AM]

Java Programing: Section 4.2

}
Text1 O putln();

} /1 end of playGane()

} /1 end of class Guessi ngGne

Take some time to read the program carefully and figure out how it works. And try to convince yourself that
even in thisrelatively simple case, breaking up the program into two methods makes the program easier to
understand and probably made it easier to write each piece.

Y ou can try out a simulation of this program here:

Sorry, your browser doesn't
support Java.

A class can include other things besides subroutines. In particular, it can aso include variable declarations.
Of course, you can have variable declarations inside subroutines. Those are called local variables. However,
you can aso have variables that are not part of any subroutine. To distinguish such variables from local
variables, we call them member variables, since they are members of a class.

Just as with subroutines, member variables can be either static or non-static. In this chapter, we'll stick to
static variables. A static member variable belongs to the classitself, and it exists aslong as the class exists.
Memory is allocated for the variable when the classis first loaded by the Java interpreter. Any assignment
statement that assigns a value to the variable changes the content of that memory, no matter where that
assignment statement is located in the program. Any time the variable is used in an expression, the valueis
fetched from that same memory, no matter where the expression is located in the program. This means that
the value of a static member variable can be set in one subroutine and used in another subroutine. Static
member variables are "shared" by all the static subroutinesin the class. A local variablein a subroutine, on
the other hand, exists only while that subroutine is being executed, and is completely inaccessible from
outside that one subroutine.

The declaration of a member variable looks just like the declaration of alocal variable except for two things:
The member variable is declared outside any subroutine (although it still has to be inside a class), and the
declaration can be marked with modifierssuch asst at i ¢, publ i ¢, and pri vat e. Since we are only
working with static member variables for now, every declaration of a member variable in this chapter will
include the modifier st at i c. For example:

static int nunber O Pl ayers;
static String usersNane;
static double velocity, tineg;

A static member variable that is not declared to be pri vat e can be accessed from outside the class where it
isdefined, aswell asinside. When it is used in some other class, it must be referred to with a compound
identifier of the form class-name.variable-name. For example, the Sy st emclass contains the public static
member variable named out , and you use this variable in your own classes by referring to Syst em out . If
nunber O Pl ayer s isapublic static member variable in a class named Poker , subroutinesin the Poker
classwould refer to it ssimply asnunmber OF Pl ayer s. Subroutinesin another classwould refer to it as
Poker . nunber O Pl ayers.

Asan example, let's add a static member variable to the Guessi ngGane class that we wrote earlier in this
section. This variable will be used to keep track of how many games the user wins. Welll cal the variable
gamesWon and declare it with the statement "st at i ¢ i nt ganesWn; " Inthepl ayGane() routine,
we add 1 to ganesWon if the user wins the game. At the end of the mai n() routine, we print out the value
of gamesWon. It would be impossible to do the same thing with alocal variable, since we need access to the
same variable from both subroutines.

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (6 of 8) [6/10/2004 8:41:42 AM]

Java Programing: Section 4.2

When you declare alocal variable in a subroutine, you have to assign avalue to that variable before you can
do anything with it. Member variables, on the other hand are automatically initialized with a default value.
For numeric variables, the default value is zero. For bool ean variables, the default isf al se. And for
char variables, it's the unprintable character that has Unicode code number zero. (For objects, such as
Stri ngs, thedefault initial valueis aspecia value called nul | , which we won't encounter officially until
later.)

Sinceitisof typei nt , the static member variable gamesWon automatically gets assigned an initial value of
zero. This happens to be the correct initial value for avariable that is being used as a counter. Y ou can, of
course, assign adifferent value to the variable at the beginning of the mai n() routine if you are not satisfied
with the default initial value.

Here'sarevised version of Guessi ngGane. j ava that includes the ganesWon variable. The changes
from the above version are shown in red:

public class Guessi ngGane2 {

static int games\Wn; /1 The nunber of ganmes won by
11 t he user.

