

Solution for Programming Exercise 6.3

Exercise 6.3:

Write a program that shows
a pair of dice. When the user clicks on the panel in the program, the dice should be rolled
(that is, the dice should be assigned newly computed random values). Each die
should be drawn as a square showing from 1 to 6 dots. Since you have to draw
two dice, its a good idea to write a subroutine, "void drawDie(Graphics g,
int val, int x, int y)", to draw a die at the specified (x,y)
coordinates. The second parameter, val, specifies the value that is
showing on the die. Assume that the size of the panel is 100 by 100 pixels.
Here is a picture of the panel that displays the dice:

[image: a pair of dice]

Discussion

This is largely an exercise in precision drawing.

We need a subclass of JPanel to make the panel.
We will also need an object to respond to mouse events. As always, there are several
ways to approach this: Let the panel implement MouseListener
and listen for events on itself, use a separate class to define the listener object,
or use an anonymous inner class (see Subsection 6.3.5). In this case, I decided
to use an anonymous class, since the mouse-handling code is very simple.
The listener object is created and registered to listen
for mouse events in the constructor of the main class:

addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent evt) {
 roll();
 }
});

By using MouseAdapter instead of
MouseListener as the superclass for the listener, I
avoid the necessity of providing empty definitions for mouseReleased,
mouseClicked, mouseEntered, and mouseExited.
MouseAdapter is discussed in Subsection 6.3.5.
In the mousePressed() method, roll() is a method that
is defined in the main class; it just rolls the dice. It would be
reasonable to put the code for rolling the dice in mousePressed(),
but writing a subroutine to do it makes the program a little easier to
modify for the next exercise. Anyway, when you can identify a
self-contained, meaningful task to be performed, it's never a bad a idea to
write a subroutine to do it. It will make the program more readable, if nothing
else. My roll subroutine assigns random values to the dice and calls
repaint() so that the new values will be shown.

The hardest part of this exercise is drawing the dice. I made each die 35
pixels wide, leaving a 10 pixel border on each side and 10 pixels between the
dice, for a total of 100 pixels.
The top left corner of the left die is at (10,10), the top left
corner of the right die is at (55,55). The 55 includes the 10 pixel
border on the left, the 35 pixel width of the other die, and the 10 pixels
between the dice. The paintComponent()
method calls a drawDie() routine to draw
each die, using the commands:

drawDie(g, die1, 10, 10);
drawDie(g, die2, 55, 55);

where die1 is the numerical value shown on the first die and
die2 is the numerical value of the second die.

As for the drawDie routine, there are two quite different
algorithms that could have been used for drawing the dots. Either:

if the value shown is 1
 draw 1 dot (in the center)
else if the value shown is 2
 draw 2 dots (in the top-left and bottom-right corners)
 .
 .
 .
else if the value shown is 6
 draw 6 dots (along the left and right edges)

Or:

if the value has a dot in the top-left corner
 draw the top-left dot
else if the value has a dot in the top-right corner
 draw the top-right dot
 .
 .
 .
else if the value has a dot in the bottom-right corner
 draw the bottom-right dot

Although the first algorithm is more obvious, the second requires much less
typing. (The first algorithm ends up using 21 drawOval() commands,
while the second uses only 7.) Furthermore, after drawing the dice on paper, I
found that the conditions for testing when a given dot needs to be drawn are
simpler than I expected. For example, the values that need a dot in the
top-left position are all the values greater than 1. The algorithm leads to my
drawDie() routine:

/**
 * Draw a die with upper left corner at (x,y). The die is
 * 35 by 35 pixels in size. The val parameter gives the
 * value showing on the die (that is, the number of dots).
 */
private void drawDie(Graphics g, int val, int x, int y) {
 g.setColor(Color.white);
 g.fillRect(x, y, 35, 35);
 g.setColor(Color.black);
 g.drawRect(x, y, 34, 34);
 if (val > 1) // upper left dot
 g.fillOval(x+3, y+3, 9, 9);
 if (val > 3) // upper right dot
 g.fillOval(x+23, y+3, 9, 9);
 if (val == 6) // middle left dot
 g.fillOval(x+3, y+13, 9, 9);
 if (val % 2 == 1) // middle dot (for odd-numbered val's)
 g.fillOval(x+13, y+13, 9, 9);
 if (val == 6) // middle right dot
 g.fillOval(x+23, y+13, 9, 9);
 if (val > 3) // bottom left dot
 g.fillOval(x+3, y+23, 9, 9);
 if (val > 1) // bottom right dot
 g.fillOval(x+23, y+23, 9,9);
}

It took some care to figure out the numbers to use in the fillOval
commands. The individual dots have a diameter of 9 pixels. There are three rows
of dots, which have a combined height of 27 pixels. That leaves 35 minus 27, or 8
pixels for spacing. I use 3 pixels between the dots and the edge of the die,
and 1 pixel between rows. This puts the tops of the rows at 3, 3+9+1, and
3+9+1+9+1, that is, at 3, 13, and 23. The columns use the same numbers. (If you
believe that I got all this right the first time, I won't disillusion you!)

The paintComponent method just draws the two dice and the border around
the panel

public void paintComponent(Graphics g) {
 super.paintComponent(g); // fill with background color.
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g.setColor(Color.BLUE);
 g.drawRect(0,0,99,99);
 g.drawRect(1,1,97,97);
 drawDie(g, die1, 10, 10);
 drawDie(g, die2, 55, 55);
}

The paintComponent()
method turns on antialiasing, since without it the dots on the dice have a jagged appearance
(see Subsection 6.2.5).

One more small remark on the solution: The constructor of the DicePanel
class sets the preferred size of the panel to be 100-by-100 pixels, using the command:

setPreferredSize(new Dimension(100,100));

Since the main() routine for the program will use the
pack() method to set the size of the frame, it is essential that
the panel have a preferred size. If not, the size of the frame will not
be set correctly.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Shows a pair of dice that are rolled when the user clicks on the
 * program. It is assumed that the panel is 100-by-100 pixels.
 */
public class DicePanel extends JPanel {

 /**
 * A main routine allows this class to be run as an application.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Dice");
 DicePanel content = new DicePanel();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.pack();
 window.setVisible(true);
 }

 //---

 private int die1 = 4; // The values shown on the dice.
 private int die2 = 3;

 /**
 * The constructor adds a mouse listener to the panel. The listener
 * will roll the dice when the user clicks the panel. Also, the
 * background color and the preferred size of the panel are set.
 */
 public DicePanel() {
 setPreferredSize(new Dimension(100,100));
 setBackground(new Color(200,200,255)); // light blue
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent evt) {
 roll();
 }
 });
 }

 /**
 * Draw a die with upper left corner at (x,y). The die is
 * 35 by 35 pixels in size. The val parameter gives the
 * value showing on the die (that is, the number of dots).
 */
 private void drawDie(Graphics g, int val, int x, int y) {
 g.setColor(Color.white);
 g.fillRect(x, y, 35, 35);
 g.setColor(Color.black);
 g.drawRect(x, y, 34, 34);
 if (val > 1) // upper left dot
 g.fillOval(x+3, y+3, 9, 9);
 if (val > 3) // upper right dot
 g.fillOval(x+23, y+3, 9, 9);
 if (val == 6) // middle left dot
 g.fillOval(x+3, y+13, 9, 9);
 if (val % 2 == 1) // middle dot (for odd-numbered val's)
 g.fillOval(x+13, y+13, 9, 9);
 if (val == 6) // middle right dot
 g.fillOval(x+23, y+13, 9, 9);
 if (val > 3) // bottom left dot
 g.fillOval(x+3, y+23, 9, 9);
 if (val > 1) // bottom right dot
 g.fillOval(x+23, y+23, 9,9);
 }