public static void main(String[] args) {
gamesWwn = 0; // This is actually redundant, since 0 is
/1l the default initial value.
Text! O putln("Let's play a ganme. 1'Ill pick a nunber between");
Text1 O putln("1 and 100, and you try to guess it.");
bool ean pl ayAgai n;
do {
pl ayGane(); // call subroutine to play one gane
Text1 O put ("Wul d you like to play again? ");
pl ayAgai n = Text| O getl nBool ean();
} while (playAgain);
Text1 O putln();
Text!1 O putln("You won " + ganesWwn + " ganes.");
Text | O putl n("Thanks for playing. Goodbye.");
} /1 end of main()

static void playGane() {
i nt conputersNunber; // A random nunber picked by the conputer
i nt usersQuess; /'l A nunber entered by user as a guess.
i nt guessCount; /'l Number of guesses the user has nade.
conmput er sNunber = (int) (100 * Math.random()) + 1;
/'l The val ue assigned to conputersNunber is a randomy
I chosen integer between 1 and 100, inclusive.
guessCount = O;
Text1 O putln();
Text 1 O put ("What is your first guess? ");
while (true) {
usersGuess = Textl1 O getint(); // get the user's guess
guessCount ++,;
if (usersGuess == conputersNunber) {
Text1 O putln("You got it in " + guessCount
+ " guesses! M nunber was " + conputersNunber);
ganmesWn++; // Count this game by increnenting ganmesWn.
br eak; /'l the ganme is over; the user has won

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (7 of 8) [6/10/2004 8:41:42 AM]

Java Programing: Section 4.2

if (guessCount == 6) {
Text1 O putln("You didn't get the nunber in 6 guesses.");
Text1 O putln("You |lose. M nunber was " + conputersNunber);
break; // the game is over; the user has |ost
}
/1 If we get to this point, the ganme conti nues.
/1 Tell the user if the guess was too high or too | ow
if (usersGuess < conputersNunber)
Text1 O put("That's too low. Try again: ");
el se if (usersG@ess > conputersNunber)
Text1 O put("That's too high. Try again: ");
}
Text | O putln();
} /1 end of playGanme()

} /1 end of class Guessi ngGane2

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c4/s2.html (8 of 8) [6/10/2004 8:41:42 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html

Java Programing: Section 4.3

Section 4.3
Parameters

| F A SUBROUTINE ISA BLACK BOX, then a parameter provides a mechanism for passing information

from the outside world into the box. Parameters are part of the interface of a subroutine. They allow you to
customi ze the behavior of a subroutine to adapt it to a particular situation.

As an analogy, consider athermostat -- a black box whose task it isto keep your house at a certain
temperature. The thermostat has a parameter, namely the dial that is used to set the desired temperature. The
thermostat always performs the same task: maintaining a constant temperature. However, the exact task that
it performs -- that is, which temperature it maintains -- is customized by the setting on its dial.

As an example, let's go back to the "3N+1" problem that was discussed in Section 3.2. (Recall that a 3aN+1
sequence is computed according to therule, "if N isodd, multiply by 3 and add 1; if N iseven, divide by 2;
continue until N isequal to 1." For example, starting from N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2, 1)
Suppose that we want to write a subroutine to print out such sequences. The subroutine will always perform
the same task: Print out a 3N+1 sequence. But the exact sequence it prints out depends on the starting value
of N. So, the starting value of N would be a parameter to the subroutine. The subroutine could be written
likethis:

static void Print3NSequence(int startingValue) {

/'l Prints a 3N+1 sequence to standard output, using
/'l startingValue as the initial value of N It also
/'l prints the nunber of terms in the sequence.

/'l The value of the paraneter, startingVal ue, nust
/'l be a positive integer.

int N /'l One of the terns in the sequence.
int count; // The nunber of ternms.

N = startingValue; // The first termis whatever val ue

Il IS passed to the subroutine as

Il a paraneter.
int count = 1; // W have one term the starting value, so far.
Text1 O putl n("The 3N+1 sequence starting from" + N);
Text1 O putln();
Textl O putln(N; // print initial termof sequence

while (N> 1) {

if (N%2 ==1) // is N odd?
N=3* N+ 1;

el se
N=N/ 2

count ++; /] count this term

Textl O putIn(N); // print this term
}

Text1 O putln();
Text1 O putl n("There were " + count + " ternms in the sequence.");

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (1 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.3

} /1 end of Print3NSequence()

The parameter list of thissubroutine, "(1 nt st artingVal ue) ", specifies that the subroutine has one
parameter, of typei nt . When the subroutine is called, a value must be provided for this parameter. This
value is assigned to the parameter, st ar t i ngVal ue, before the body of the subroutine is executed. For
example, the subroutine could be called using the subroutine call statement

"Pri nt 3NSequence(17) ; ". When the computer executes this statement, the computer assigns the
value 17to st art i ngVal ue and then executes the statements in the subroutine. This prints the 3N+1
sequence starting from 17. If Kisavariable of typei nt , then when the computer executes the subroutine
call statement "Pr i nt 3NSequence(K) ; ", it will take the value of the variable K, assign that value to
st arti ngVal ue, and execute the body of the subroutine.