 /**
 * Roll the dice by randomizing their values. Tell the
 * system to repaint the panel, to show the new values.
 */
 void roll() {
 die1 = (int)(Math.random()*6) + 1;
 die2 = (int)(Math.random()*6) + 1;
 repaint();
 }

 /**
 * The paintComponent method just draws the two dice and draws
 * a one-pixel wide blue border around the panel. Antialiasing
 * is turned on to make the ovals look nicer.
 */
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // fill with background color.
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g.setColor(Color.BLUE);
 g.drawRect(0,0,99,99);
 g.drawRect(1,1,97,97);
 drawDie(g, die1, 10, 10);
 drawDie(g, die2, 55, 55);
 }

} // end class DicePanel

Section 6.6

Basic Layout

Components are the fundamental building blocks
of a graphical user interface. But you have to do more with components besides create them.
Another aspect of GUI programming is laying out components on the screen,
that is, deciding where they are drawn and how big they are. You have probably
noticed that computing coordinates can be a difficult problem, especially if
you don't assume a fixed size for the drawing area. Java has a solution for this, as
well.

Components are the visible objects that make up a GUI. Some components are
containers, which can hold other components. Containers in
Java are objects that belong to some subclass of java.awt.Container.
The content pane of a JFrame
is an example of a container. The standard class
JPanel, which we have mostly used as a drawing surface up until now, is
another example of a container.

Because a JPanel object is a
container, it can hold other components. Because a
JPanel is itself a component, you can add a JPanel
to another JPanel. This makes complex
nesting of components possible. JPanels can be used to organize
complicated user interfaces, as shown in this illustration:

[image: illustration of panels nested in other panels]

In this picture, a large panel holds two smaller panels. Each of the two smaller
panels in turn holds three components.

The components in a container must be "laid out," which means setting their
sizes and positions. It's possible to program the layout yourself, but
layout is ordinarily done by a layout manager. A
layout manager is an object associated with a container that implements some
policy for laying out the components in that container. Different types of
layout manager implement different policies. In this section, we will cover
the three most common types of layout manager, and then we will look at
several programming examples that use components and layout.

Every container has a default layout manager and has
an instance method, setLayout(), that takes
a parameter of type LayoutManager and that is used to specify
a different layout manager for the container.
Components are added to a container by calling
an instance method named add() in the container object. There
are actually several versions of the add() method, with different
parameter lists. Different versions of add() are appropriate
for different layout managers, as we will see below.

6.6.1 Basic Layout Managers

Java has a variety of standard layout managers that
can be used as parameters in the setLayout() method. They are defined by
classes in the package java.awt. Here, we will look at
just three of these layout manager classes: FlowLayout,
BorderLayout, and GridLayout.

A FlowLayout simply lines up components in a row across the
container. The size of each component is equal to that component's "preferred size."
After laying out as many items as will fit in a row
across the container, the layout manager will move on to the next row.
The default layout for a JPanel is a
FlowLayout; that is, a JPanel uses a
FlowLayout unless you specify a different layout manager by
calling the panel's setLayout() method.

The components in a given row can be either left-aligned, right-aligned, or centered within
that row, and there can be horizontal and vertical gaps between components. If the default constructor,
"new FlowLayout()", is used, then the components on each row will be centered
and both the horizontal and the vertical gaps will be five pixels. The constructor

public FlowLayout(int align, int hgap, int vgap)

can be used to specify alternative alignment and gaps. The possible values
of align are FlowLayout.LEFT, FlowLayout.RIGHT, and
FlowLayout.CENTER.

Suppose that container is a container object that is using a FlowLayout
as its layout manager. Then, a component, comp, can be added to the container with
the statement

container.add(comp);

The FlowLayout will line up all the components that have been
added to the container in this way. They will be lined up in the order in which they
were added. For example, this picture shows five buttons in a panel that uses
a FlowLayout:

[image: buttons in a panel that uses a FlowLayout]

Note that since the five buttons will not fit in a single row across the panel,
they are arranged in two rows. In each row, the buttons are grouped together and are
centered in the row. The buttons were added to the panel using the statements:

panel.add(button1);
panel.add(button2);
panel.add(button3);
panel.add(button4);
panel.add(button5);

When a container uses a layout manager, the layout manager is ordinarily responsible
for computing the preferred size of the container (although a different preferred size
could be set by calling the container's setPreferredSize method). A
FlowLayout prefers to put its components in a single row,
so the preferred width is the total of the preferred widths of all the components, plus
the horizontal gaps between the components. The preferred height is the maximum
preferred height of all the components.

A BorderLayout layout manager is designed to display
one large, central component, with up to four smaller components arranged around
the edges of the central component. If a container, cntr, is
using a BorderLayout, then a component, comp,
should be added to the container using a statement of the form

cntr.add(comp, borderLayoutPosition);

where borderLayoutPosition specifies what position the component
should occupy in the layout and is given as one of the constants
BorderLayout.CENTER, BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout.EAST,
or BorderLayout.WEST. The meaning of the five
positions is shown in this diagram:

[image: positions of components in a BorderLayout]

Note that a border layout can contain fewer than five components,
so that not all five of the possible positions need to be filled.
It would be very unusual, however, to have no center component.

A BorderLayout sets the sizes of its components
as follows: The NORTH and SOUTH components (if
present) are shown at their preferred heights, but their width is set equal
to the full width of the container. The EAST and WEST
components are shown at their preferred widths, but their height is set
to the height of the container, minus the space occupied by the NORTH
and SOUTH components. Finally, the CENTER component
takes up any remaining space. The preferred size of the CENTER
component is ignored when the layout is done, but it is taken into account when
the preferred size of the container as a whole is computed. You should make sure that the components
that you put into a BorderLayout are suitable for the
positions that they will occupy. A horizontal slider or text field, for example,
would work well in the NORTH or SOUTH position, but
wouldn't make much sense in the EAST or WEST position.

The default constructor, new BorderLayout(), leaves no space
between components. If you would like to leave some space,
you can specify horizontal and vertical gaps in the constructor of the
BorderLayout object. For example, if you say

panel.setLayout(new BorderLayout(5,7));

then the layout manager will insert horizontal gaps of 5 pixels between
components and vertical gaps of 7 pixels between components. The background
color of the container will show through in these gaps. The default layout for
the original content pane that comes with a JFrame
is a BorderLayout with no horizontal or vertical gap.

Finally, we consider the GridLayout layout manager.
A grid layout lays out components in a grid containing rows and columns of equal
sized rectangles. This illustration shows how the components would be arranged
in a grid layout with 4 rows and 3 columns:

[image: components in a grid layout]

If a container uses a
GridLayout, the appropriate add method for the container
takes a single parameter of type Component (for example:
cntr.add(comp)). Components are added to the grid in the order shown;
that is, each row is filled from left to right before going on the next row.

The constructor for a GridLayout takes the form
"new GridLayout(R,C)", where R is the number of rows
and C is the number of columns. If you want
to leave horizontal gaps of H pixels between columns and vertical gaps
of V pixels between rows, use "new GridLayout(R,C,H,V)"
instead.