The class that contains Pr i nt 3NSequence can contain amai n() routine (or other subroutines) that call
Pri nt 3NSequence. For example, hereisamai n() program that prints out 3N+1 sequences for various
starting values specified by the user:

public static void main(String[] args) {
Text1 O putl n("This programw || print out 3N+1 sequences”);
Textl O putln("for starting values that you specify.");
Text1 O putln();
int K // Input fromuser; |oop ends when K < 0.
do {
Text1 O putl n("Enter a starting value;")
Text1 O put("To end the program enter 0: ");
K= Textl O getint(); // get starting value from user
if (K> 0) /[l print sequence, but only if Kis >0
Pri nt 3NSequence(K) ;
} while (K> 0); /1l continue only if K>20
} /1 end main()

Note that the term "parameter” is used to refer to two different, but related, concepts. There are parameters
that are used in the definitions of subroutines, such asst art i ngVal ue in the above example. And there
are parameters that are used in subroutine call statements, such as the K in the statement

"Pri nt 3NSequence(K) ; ". Parametersin a subroutine definition are called formal parameters or
dummy parameters. The parameters that are passed to a subroutine when it is called are called actual
parameters. When a subroutine is called, the actual parameters in the subroutine call statement are evaluated
and the values are assigned to the formal parameters in the subroutine's definition. Then the body of the
subroutine is executed.

A formal parameter must be an identifier, that is, aname. A formal parameter is very much like avariable,
and -- like avariable -- it has a specified type such asi nt , bool ean, or St ri ng. An actual parameter is
avalue, and so it can be specified by any expression, provided that the expression computes a value of the
correct type. (The type of the actual parameter must be one that could legally be assigned to the formal
parameter with an assignment statement. For example, if the formal parameter is of type doubl e, then it
would belegal to passani nt asthe actual parameter sincei nt s can legally be assigned to doubl es.)
When you call a subroutine, you must provide one actual parameter for each formal parameter in the
subroutine's definition. Consider, for example, a subroutine

static void doTask(int N, double x, boolean test) {
/'l statements to performthe task go here
}

This subroutine might be called with the statement

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (2 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.3

doTask(17, Math.sqrt(z+1l), z >= 10);

When the computer executes this statement, it has essentially the same effect as the block of statements:

{
int N /'l Allocate nmenory |ocations for the formal paraneters.
doubl e x;
bool ean test;
N = 17; /'l Assign 17 to the first formal paraneter, N
Xx = Math.sqgrt(z+1); // Conpute Math.sqgrt(z+1), and assign it to
/1 the second fornmal paraneter, X.
test = (z >= 10); /'l Evaluate "z >= 10" and assign the resulting
Il true/false value to the third formal
Il paraneter, test.
/'l statenents to performthe task go here
}

(There are afew technical differences betweenthisand "doTask(17, Mat h. sqrt (z+1), z>=10) ; " --
besides the amount of typing -- because of questions about scope of variables and what happens when
several variables or parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing. Calling a subroutine
that already existsis not a problem -- the idea of providing information to the subroutine in a parameter is
clear enough. Writing the subroutine definition is another matter. A common mistake is to assign valuesto
the formal parametersin the subroutine, or to ask the user to input their values. This represents a
fundamental misunderstanding. When the statements in the subroutine are executed, the formal parameters
will already have values. The values come from the subroutine call statement. Remember that a subroutine
is not independent. It is called by some other routine, and it is the calling routine's responsibility to provide
appropriate values for the parameters.

In order to call asubroutine legally, you need to know its name, you need to know how many formal
parameters it has, and you need to know the type of each parameter. Thisinformation is called the
subroutine's signature. We could write the signature of the subroutinedoTask as:
doTask(int,double,boolean). Note that the signature does not include the names of the parameters; in fact, if
you just want to use the subroutine, you don't even need to know what the formal parameter names are, so
the names are not part of the interface.

Javais somewhat unusual in that it allows two different subroutines in the same class to have the same
name, provided that their signatures are different. (The language C++ on which Javais based aso has this
feature.) We say that the name of the subroutine is overloaded because it has severa different meanings.
The computer doesn't get the subroutines mixed up. It can tell which one you want to call by the number
and types of the actual parameters that you provide in the subroutine call statement. Y ou have already seen
overloading used in the Text | Oclass. This classincludes many different methods named put | n, for
example. These methods all have different signatures, such as:

put | n(int) putln(int,int) put | n(doubl e)
putl n(String) putl n(String,int) put | n(char)
put | n(bool ean) put | n(bool ean,int) putln()

Of course all these different subroutines are semantically related, which iswhy it is acceptable
programming style to use the same name for them all. But as far as the computer is concerned, printing out
ani nt isvery different from printing out a St r i ng, which is different from printing out abool ean, and
so forth -- so that each of these operations requires a different method.

Note, by the way, that the signature does not include the subroutine's return type. It isillegal to have two

subroutines in the same class that have the same signature but that have different return types. For example,
it would be a syntax error for a class to contain two methods defined as:

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (3 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.3

i nt getln() { ... }
double getIn() { ... }

So it should be no surprise that in the Text | Oclass, the methods for reading different types are not all
named get | n() . Inagiven class, there can only be one routine that has the name get | n and has no
parameters. The input routinesin Text | Oare distinguished by having different names, such as

getl nlnt() andget | nDoubl e() .

Let's do afew examples of writing small subroutines to perform assigned tasks. Of course, thisis only one
side of programming with subroutines. The task performed by a subroutine is always a subtask in alarger
program. The art of designing those programs -- of deciding how to break them up into subtasks -- is the
other side of programming with subroutines. We'll return to the question of program design in Section 6.

As afirst example, let's write a subroutine to compute and print out all the divisors of agiven positive
integer. The integer will be a parameter to the subroutine.

Remember that the format of any subroutineis

nodi fiers return-type subroutine-name (paraneter-list) {
statenents
}

Writing a subroutine always means filling out this format. The assignment tells us that there is one
parameter, of typei nt , and it tells us what the statements in the body of the subroutine should do. Since
we are only working with static subroutines for now, we'll need to use st at i ¢ asamodifier. We could
add an access modifier (publ i c or pri vat e), but in the absence of any instructions, I'll leaveit out.
Since we are not told to return avalue, the return typeisvoi d. Since no names are specified, we'll have to
make up names for the formal parameter and for the subroutine itself. I'll use N for the parameter and
print D vi sor s for the subroutine name. The subroutine will ook like

static void printDivisors(int N) {
statenents
}

and all we have left to do isto write the statements that make up the body of the routine. Thisis not
difficult. Just remember that you have to write the body assuming that N already has a value! The algorithm
is: "For each possible divisor Din therangefrom 1 to N, if D evenly divides N, then print D." Written in
Java, this becomes:

static void printDivisors(int N) {

/1 Print all the divisors of N

/1 W assune that Nis a positive integer.
int D /'l One of the possible divisors of N
Systemout.println("The divisors of " + N+ " are:");
for (D=1, D<= N Dt+) {

if (N%D==20)
Systemout. println(D);

}

I've added comments indicating the contract of the subroutine -- that is, what it does and what assumptions
it makes. The contract includes the assumption that Nis a positive integer. It is up to the caller of the
subroutine to make sure that this assumption is satisfied.

As a second short example, consider the assignment: Write a subroutine named pr i nt Row. It should have
aparameter ch of typechar and aparameter N of typei nt . The subroutine should print out aline of text
containing N copies of the character ch.

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (4 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.3

Here, we are told the name of the subroutine and the names of the two parameters, so we don't have much
choice about the first line of the subroutine definition. The task in this case is pretty simple, so the body of
the subroutine is easy to write. The complete subroutineis given by

static void printRow(char ch, int N) {
/1 Wite one |line of output containing N copies of the

/'l character ch. |If N<= 0, an enpty line is output.
int i; // Loop-control variable for counting off the copies.
for (i =1;, i <= N i++) {

Systemout.print(ch);
}
Systemout. println();

}

Note that in this case, the contract makes no assumption about N, but it makesit clear what will happenin
all cases, including the unexpected casethat N < 0.

Finally, let's do an example that shows how one subroutine can build on another. Let's write a subroutine
that takesa St r i ng as a parameter. For each character in the string, it will print aline of output containing
25 copies of that character. It should use the pr i nt Row() subroutine to produce the output.