When you use a GridLayout, it's probably good form to add just
enough components to fill the grid. However, this is not required. In fact, as
long as you specify a non-zero value for the number of rows, then the number of
columns is essentially ignored. The system will use just as many columns as are
necessary to hold all the components that you add to the container. If you want
to depend on this behavior, you should probably specify zero as the number of
columns. You can also specify the number of rows as zero. In that case, you
must give a non-zero number of columns. The system will use the specified
number of columns, with just as many rows as necessary to hold the components
that are added to the container.

Horizontal grids, with a single row, and vertical grids, with a single
column, are very common. For example, suppose that button1,
button2, and button3 are buttons and that you'd like to
display them in a horizontal row in a panel. If you use a horizontal grid for
the panel, then the buttons will completely fill that panel and will all be the
same size. The panel can be created as follows:

JPanel buttonBar = new JPanel();
buttonBar.setLayout(new GridLayout(1,3));
 // (Note: The "3" here is pretty much ignored, and
 // you could also say "new GridLayout(1,0)".
 // To leave gaps between the buttons, you could use
 // "new GridLayout(1,0,5,5)".)
buttonBar.add(button1);
buttonBar.add(button2);
buttonBar.add(button3);

You might find this button bar to be more attractive than the one
that uses the default FlowLayout layout manager.

6.6.2 Borders

We have seen how to leave gaps between the components in a container, but what
if you would like to leave a border around the outside of the container? This
problem is not handled by layout managers. Instead, borders in Swing are represented
by objects. A Border object can be added to any JComponent,
not just to containers. Borders can be more than just empty space.
The class javax.swing.BorderFactory contains a
large number of static methods for creating border objects. For example, the
function

BorderFactory.createLineBorder(Color.BLACK)

returns an object that represents a one-pixel wide black line around the
outside of a component. If comp is a JComponent, a border can
be added to comp using its setBorder() method. For
example:

comp.setBorder(BorderFactory.createLineBorder(Color.BLACK));

Once a border has been set for a JComponent, the border is drawn
automatically, without any further effort on the part of the programmer. The
border is drawn along the edges of the component, just inside its boundary. The
layout manager of a JPanel or other container will take the space
occupied by the border into account. The components that are added to the
container will be displayed in the area inside the border. I don't recommend
using a border on a JPanel that is being used as a drawing surface.
However, if you do this, you should take the border into account. If you draw
in the area occupied by the border, that part of your drawing will be covered
by the border.

Here are some of the static methods that can be used to create borders:

	
BorderFactory.createEmptyBorder(top,left,bottom,right)
 -- leaves an empty border around the edges of a component. Nothing is drawn in
this space, so the background color of the component will appear in the area occupied by the
border. The parameters are integers that give the width of the border along the
top, left, bottom, and right edges of the component. This is actually very
useful when used on a JPanel that contains other components. It puts
some space between the components and the edge of the panel. It can also be
useful on a JLabel, which otherwise would not have any
space between the text and the edge of the label.

	
BorderFactory.createLineBorder(color,thickness) --
draws a line around all four edges of a component. The first parameter is of
type Color and specifies the color of the line. The second parameter
is an integer that specifies the thickness of the border, in pixels. If the second
parameter is omitted, a line of thickness 1 is drawn.

	
BorderFactory.createMatteBorder(top,left,bottom,right,color)
 -- is similar to createLineBorder, except that you can specify
individual thicknesses for the top, left, bottom, and right edges of the
component.

	
BorderFactory.createEtchedBorder()
 -- creates a border that looks like a groove etched around the boundary of the
component. The effect is achieved using lighter and darker shades of the
component's background color, and it does not work well with every background
color.

	
BorderFactory.createLoweredBevelBorder() -- gives a
component a three-dimensional effect that makes it look like it is lowered into
the computer screen. As with an EtchedBorder, this only works well for certain
background colors.

	
BorderFactory.createRaisedBevelBorder() -- similar
to a LoweredBevelBorder, but the component looks like it is raised above the
computer screen.

	
BorderFactory.createTitledBorder(title) -- creates a
border with a title. The title is a String, which is displayed in the
upper left corner of the border.

There are many other methods in the BorderFactory class, most of
them providing variations of the basic border styles given here. The following
illustration shows six components with six different border styles. The text in each
component is the command that created the border for that component:

[image: a panel containing subpanels with several different types of borders]

(The source code for the program that produced this picture can be found
in BorderDemo.java.)

6.6.3 SliderAndButtonDemo

Now that we have looked at components and layouts, it's time to put
them together into some complete programs. We start with a simple demo
that uses a JLabel, three JButtons,
and a couple of JSliders, all laid out in a
GridLayout, as shown in this picture:

[image: picture from SliderAndButtonDemo]

The sliders in this program control the foreground and background color of the label,
and the buttons control its font style. Writing this program is a matter of creating
the components, laying them out, and programming listeners to respond to events
from the sliders and buttons. My program is defined as a subclass of JPanel
that implements
ChangeListener and ActionListener, so that the
panel itself can act as the listener for change events from the sliders and action events from the buttons.
In the constructor, the six components are created and configured,
a GridLayout is installed as the layout manager for
the panel, and the components are added to the panel:

/* Create the display label, with properties to match the
 values of the sliders and the setting of the combo box. */

displayLabel = new JLabel("Hello World!", JLabel.CENTER);
displayLabel.setOpaque(true);
displayLabel.setBackground(new Color(100,100,100));
displayLabel.setForeground(Color.RED);
displayLabel.setFont(new Font("Serif", Font.BOLD, 30));
displayLabel.setBorder(BorderFactory.createEmptyBorder(0,8,0,8));

/* Create the sliders, and set up the panel to listen for
 ChangeEvents that are generated by the sliders. */

bgColorSlider = new JSlider(0,255,100);
bgColorSlider.addChangeListener(this);

fgColorSlider = new JSlider(0,100,0);
fgColorSlider.addChangeListener(this);

/* Create three buttons to control the font style, and set up the
 panel to listen for ActionEvents from the buttons. */

JButton plainButton = new JButton("Plain Font");
plainButton.addActionListener(this);
JButton italicButton = new JButton("Italic Font");
italicButton.addActionListener(this);
JButton boldButton = new JButton("Bold Font");
boldButton.addActionListener(this);

/* Set the layout for the panel, and add the six components.
 Use a GridLayout with 3 rows and 2 columns, and with
 5 pixels between components. */

setLayout(new GridLayout(3,2,5,5));
add(displayLabel);
add(plainButton);
add(bgColorSlider);
add(italicButton);
add(fgColorSlider);
add(boldButton);

The class also defines the methods required by the ActionListener
and ChangeListener interfaces. The actionPerformed()
method is called when the user clicks one of the buttons. This method changes
the font in the JLabel, where the font depends on which button was
clicked. To determine which button was clicked, the method uses evt.getActionCommand(),
which returns the text from the button:

public void actionPerformed(ActionEvent evt) {
 String cmd = evt.getActionCommand();
 if (cmd.equals("Plain Font")) {
 displayLabel.setFont(new Font("Serif", Font.PLAIN, 30));
 }
 else if (cmd.equals("Italic Font")) {
 displayLabel.setFont(new Font("Serif", Font.ITALIC, 30));
 }
 else if (cmd.equals("Bold Font")) {
 displayLabel.setFont(new Font("Serif", Font.BOLD, 30));
 }
}

And the stateChanged() method, which is called when the user
manipulates one of the sliders, uses the value on the slider to compute a new
foreground or background color for the label. The method checks
evt.getSource() to determine which slider was changed:

public void stateChanged(ChangeEvent evt) {
 if (evt.getSource() == bgColorSlider) {
 int bgVal = bgColorSlider.getValue();
 displayLabel.setBackground(new Color(bgVal,bgVal,bgVal));
 // NOTE: The background color is a shade of gray,
 // determined by the setting on the slider.
 }
 else {
 float hue = fgColorSlider.getValue()/100.0f;
 displayLabel.setForeground(Color.getHSBColor(hue, 1.0f, 1.0f));
 // Note: The foreground color ranges through all the colors
 // of the spectrum.
 }
}

Note that the slider variables are global variables in the program because they are referenced
in the stateChanged() method as well as in the constructor. On the other hand, the
button variables are local variables in the constructor because that is the only place where they
are used. The complete source code for this example is in the file
SliderAndButtonDemo.java.