Again, we get to choose a name for the subroutine and a name for the parameter. I'll call the subroutine
pri nt RowsFr ontt ri ng and the parameter st r . The algorithm is pretty clear: For each positioni in
thestringstr, call pri nt Row(str. char At (i), 25) to print oneline of the output. So, we get:

static void printRowsFronString(String str) {
/'l For each character in str, wite a line of output
/'l containing 25 copies of that character.
int i; [/ Loop-control variable for counting off the chars.
for (i =0; i <str.length(); i++) {
printRow(str.charAt(i), 25);

}

We could use pr i nt RowsFrontt ri nginamai n() routine such as

public static void main(String[] args) {
String inputLine; // Line of text input by user.
Textl O put("Enter a line of text: ");
i nputLine = Textl O getln();
Text1 O putln();
pri nt RowsFronttring(inputline);

}

Of course, the three routines, mai n() , pri nt RowsFrontt ri ng(),and pri nt Row(), would have to
be collected together inside the same class.The program is rather useless, but it does demonstrate the use of
subroutines. You'll find the program in the file RowsOfChars.java, if you want to take alook. Here's an

applet that simulates the program:

Sorry, your browser doesn't
support Java.

I'll finish this section on parameters by noting that we now have three different sorts of variables that can be
used inside a subroutine: local variables defined in the subroutine, formal parameter names, and static
member variables that are defined outside the subroutine but inside the same class as the subroutine.

Local variables have no connection to the outside world; they are purely part of the internal working of the

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (5 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.3

subroutine. Parameters are used to "drop" values into the subroutine when it is called, but once the
subroutine starts executing, parameters act much like local variables. Changes made inside a subroutine to a
formal parameter have no effect on the rest of the program (at least if the type of the parameter is one of the
primitive types -- things are more complicated in the case of objects, aswe'll see later).

Things are different when a subroutine uses a variable that is defined outside the subroutine. That variable
exists independently of the subroutine, and it is accessible to other parts of the program, as well asto the
subroutine. Such avariableis said to be global to the subroutine, as opposed to the "local" variables defined
inside the subroutine. The scope of a global variable includes the entire class in which it is defined. Changes
made to a global variable can have effects that extend outside the subroutine where the changes are made.

Y ou've seen how thisworks in the last example in the previous section, where the value of the global

variable, gamesWon, is computed inside a subroutine and is used in the mai n() routine.

It's not always bad to use global variables in subroutines, but you should realize that the global variable then
has to be considered part of the subroutine's interface. The subroutine uses the global variable to
communicate with the rest of the program. Thisis akind of sneaky, back-door communication that isless
visible than communication done through parameters, and it risks violating the rule that the interface of a
black box should be straightforward and easy to understand. So before you use aglobal variablein a
subroutine, you should consider whether it's really necessary.

| don't advise you to take an absolute stand against using global variables inside subroutines. Thereis at
least one good reason to do it: If you think of the class as a whole as being a kind of black box, it can be
very reasonable to let the subroutines inside that box be alittle sneaky about communicating with each
other, if that will make the class as a whole look simpler from the outside.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c4/s3.html (6 of 6) [6/10/2004 8:41:43 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html

Java Programing: Section 4.4

Section 4.4
Return Values

A SUBROUTINE THAT RETURNS A VALUE iscaled afunction. A given function can only return a

value of a specified type, called the return type of the function. A function call generally occursin a
position where the computer is expecting to find avalue, such as the right side of an assignment statement,
as an actual parameter in a subroutine call, or in the middle of some larger expression. A boolean-valued
function can even be used asthe test conditioninani f ,whi | e, or do. . whi | e statement.

(Itisalsolegal to use afunction call as a stand-alone statement, just asif it were aregular subroutine. In
this case, the computer ignores the value computed by the subroutine. Sometimes this makes sense. For
example, the function Text | O. get | n() , with areturn type of St r i ng, reads and returns aline of input
typed in by the user. Usually, the line that is returned is assigned to a variable to be used later in the
program, asin the statement "nane = Text| O getl n(); ". However, thisfunction isalso useful asa
subroutine call statement "Text | O. get | n() ; ", which still reads all input up to and including the next
carriage return. Since thisinput is not assigned to a variable or used in an expression, it is simply discarded.
Sometimes, discarding unwanted input is exactly what you need to do.)

You've already seen how functionssuch asMat h. sqrt () and Text | O. get | nt () can be used. What
you haven't seen is how to write functions of your own. A function takes the same form as aregular
subroutine, except that you have to specify the value that is to be returned by the subroutine. Thisis done
with areturn statement, which takes the form:

return expression;

Such ar et ur n statement can only occur inside the definition of afunction, and the type of the expression
must match the return type that was specified for the function. (More exactly, it must be legal to assign the
expression to avariable whose type is specified by the return type.) When the computer executes this

r et ur n statement, it evaluates the expression, terminates execution of the function, and uses the value of
the expression as the returned value of the function.