6.6.4 A Simple Calculator

As our next example, we look briefly at an example that uses nested subpanels
to build a more complex user interface. The program has two JTextFields
where the user can enter two numbers, four JButtons that the
user can click to add, subtract, multiply, or divide the two numbers, and
a JLabel that displays the result of the operation. Here
is a picture from the program:

[image: screenshot from SimpleCalc.java]

This example uses a panel with a
GridLayout that has four rows and one column. In this
case, the layout is created with the statement:

setLayout(new GridLayout(4,1,3,3));

which allows a 3-pixel gap between the rows where the gray background color
of the panel is visible.

The first row of the grid layout actually contains two components,
a JLabel displaying the text "x ="
and a JTextField. A grid layout can only
have one component in each position. In this case, the component in the first row
is a JPanel, a subpanel that is nested inside
the main panel. This subpanel in turn contains the label and text
field. This can be programmed as follows:

xInput = new JTextField("0", 10); // Create a text field sized to hold 10 chars.
JPanel xPanel = new JPanel(); // Create the subpanel.
xPanel.add(new JLabel(" x = ")); // Add a label to the subpanel.
xPanel.add(xInput); // Add the text field to the subpanel

add(xPanel); // Add the subpanel to the main panel.

The subpanel uses the default FlowLayout layout manager,
so the label and text field are simply placed next to each other in the
subpanel at their preferred size, and are centered in the subpanel.

Similarly, the third row of the grid layout is a subpanel that contains four
buttons. In this case, the subpanel uses a GridLayout with
one row and four columns, so that the buttons are all the same size and completely
fill the subpanel.

One other point of interest in this example is the actionPerformed()
method that responds when the user clicks one of the buttons. This method must
retrieve the user's numbers from the text fields, perform the appropriate
arithmetic operation on them (depending on which button was clicked), and
set the text of the JLabel (named answer)
to represent the result. However, the contents of
the text fields can only be retrieved as strings, and these strings must be
converted into numbers. If the conversion fails, the label is set to display
an error message:

public void actionPerformed(ActionEvent evt) {

 double x, y; // The numbers from the input boxes.

 try {
 String xStr = xInput.getText();
 x = Double.parseDouble(xStr);
 }
 catch (NumberFormatException e) {
 // The string xStr is not a legal number.
 answer.setText("Illegal data for x.");
 xInput.requestFocusInWindow();
 return;
 }

 try {
 String yStr = yInput.getText();
 y = Double.parseDouble(yStr);
 }
 catch (NumberFormatException e) {
 // The string yStr is not a legal number.
 answer.setText("Illegal data for y.");
 yInput.requestFocusInWindow();
 return;
 }

 /* Perform the operation based on the action command from the
 button. The action command is the text displayed on the button.
 Note that division by zero produces an error message. */

 String op = evt.getActionCommand();
 if (op.equals("+"))
 answer.setText("x + y = " + (x+y));
 else if (op.equals("-"))
 answer.setText("x - y = " + (x-y));
 else if (op.equals("*"))
 answer.setText("x * y = " + (x*y));
 else if (op.equals("/")) {
 if (y == 0)
 answer.setText("Can't divide by zero!");
 else
 answer.setText("x / y = " + (x/y));
 }

} // end actionPerformed()

The complete source code for this example can be found in SimpleCalc.java.

6.6.5 Using a null Layout

As mentioned above, it is possible to do without a layout manager altogether.
For our next example, we'll look at a panel that does not use a layout
manager. If you set the layout manager of a container to be null,
by calling container.setLayout(null), then
you assume complete responsibility for positioning and sizing the components in
that container.

If comp is any component, then the statement

comp.setBounds(x, y, width, height);

puts the top left corner of the component at the point (x,y),
measured in the coordinate system of the container that contains the
component, and it sets the width and height of the component to the specified
values. You should only set the bounds of a component if the container that
contains it has a null layout manager. In a container that has a non-null
layout manager, the layout manager is responsible for setting the bounds, and
you should not interfere with its job.

Assuming that you have set the layout manager to null, you can call
the setBounds() method any time you like. (You can even make a
component that moves or changes size while the user is watching.) If you are
writing a panel that has a known, fixed size, then you can set the bounds of
each component in the panel's constructor. Note that you must also add
the components to the panel, using the panel's add(component)
instance method; otherwise, the component will not appear on the screen.

Our example contains four components: two buttons, a label, and a
panel that displays a checkerboard pattern:

[image: NullLayoutDemo with checkerboard, two buttons, and a message]

This is just an example of using a null layout; it doesn't do anything,
except that clicking the buttons changes the text of the label. (We will use
this example in Section 7.5 as a starting point for a checkers game.)

The panel in this program is defined by the class NullLayoutDemo,
which is created as a subclass of JPanel. The four
components are created and added to the panel in the constructor.
Then the setBounds() method of each component is
called to set the size and position of the component:

public NullLayoutDemo() {

 setLayout(null); // I will do the layout myself!

 setBackground(new Color(0,120,0)); // A dark green background.

 setBorder(BorderFactory.createEtchedBorder());

 setPreferredSize(new Dimension(350,240));

 /* Create the components and add them to the content pane. If you
 don't add them to a container, they won't appear, even if
 you set their bounds! */

 board = new Checkerboard();
 // (Checkerboard is a subclass of JPanel, defined below as a static
 // nested class inside the main class.)
 add(board);

 newGameButton = new JButton("New Game");
 newGameButton.addActionListener(this);
 add(newGameButton);

 resignButton = new JButton("Resign");
 resignButton.addActionListener(this);
 add(resignButton);

 message = new JLabel("Click \"New Game\" to begin.");
 message.setForeground(new Color(100,255,100)); // Light green.
 message.setFont(new Font("Serif", Font.BOLD, 14));
 add(message);

 /* Set the position and size of each component by calling
 its setBounds() method. */

 board.setBounds(20,20,164,164);
 newGameButton.setBounds(210, 60, 120, 30);
 resignButton.setBounds(210, 120, 120, 30);
 message.setBounds(20, 200, 330, 30);

} // end constructor

It's fairly easy in this case to get a reasonable layout. It's much
more difficult to do your own layout if you want to allow for changes of size.
In that case, you have to respond to changes in the container's size by
recomputing the sizes and positions of all the components that it contains. If
you want to respond to changes in a container's size, you can register an
appropriate listener with the container. Any component generates an event of
type ComponentEvent when its size changes (and also when it is moved,
hidden, or shown). You can register a ComponentListener with the
container and respond to resize events by recomputing the sizes and
positions of all the components in the container. Consult a Java reference for
more information about ComponentEvents. However, my real advice is
that if you want to allow for changes in the container's size, try to find a
layout manager to do the work for you.

The complete source code for this example is in NullLayoutDemo.java.

6.6.6 A Little Card Game

For a final example, let's look at something a little more interesting as a program.
The example is a simple card game in which you look at a playing card and try to
predict whether the next card will be higher or lower in value. (Aces have the
lowest value in this game.) You've seen a text-oriented version of the same
game in Subsection 5.4.3. Section 5.4 also introduced
Deck, Hand, and Card
classes that are used by the program. In this GUI version of the game,
you click on a button to make your
prediction. If you predict wrong, you lose. If you make three correct
predictions, you win. After completing one game, you can click the "New Game"
button to start a new game. Here is
what the program looks like in the middle of a game:

[image: GUI version of the HighLow card game]

The complete source code for the panel can be found in the file
HighLowGUI.java. I encourage you to compile and run it.
Remember that you also need Card.java, Deck.java,
and Hand.java, since they define classes that are used in the program.

The overall structure of the main panel in this example should be reasonably clear:
It has three buttons in a subpanel at the bottom of the main panel and a large drawing
surface that displays the cards and a message. (The cards and message are not
components in this example; they are drawn using the graphics context in the panel's
paintComponent() method.) The main panel uses a
BorderLayout. The drawing surface occupies the
CENTER position of the border layout. The subpanel that contains
the buttons occupies the SOUTH position of the border layout,
and the other three positions of the borderlayout are empty.

The drawing surface is defined by a nested class named CardPanel,
which is subclass of JPanel. I have chosen to let the
drawing surface object do most of the work of the game: It listens for
events from the three buttons and responds by taking the appropriate actions.
The main panel is defined by HighLowGUI itself, which
is also a subclass of JPanel. The constructor
of the HighLowGUI class creates all the other
components, sets up event handling, and lays out the components:

public HighLowGUI() { // The constructor.

 setBackground(new Color(130,50,40));

 setLayout(new BorderLayout(3,3)); // BorderLayout with 3-pixel gaps.

 CardPanel board = new CardPanel(); // Where the cards are drawn.
 add(board, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel(); // The subpanel that holds the buttons.
 buttonPanel.setBackground(new Color(220,200,180));
 add(buttonPanel, BorderLayout.SOUTH);

 JButton higher = new JButton("Higher");
 higher.addActionListener(board); // The CardPanel listens for events.
 buttonPanel.add(higher);

 JButton lower = new JButton("Lower");
 lower.addActionListener(board);
 buttonPanel.add(lower);

 JButton newGame = new JButton("New Game");
 newGame.addActionListener(board);
 buttonPanel.add(newGame);

 setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

} // end constructor

The programming of the drawing surface class, CardPanel,
is a nice example of thinking in terms of a state machine. (See Subsection 6.4.4.)
It is important to think in terms of the states that the game can be in, how the
state can change, and how the response to events can depend on the state. The
approach that produced the original, text-oriented game in
Subsection 5.4.3 is not appropriate here. Trying to think about
the game in terms of a process that goes step-by-step from beginning to end is
more likely to confuse you than to help you.

The state of the game includes the cards and the message. The cards are
stored in an object of type Hand.
The message is a String.
These values are stored in instance variables. There is also another, less
obvious aspect of the state: Sometimes a game is in progress, and the user is
supposed to make a prediction about the next card. Sometimes we are between
games, and the user is supposed to click the "New Game" button. It's a good
idea to keep track of this basic difference in state. The CardPanel class uses a
boolean instance variable named gameInProgress for this purpose.

The state of the game can change whenever the user clicks on a button. The
CardPanel class implements the ActionListener interface
and defines an actionPerformed() method to respond to the user's
clicks. This method simply calls one of three other methods,
doHigher(), doLower(), or newGame(), depending on
which button was pressed. It's in these three event-handling methods that the
action of the game takes place.

We don't want to let the user start a new game if a game is currently in
progress. That would be cheating. So, the response in the newGame()
method is different depending on whether the state variable
gameInProgress is true or false. If a game is in progress, the
message instance variable should be set to be an error message. If a
game is not in progress, then all the state variables should be set to
appropriate values for the beginning of a new game. In any case, the board must
be repainted so that the user can see that the state has changed. The complete
newGame() method is as follows:

/**
 * Called by the CardPanel constructor, and called by actionPerformed() if
 * the user clicks the "New Game" button. Start a new game.
 */
void doNewGame() {
 if (gameInProgress) {
 // If the current game is not over, it is an error to try
 // to start a new game.
 message = "You still have to finish this game!";
 repaint();
 return;
 }
 deck = new Deck(); // Create the deck and hand to use for this game.
 hand = new Hand();
 deck.shuffle();
 hand.addCard(deck.dealCard()); // Deal the first card into the hand.
 message = "Is the next card higher or lower?";
 gameInProgress = true;
 repaint();
} // end doNewGame()

The doHigher() and doLower() methods are almost identical
to each other (and could probably have been combined into one method with a
parameter, if I were more clever). Let's look at the doHigher()
routine. This is called when the user clicks the "Higher" button. This only
makes sense if a game is in progress, so the first thing doHigher()
should do is check the value of the state variable gameInProgress. If
the value is false, then doHigher() should just set up an
error message. If a game is in progress, a new card should be added to the hand
and the user's prediction should be tested. The user might win or lose at this
time. If so, the value of the state variable gameInProgress must be
set to false because the game is over. In any case, the board is
repainted to show the new state. Here is the doHigher() method:

/**
 * Called by actionPerformed() when user clicks the "Higher" button.
 * Check the user's prediction. Game ends if user guessed
 * wrong or if the user has made three correct predictions.
 */
void doHigher() {
 if (gameInProgress == false) {
 // If the game has ended, it was an error to click "Higher",
 // So set up an error message and abort processing.
 message = "Click \"New Game\" to start a new game!";
 repaint();
 return;
 }
 hand.addCard(deck.dealCard()); // Deal a card to the hand.
 int cardCt = hand.getCardCount();
 Card thisCard = hand.getCard(cardCt - 1); // Card just dealt.
 Card prevCard = hand.getCard(cardCt - 2); // The previous card.
 if (thisCard.getValue() < prevCard.getValue()) {
 gameInProgress = false;
 message = "Too bad! You lose.";
 }
 else if (thisCard.getValue() == prevCard.getValue()) {
 gameInProgress = false;
 message = "Too bad! You lose on ties.";
 }
 else if (cardCt == 4) { // The hand is full, after three correct guesses.
 gameInProgress = false;
 message = "You win! You made three correct guesses.";
 }
 else {
 message = "Got it right! Try for " + cardCt + ".";
 }
 repaint();
} // end doHigher()

The paintComponent() method of the CardPanel class
uses the values in the state variables to decide what to show. It displays the
string stored in the message variable. It draws each of the cards in
the hand. There is one little tricky bit: If a game is in progress, it
draws an extra face-down card, which is not in the hand, to represent the next
card in the deck. Drawing the cards requires some care and computation. I wrote
a method, "void drawCard(Graphics g, Card card, int x, int y)", which
draws a card with its upper left corner at the point (x,y). The
paintComponent() routine decides where to draw each card and calls
this routine to do the drawing. You can check out all the details in the source
code, HighLowGUI.java. (The playing cards used in this program
are not very impressive. A version of the program with images that
actually look like cards can be found in Subsection 13.1.3.)