For example, consider the function definition

static doubl e pythagorus(double x, double y) {
/'l Conputes the length of the hypotenuse of a right
/'l triangle, where the sides of the triangle are x and vy.
return Math.sqrt(x*x + y*y);

}

Suppose the computer executes the statement "t ot al Length = 17 + pyt hagorus(12,5);".
When it getsto theterm pyt hagor us(12, 5) , it assigns the actual parameters 12 and 5 to the formal
parameters x and y in the function. In the body of the function, it evaluatesMat h. sqrt (12. 0*12. 0 +
5. 0*5. 0),whichworksout to 13. 0. Thisvaueisreturned, so it replaces the function call in the
statement "t ot al Length = 17 + pyt hagorus(12,5);". Thereturnvaueisaddedto 17, and the
result, 30.0, is stored in the variable, t ot al Lengt h. The effect isthe same asif the statement had been
“total Length = 17 + 13.0;".

(Inside an ordinary subroutine -- with declared return type "voi d" -- you can usear et ur n statement with
no expression to immediately terminate execution of the subroutine and return control back to the point in
the program from which the subroutine was called. This can be convenient if you want to terminate
execution somewhere in the middle of the subroutine, but r et ur n statements are fairly rarein
non-function subroutines. In afunction, on the other hand, a return statement, with expression, is always
required.)

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (1 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.4

Hereisavery simple function that could be used in a program to compute 3N+1 sequences. (The 3N+1
sequence problem is one we've looked at several times aready.) Given one term in a 3N+1 sequence, this
function computes the next term of the sequence:

static int nextN(int currentN) {

}

if (currentN %2 == 1) /'l test if current Nis odd
return 3*currentN+ 1; // if so, return this val ue

el se
return currentN/ 2; [/ if not, return this instead

Exactly one of thetwo r et ur n statementsis executed to give the value of the function. A r et ur n
statement can occur anywhere in a function. Some people, however, prefer to useasingler et urn
statement at the very end of the function. This allows the reader to find ther et ur n statement easily. You
might choose to write next N() likethis, for example:

static int nextN(int currentN) {

}

int answer; [/ answer will be the val ue returned
if (currentN %2 == 1) /'l test if current Nis odd
answer = 3*currentN+1; // if so, this is the answer
el se
answer = currentN/ 2; // if not, this is the answer
return answer; /1 (Don't forget to return the answer!)

Here is a subroutine that uses this next N function. In this case, the improvement from the versionin
Section 3isnot great, but if next N() were along function that performed a complex computation, then it

would make alot of sense to hide that complexity inside afunction:

static void Print3NSequence(int startingVal ue) {

/'l Prints a 3N+1 sequence to standard output, using

/'l startingValue as the initial value of N It also

/'l prints the nunber of ternms in the sequence.

/'l The value of startingValue nust be a positive integer.

int N /'l One of the terns in the sequence.

i nt count; /'l The nunber of terns found.

N = startingVal ue; /1l Start the sequence with startingVal ue;
count = 1;

Text 1 O putl n("The 3N+1 sequence starting from" + N);

Text1 O putln();
Textl Q putIn(N); // print initial termof sequence

while (N> 1) {

N = nextN(N); /| Conmpute next term
Il usi ng the function nextN.
count ++; /1l Count this term

Textl O putIn(N); // Print this term
}

Text1 O putln();
Text1 O putl n("There were " + count + " ternms in the sequence.");

/'l end of Print3NSequence()

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (2 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.4

Here are afew more examples of functions. The first one computes a letter grade corresponding to a given
numerical grade, on atypical grading scale:

static char letterGade(int nunmaade) {

/'l Returns the letter grade corresponding to
/'l the nunerical grade, nunx ade.

if (num&ade >= 90)

return 'A'; /'l 90 or above gets an A
else if (nunG ade >= 80)
return 'B'; /1 80 to 89 gets a B
else if (nunG ade >= 65)
return ' C; /Il 65 to 79 gets a C
else if (nunGrade >= 50)
return 'D ; /1 50 to 64 gets a D
el se
return 'F'; /'l anything el se gets an F

} // end of function letterG ade()

Thetype of thereturn value of | et t er G- ade() ischar . Functions can return values of any type at all.
Here's afunction whose return value is of type bool ean. It demonstrates some interesting programming
points, so you should read the comments:

static boolean isPrinme(int N) {

/'l Returns true if Nis a prime nunber. A prine nunber

/1l is an integer greater than 1 that is not divisible

/'l by any positive integer, except itself and 1. If N has
/1l any divisor, D, inthe range 1 <D< N, then it