Solution for Programming Exercise 6.1

Exercise 6.1:

In the SimpleStamper example from
Subsection 6.3.3, a rectangle or oval is drawn on the panel when
the user clicks the mouse. Except, when the user shift-clicks, the panel is cleared
instead. Modify this class so that the modified version will continue to draw figures as the user
drags the mouse. That is, the mouse will leave a trail of figures as the user
drags. However, if the user shift-clicks, the panel should simply be
cleared and no figures should be drawn even if the user drags the mouse after
shift-clicking. Here is a picture of my solution:

[image: the programming showing trails of ovals and rects]

The source code for the original program is SimpleStamper.java.
See the discussion of dragging in Subsection 6.3.4.
(Note that the original version uses a black background, with a black border around
each shape. That didn't work well with a lot of closely spaced shapes, so the new
version uses a white background.)

If you want to make the problem a little more challenging, when drawing shapes
during a drag operation, make sure that the shapes that are drawn are at least, say,
5 pixels apart. To implement this, you have to keep track of the position of the
last shape that was drawn.

Discussion

In order to implement dragging in the new version, we need a
MouseMotionListener in addition to the MouseListener
that is already present in the original version. In the original, the panel
class itself implements MouseListener, so I just added
MouseMotionListener:

public class SimpleStamperWithDrag extends JPanel
 implements MouseListener, MouseMotionListener { . . .

Of course, the mouse motion listener has to be registered with the panel
in order for it to hear any events from the panel. This is done by adding the line

addMouseMotionListener(this);

to the constructor. Here "this" refers to the panel object itself and is used because
the panel itself implements MouseMotionListener, and it
will listen for mouse motion events from itself. (It's awfully easy to forget this step when
implementing event-handling! Nothing will happen when the event occurs, and it can be hard
to realize what the problem is.)

To finish the implementation of the mouse motion listener interface,
the mouseMoved and mouseDragged methods must be added to
the class. The program does not respond when the user moves the mouse without holding
down any mouse button, so the mouseMoved method is empty.
The mouseDragged method must draw a figure at the current mouse
position; the code for this is almost identical to the existing drawing code in
the mousePressed routine and can be copied from there. However,
nothing should be drawn in the mouseDragged method if the user
started the mouse drag gesture by shift-clicking. The discussion of
dragging in Subsection 6.3.4, suggests that the program should use an
instance variable named dragging to keep track of whether or not to
draw anything in the mouseDragged method. In the mousePressed
routine, this variable is set to false if the user shift-clicked, and
to true otherwise. The mouseDragged routine checks the
value of dragging; if the value is false, it means that
the drag started with a shift-click and therefore nothing should be drawn.
The complete source code is shown below.

The picture produced by the program would look better if there were always
at least a few pixels between the shapes that are drawn as the user drags the
mouse, as suggested at the end of the exercise. It is not difficult to make
the change. The panel needs two new instance variables, prevX
and prevY, of type int, to store the position of
the shape that was drawn most recently. Their values should be set after
drawing a shape in both mousePressed() and mouseDragged()
with the statements

prevX = x;
prevY = y;

The values of prevX and prevY can then be
tested at the beginning of the mouseDragged() method to decide
whether or not to draw a shape. The shape should be drawn only if either
the x-coordinate or the y-coordinate has changed by at least 5 pixels since
the last time a shape was drawn. For example, mouseDragged()
could make the test as follows:

public void mouseDragged(MouseEvent evt) {
 if (dragging == false) {
 return;
 }
 int x = evt.getX(); // x-coordinate where user clicked.
 int y = evt.getY(); // y-coordinate where user clicked.
 if (Math.abs(prevX - x) < 5 && Math.abs(prevY - y) < 5)
 return;
 .
 .
 .

The Solution

Here is the code for the modified panel class, with changes from the
original (SimpleStamper.java) shown in red italic:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * A simple demonstration of MouseEvents. Shapes are drawn
 * on a black background when the user clicks the panel. If
 * the user Shift-clicks, the panel is cleared. If the user
 * right-clicks the panel, a blue oval is drawn. Otherwise,
 * when the user clicks, a red rectangle is drawn. The contents of
 * the panel are not persistent. For example, they might disappear
 * if the panel is resized or is covered and uncovered.
 * Ovals and rects continue to be drawn as the user drags the mouse.
 * This class has a main() routine to allow it to be run as an application.
 */
public class SimpleStamperWithDrag extends JPanel
 implements MouseListener, MouseMotionListener {

 public static void main(String[] args) {
 JFrame window = new JFrame("Simple Stamper");
 SimpleStamperWithDrag content = new SimpleStamperWithDrag();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(400,300);
 window.setVisible(true);
 }

 // --

 /**
 * This variable is set to true during a drag operation, unless the
 * user was holding down the shift key when the mouse was first
 * pressed (since in that case, the mouse gesture simply clears the
 * panel and no figures should be drawn if the user drags the mouse).
 */
 private boolean dragging;

 /**
 * This constructor simply sets the background color of the panel to be black
 * and sets the panel to listen for mouse events on itself.
 */
 public SimpleStamperWithDrag() {
 setBackground(Color.WHITE);
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 /**
 * Since this panel has been set to listen for mouse events on itself,
 * this method will be called when the user clicks the mouse on the panel.
 * This method is part of the MouseListener interface.
 */
 public void mousePressed(MouseEvent evt) {

 if (evt.isShiftDown()) {
 // The user was holding down the Shift key. Just repaint the panel.
 // Since this class does not define a paintComponent() method, the
 // method from the superclass, JPanel, is called. That method simply
 // fills the panel with its background color, which is black. The
 // effect is to clear the panel.
 dragging = false;
 repaint();
 return;
 }

 dragging = true;

 int x = evt.getX(); // x-coordinate where user clicked.
 int y = evt.getY(); // y-coordinate where user clicked.

 Graphics g = getGraphics(); // Graphics context for drawing directly.
 // NOTE: This is considered to be bad style!

 if (evt.isMetaDown()) {
 // User right-clicked at the point (x,y). Draw a blue oval centered
 // at the point (x,y). (A black outline around the oval will make it
 // more distinct when shapes overlap.)
 g.setColor(Color.BLUE); // Blue interior.
 g.fillOval(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawOval(x - 30, y - 15, 60, 30);
 }
 else {
 // User left-clicked (or middle-clicked) at (x,y).
 // Draw a red rectangle centered at (x,y).
 g.setColor(Color.RED); // Red interior.
 g.fillRect(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawRect(x - 30, y - 15, 60, 30);
 }

 g.dispose(); // We are finished with the graphics context, so dispose of it.

 } // end mousePressed();

 /**
 * This method is called when the user drags the mouse. If a the value of the
 * instance variable dragging is true, it will draw a rect or oval at the
 * current mouse position.
 */
 public void mouseDragged(MouseEvent evt) {
 if (dragging == false) {
 return;
 }
 int x = evt.getX(); // x-coordinate where user clicked.
 int y = evt.getY(); // y-coordinate where user clicked.
 Graphics g = getGraphics(); // Graphics context for drawing directly.
 // NOTE: This is considered to be bad style!
 if (evt.isMetaDown()) {
 // The user is using the right mouse button; draw an oval.
 g.setColor(Color.BLUE); // Blue interior.
 g.fillOval(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawOval(x - 30, y - 15, 60, 30);
 }
 else {
 g.setColor(Color.RED); // Red interior.
 g.fillRect(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawRect(x - 30, y - 15, 60, 30);
 }
 g.dispose(); // We are finished with the graphics context, so dispose of it.
 } // end mouseDragged();

 // The next four empty routines are required by the MouseListener interface.
 // They don't do anything in this class, so their definitions are empty.

 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }
 public void mouseClicked(MouseEvent evt) { }
 public void mouseReleased(MouseEvent evt) { }

 // The next routines is required by the MouseMotionListener interface.

 public void mouseMoved(MouseEvent evt) { }

} // end class SimpleStamperWithDrag

Programming Exercises for Chapter 6

Exercise 6.1:

In the SimpleStamper example from
Subsection 6.3.3, a rectangle or oval is drawn on the panel when
the user clicks the mouse. Except, when the user shift-clicks, the panel is cleared
instead. Modify this class so that the modified version will continue to draw figures as the user
drags the mouse. That is, the mouse will leave a trail of figures as the user
drags. However, if the user shift-clicks, the panel should simply be
cleared and no figures should be drawn even if the user drags the mouse after
shift-clicking. Here is a picture of my solution:

[image: the programming showing trails of ovals and rects]

The source code for the original program is SimpleStamper.java.
See the discussion of dragging in Subsection 6.3.4.
(Note that the original version uses a black background, with a black border around
each shape. That didn't work well with a lot of closely spaced shapes, so the new
version uses a white background.)

If you want to make the problem a little more challenging, when drawing shapes
during a drag operation, make sure that the shapes that are drawn are at least, say,
5 pixels apart. To implement this, you have to keep track of the position of the
last shape that was drawn.

See the Solution

Exercise 6.2:

Write a program that shows a small red square and a small blue
square. The user should be able to drag either square with the mouse.
(You'll need an instance variable to remember which square the user is
dragging.) The user can drag the square out of the panel if she wants; if she
does this, there is no
way to get it back.

Note that for this exercise, you should do all the drawing in the
paintComponent() method (as indeed you should whenever possible).

See the Solution

Exercise 6.3:

Write a program that shows
a pair of dice. When the user clicks on the panel in the program, the dice should be rolled
(that is, the dice should be assigned newly computed random values). Each die
should be drawn as a square showing from 1 to 6 dots. Since you have to draw
two dice, its a good idea to write a subroutine, "void drawDie(Graphics g,
int val, int x, int y)", to draw a die at the specified (x,y)
coordinates. The second parameter, val, specifies the value that is
showing on the die. Assume that the size of the panel is 100 by 100 pixels.
Here is a picture of the panel that displays the dice:

[image: a pair of dice]

See the Solution

Exercise 6.4:

In Exercise 6.3,
you wrote a pair-of-dice panel where the dice are rolled when the user clicks on
the panel. Now make a pair-of-dice program in which the user rolls the
dice by clicking a button. The button should appear under the
panel that shows the dice. Also make the following change: When the
dice are rolled, instead of just showing the new value, show a short animation
during which the values on the dice are changed in every frame. The animation
is supposed to make the dice look more like they are actually rolling.

See the Solution

Exercise 6.5:

In Exercise 3.8, you drew a checkerboard. For this
exercise, write a program where the user can select a square by
clicking on it. (Use a JPanel for the checkerboard.)
Highlight the selected square by drawing a colored border around
it. When the program starts, no square is selected. When the user
clicks on a square that is not currently selected, it becomes selected (and the
previously selected square, if any, is unselected). If the
user clicks the square that is selected, it becomes unselected. Assume that the
size of the panel is exactly 160 by 160 pixels, so that each square on the
checkerboard is 20 by 20 pixels. Here is my checkerboard, with the square in
row 3, column 3 selected:

[image: checkerboard]

See the Solution

Exercise 6.6:

For this exercise, you
should modify the SubKiller game from Subsection 6.4.4. You
can start with the existing source code, from the file
SubKiller.java. Modify the game so it
keeps track of the number of hits and misses and displays these quantities.
That is, every time the depth charge blows up the sub, the number of hits goes
up by one. Every time the depth charge falls off the bottom of the screen
without hitting the sub, the number of misses goes up by one. There is room at
the top of the panel to display these numbers. To do this exercise, you only
have to add a half-dozen lines to the source code. But you have to figure out
what they are and where to add them. To do this, you'll have to read the source
code closely enough to understand how it works.

See the Solution

Exercise 6.7:

Exercise 5.2 involved a class, StatCalc.java,
that could compute some statistics
of a set of numbers. Write a GUI program that uses the StatCalc class to
compute and display statistics of numbers entered by the user. The panel will
have an instance variable of type StatCalc that does the computations.
The panel should include a JTextField where the user enters a number.
It should have four labels that display four statistics for the numbers that
have been entered: the number of numbers, the sum, the mean, and the standard
deviation. Every time the user enters a new number, the statistics displayed on
the labels should change. The user enters a number by typing it into the
JTextField and pressing return. There should be a "Clear" button that
clears out all the data. This means creating a new StatCalc object and
resetting the displays on the labels. My panel also has an "Enter" button that
does the same thing as pressing the return key in the JTextField.
(Recall that a JTextField generates an ActionEvent when the
user presses return, so your panel should register itself to listen for
ActionEvents from the JTextField as well as the buttons.)
Here is a picture of my solution to this problem:

[image: screenshot from StatCalcGUI program]

See the Solution

Exercise 6.8:

 Write a program that has a
JTextArea where the user can enter some text.
Then program should have a
button such that when the user clicks on the button, the panel will count the number
of lines in the user's input, the number of words in the user's input, and the
number of characters in the user's input. This information should be displayed
on three labels. Recall that if textInput is a
JTextArea, then you can get the contents of the JTextArea by
calling the function textInput.getText(). This function returns a
String containing all the text from the text area. The number
of characters is just the length of this String. Lines in the
String are separated by the new line character, '\n', so the number of
lines is just the number of new line characters in the String, plus
one. Words are a little harder to count. Exercise 3.4
has some advice about finding the
words in a String. Essentially, you want to count the number of
characters that are first characters in words. Don't forget to put your
JTextArea in a JScrollPane,
and add the scroll pane to the container, not the text area. Scrollbars should appear when the
user types more text than will fit in the available area. Here is a picture of my solution:

[image: TextCounter program showing some text and the numbers of words, lines and chars]

See the Solution

Exercise 6.9:

 A polygon
is a geometric figure made up of a sequence of
connected line segments. The points where the line segments meet are called the
vertices of the polygon. The Graphics
class includes commands for drawing and filling polygons. For these commands,
the coordinates of the vertices of the polygon are stored in arrays. If
g is a variable of type Graphics then

	
g.drawPolygon(xCoords, yCoords,
pointCt) will draw the outline of the polygon with vertices at the points
(xCoords[0],yCoords[0]), (xCoords[1],yCoords[1]), ...,
(xCoords[pointCt-1],yCoords[pointCt-1]). The third parameter,
pointCt, is an int that specifies the number of vertices of
the polygon. Its value should be 3 or greater. The first two parameters are
arrays of type int[]. Note that the polygon automatically includes a
line from the last point, (xCoords[pointCt-1],yCoords[pointCt-1]),
back to the starting point (xCoords[0],yCoords[0]).

	
g.fillPolygon(xCoords, yCoords,
pointCt) fills the interior of the polygon with the current drawing
color. The parameters have the same meaning as in the drawPolygon()
method. Note that it is OK for the sides of the polygon to cross each other,
but the interior of a polygon with self-intersections might not be exactly what
you expect.

Write a program that lets the user draw polygons. As the user clicks a
sequence of points, count them and store their x- and y-coordinates in two
arrays. These points will be the vertices of the polygon. As the user is creating
the polygon, you should just connect all the points with line segments.
When the user clicks near the starting point, draw the complete polygon. Draw
it with a red interior and a black border. Once the user has completed a
polygon, the next click will clear the data and start a new polygon from scratch.
All drawing should be done in the paintComponent() method.