/1 has a divisor in the range 2 to Math.sqrt(N), nanely

/'l either Ditself or ND. So we only test possible

/1l divisors from2 to Math.sqrt(N).

int divisor; [/ A nunber we will testing to see whether it
Il evenly divides N.

if (N<=1)
return false; // No nunber <= 1 is a prine.

int maxToTry = (int)Math.sqgrt(N);
/1 W will try to divide N by nunbers between
/1 2 and maxToTry; If Nis not evenly divisible
/'l by any of these nunbers, then Nis prine.
/'l (Note that since Math.sqrt(N) is defined to
/'l return a value of type double, the val ue
/'l must be typecast to type int before it can
/'l be assigned to maxToTry.)

for (divisor = 2; divisor <= maxToTry; divisor++) {
if (N%divisor == 0) // Test if divisor evenly divides N
return fal se; /1 1f so, we know N is not prine.
/'l No need to continue testing.

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (3 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.4

/[l If we get to this point, N nust be prine. O herw se,
/1 the function would al ready have been term nated by
/'l a return statenent in the previous for |oop.

return true; // Yes, Nis prine.

} /1 end of function isPrinme()

Finally, hereis afunction with return type St r i ng. Thisfunction hasa St r i ng as parameter. The
returned value is areversed copy of the parameter. For example, the reverse of "Hello World" is"dirow
olleH". The algorithm for computing the reverse of astring, st r , isto start with an empty string and then
to append each character from st r , starting from the last character of st r and working backwards to the
first.

static String reverse(String str) {
/'l Returns a reversed copy of str.
String copy; [// The reversed copy.

int i; /1l One of the positions in str,

Il fromstr.length() - 1 down to O.
copy = ""; /1 Start wth an enpty string.
for (i =str.length() - 1; i >=0; i--) {

/'l Append i-th char of str to copy.
copy = copy + str.charAt(i);
}

return copy;

}

A palindromeis astring that reads the same backwards and forwards, such as"radar”. Ther ever se()
function could be used to check whether a string, wor d, is a palindrome by testing
"I f (word. equal s(reverse(word))".

By the way, atypical beginner's error in writing functionsisto print out the answer, instead of returning it.
This represents a fundamental misunderstanding. The task of a function isto compute a value and return it
to the point in the program where the function was called. That's where the value is used. Maybe it will be
printed out. Maybe it will be assigned to avariable. Maybe it will be used in an expression. But it's not for
the function to decide.

I'll finish this section with a complete new version of the 3N+1 program. Thiswill give me a chanceto
show the function next N() , which was defined above, used in a complete program. I'll also take the
opportunity to improve the program by getting it to print the terms of the sequence in columns, with five
terms on each line. Thiswill make the output more presentable. Thisideaisthis: Keep track of how many
terms have been printed on the current line; when that number gets up to 5, start a new line of output. To
make the terms line up into columns, | will use the version of Text | O. put () with signature put(int,int).
The second i nt parameter tells how wide the columns should be.

public class ThreeN2 {

/*
A programthat conputes and di splays several 3N+1
sequences. Starting values for the sequences are
input by the user. Terns in a sequence are printed
in colums, with five terns on each |line of output.
After a sequence has been displayed, the nunber of

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (4 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.4

terns in that sequence is reported to the user.
*/

public static void main(String[] args) {

Text1 O putl n("This programw || print out 3N+1 sequences");
Text1 QO putln("for starting values that you specify.");
Text1 O putln();

int K /1l Starting point for sequence, specified by the user.
do {

Text1 O putl n("Enter a starting value;");

Text1 O put("To end the program enter 0: ");

K = Textl O getlnt(); /] get starting value from user
if (K> 0) /'l print sequence, but only if Kis >0
Pri nt 3NSequence(K) ;
} while (K> 0); /1l continue only if K>20

} /] end main()

static void Print3NSequence(int startingVal ue) {

/'l Prints a 3N+1 sequence to standard output, using

/'l startingValue as the initial value of N Terns are

/[l printed five to a line. The subroutine also

/1 prints the nunber of terms in the sequence.

/'l The value of startingValue nust be a positive integer.

int N /1 One of the terns in the sequence.
i nt count; /1 The nunber of terns found.
int onLine; // The nunber of terns that have been out put
Il so far on the current I|ine.
N = startingVal ue; /1l Start the sequence with startingVal ue;
count = 1; /1 We have one termso far

Text 1 O putl n("The 3N+1 sequence starting from" + N);
Text1 O putln();

Textl O put(N, 8); // Print initial term using 8 characters.
onLi ne = 1; /1l There's now 1 termon current output |ine.

while (N> 1) {
N = next N(N); // conpute next term

count ++; [/ count this term

if (onLine ==5) { // If current output line is ful
Text1 O putln(); // ...then output a carriage return
onLi ne = 0O; [/ ...and note that there are no terns

[/ on the new |ine.

}

Text O put(N, 8); // Print this termin an 8-char col um.

onLi ne++; // Add 1 to the nunber of terns on this |ine.

}

Text1 O putln(); // end current |ine of output
Text 1 Q. putin(); // and then add a blank line

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (5 of 6) [6/10/2004 8:41:43 AM]

Java Programing: Section 4.4
Text1 O putln("There were " + count + " terns in the sequence.");

} // end of Print3NSequence()

static int nextN(int currentN) {
/'l Conputes and returns the next termin a 3N+1 sequence,

/1l given that the current termis currentN.
if (currentN %2 == 1)
return 3 * currentN + 1;
el se
return currentN / 2;
} /1 end of nextN()

} /1 end of class ThreeN2

Y ou should read this program carefully and try to understand how it works. Here is an applet version for
you to try:

Sorry, your browser doesn't
support Java.

[Next Section | Previous Section | Chapter Index | Main Index]

http://math.hws.edu/eck/cs124/javanotes3/c4/s4.html (6 of 6) [6/10/2004 8:41:43 AM]

http://math.hws.edu/eck/cs124/javanotes3/c4/index.html

Java Programing: Section 4.5

Section 4.5
Toolboxes, API's, and Packages

AS COMPUTERS AND THEIR USER INTERFACES have become easier to use, they have also become

more complex for programmers to deal with. Y ou can write programs for a simple console-style user
interface using just a few subroutines that write output to the console and read the user's typed replies. A
modern graphical user interface, with windows, buttons, scroll bars, menus, text-input boxes, and so on,
might make things easier for the user. But it forces the programmer to cope with a hugely expanded array of
possibilities. The programmer sees this increased complexity in the form of great numbers of subroutines
that are provided for managing the user interface, aswell as for other purposes.

Someone who wants to program for Macintosh computers -- and to produce programs that look and behave
the way users expect them to -- must deal with the Macintosh Toolbox, a collection of well over athousand
different subroutines. There are routines for opening and closing windows, for drawing geometric figures
and text to windows, for adding buttons to windows, and for responding to mouse clicks on the window.
There are other routines for creating menus and for reacting to user selections from menus. Aside from the
user interface, there are routines for opening files and reading data from them, for communicating over a
network, for sending output to a printer, for handling communication between programs, and in general for
doing al the standard things that a computer has to do. Windows 98 and Windows 3.1 provide their own
sets of subroutines for programmers to use, and they are quite a bit different from the subroutines used on
the Mac.

The analogy of a"toolbox" is agood one to keep in mind. Every programming project involves a mixture of
innovation and reuse of existing tools. A programmer is given a set of tools to work with, starting with the
set of basic tools that are built into the language: things like variables, assignment statements, if statements,
and loops. To these, the programmer can add existing toolboxes full of routines that have already been
written for performing certain tasks. Thesetools, if they are well-designed, can be used as true black boxes:
They can be called to perform their assigned tasks without worrying about the particular steps they go
through to accomplish those tasks. The innovative part of programming is to take all these tools and apply
them to some particular project or problem (word-processing, keeping track of bank accounts, processing
image data from a space probe, Web browsing, computer games,...). Thisis called applications
programming.

A software toolbox is akind of black box, and it presents a certain interface to the programmer. This
interface is a specification of what routines are in the toolbox, what parameters they use, and what tasks
they perform. This information constitutes the API, or Applications Programming Interface, associated with
the toolbox. The Macintosh API is a specification of all the routines available in the Macintosh Toolbox. A
company that makes some hardware device -- say a card for connecting a computer to a network -- might
publish an API for that device consisting of alist of routines that programmers can call in order to
communicate with and control the device. Scientists who write a set of routines for doing some kind of
complex computation -- such as solving "differential equations’, say -- would provide an API to allow
others to use those routines without understanding the details of the computations they perform.

The Java programming language is supplemented by alarge, standard API. Y ou've seen part of this AP
already, in the form of mathematical subroutines such asMat h. sqrt (), the St ri ng datatype and its
associated routines, and the Syst em out . pri nt () routines. The standard Java API includes