Here is a picture of my solution after the user has drawn a fairly complex polygon:

[image: screen shot of the solution]

See the Solution

Exercise 6.10:

Write a GUI Blackjack program
that lets the user play a game of Blackjack, with the computer as the dealer.
The program should draw the user's cards and the dealer's cards, just as was
done for the graphical HighLow card game in Subsection 6.6.6.
You can use the source code for that game, HighLowGUI.java, for some ideas about how to
write your Blackjack game. The structures of the HighLow panel and the
Blackjack panel are very similar. You will certainly want to use the
drawCard() method from the HighLow program.

You can find a description of the game of Blackjack in Exercise 5.5.
Add the following rule to that
description: If a player takes five cards without going over 21, that player
wins immediately. This rule is used in some casinos. For your program, it means
that you only have to allow room for five cards. You should assume that the
panel is just wide enough to show five cards, and that it is tall enough
show the user's hand and the dealer's hand.

Note that the design of a GUI Blackjack game is very different from the
design of the text-oriented program that you wrote for Exercise 5.5. The user
should play the game by clicking on "Hit" and "Stand" buttons. There should be
a "New Game" button that can be used to start another game after one game ends.
You have to decide what happens when each of these buttons is pressed. You
don't have much chance of getting this right unless you think in terms of the
states that the game can be in and how the state can change.

Your program will need the classes defined in
Card.java,
Hand.java,
Deck.java, and
BlackjackHand.java.

The next exercise has a picture of a blackjack game that
you can use a guide, except that the version for this exercise does not allow betting.

See the Solution

Exercise 6.11:

In the Blackjack game
from Exercise 6.10, the user can click on the "Hit",
"Stand", and "NewGame" buttons even when it doesn't make sense to do so. It
would be better if the buttons were disabled at the appropriate times. The "New
Game" button should be disabled when there is a game in progress. The "Hit" and
"Stand" buttons should be disabled when there is not a game in progress. The
instance variable gameInProgress tells whether or not a game is in
progress, so you just have to make sure that the buttons are properly enabled
and disabled whenever this variable changes value.
I strongly advise writing a subroutine that can be called whenever it is
necessary to set the value of the gameInProgress variable. Then the
subroutine can take responsibility for enabling and disabling the buttons.
Recall that if bttn is a variable of type JButton, then
bttn.setEnabled(false) disables the button and
bttn.setEnabled(true) enables the button.

As a second (and more difficult) improvement, make it possible
for the user to place bets on the Blackjack game. When the program starts, give
the user $100. Add a JTextField to the strip of controls along the
bottom of the panel. The user can enter the bet in this JTextField.
When the game begins, check the amount of the bet. You should do this when the
game begins, not when it ends, because several errors can occur: The contents
of the JTextField might not be a legal number, the bet that the user
places might be more money than the user has, or the bet might be <= 0. You
should detect these errors and show an error message instead of starting the
game. The user's bet should be an integral number of dollars.

It would be a good idea to make the JTextField uneditable while the
game is in progress. If betInput is the JTextField, you can
make it editable and uneditable by the user with the commands
betInput.setEditable(true) and betInput.setEditable(false).

In the paintComponent() method, you should include commands to
display the amount of money that the user has left.

There is one other thing to think about: Ideally, the program should not start a new
game when it is first created. The user should have a chance to set a bet
amount before the game starts. So, in the constructor for the drawing surface class, you
should not call doNewGame(). You might want to display a message such
as "Welcome to Blackjack" before the first game starts.

Here is a picture of my program:

[image: a blackjack game in progress]

See the Solution

Section 6.7

Menus and Dialogs

We have already encountered many of the basic
aspects of GUI programming, but professional programs use many
additional features. We will cover some of the advanced features
of Java GUI programming in Chapter 13, but in this
section we look briefly at a few more features that are
essential for writing GUI programs. I will discuss these features
in the context of a
"MosaicDraw" program that is shown in this picture:

[image: a face drawn with MosaicDraw]

The source code for the program is in the file MosaicDraw.java.
The program also requires MosaicPanel.java and
MosaicDrawController.java. You will want to try it out!

As the user clicks-and-drags the
mouse in the large drawing area of this program, it leaves a trail of little colored
squares. There is some random variation in the color of the squares. (This is meant
to make the picture look a little more like a real mosaic, which is a picture made out of
small colored stones in which there would be some natural color variation.)
There is a menu bar above the drawing area. The "Control" menu contains
commands for filling and clearing the drawing area, along with a few options that affect
the appearance of the picture. The "Color" menu lets the user select the color that will
be used when the user draws. The "Tools" menu affects the behavior of the mouse.
Using the default "Draw" tool, the mouse leaves a trail of single squares. Using the
"Draw 3x3" tool, the mouse leaves a swath of colored squares that is three squares wide.
There are also "Erase" tools, which let the user set squares back to their default
black color.

The drawing area of the program is a panel that belongs to the MosaicPanel
class, a subclass of JPanel that is defined in MosaicPanel.java.
MosaicPanel is a highly reusable class for representing mosaics of colored
rectangles. It was also used behind the scenes in the sample program in Subsection 4.6.3.
The MosaicPanel class
does not directly support drawing on the mosaic, but it does support setting
the color of each individual square. The MosaicDraw program installs a mouse listener on
the panel; the mouse listener responds to mousePressed and mouseDragged events on the
panel by setting the color of the square that contains the mouse. This is a nice example of
applying a listener to an object to do something that was not programmed into the object
itself.

The file MosaicDraw.java is a simple class that contains only the main()
routine for the program.
Most of the programming for MosaicDraw can be found in MosaicDrawController.java.
(It might have gone into the MosaicPanel class, if I had not decided to
use that pre-existing class in unmodified form.) It is the MosaicDrawController
class that creates a MosaicPanel object and adds a mouse listener to
it. It also creates the menu bar that is shown at the top of the program, and it implements all
the commands in the menu bar. It has an instance method getMosaicPanel() that
returns a reference to the mosaic panel that it has created, and it has another instance
method getMenuBar() that returns a menu bar for the program. These methods are
used to obtain the panel and menu bar so that they can be added to the program's window.

I urge you to study MosaicDrawController.java and MosaicDraw.java. I will not be discussing all aspects
of the code here, but you should be able to understand it all after reading this section. As for
MosaicPanel.java, it uses some techniques that you would not understand at this
point, but I encourage you to at least read the comments in this file to learn about the API
for mosaic panels.

6.7.1 Menus and Menubars

MosaicDraw is the first example that we have seen that uses a menu bar. Fortunately,
menus are very easy to use in Java. The items in a menu are represented by the
class JMenuItem (this class and other menu-related classes are
in package javax.swing). Menu items are used in almost exactly the
same way as buttons. In fact, JMenuItem and JButton
are both subclasses of a class, AbstractButton, that defines their
common behavior. In particular, a JMenuItem is created using
a constructor that specifies the text of the menu item, such as:

JMenuItem fillCommand = new JMenuItem("Fill");

You can add an ActionListener to a JMenuItem
by calling the menu item's addActionListener() method.
The actionPerformed() method of the
action listener is called when the user selects the item from the menu.
You can change the text of the item by calling its setText(String) method,
and you can enable it and disable it using the setEnabled(boolean) method.
All this works in exactly the same way as for a JButton.

The main difference between a menu item and a button, of course, is that a menu
item is meant to appear in a menu rather than in a panel. A menu in Java is
represented by the class JMenu. A JMenu has a name,
which is specified in the constructor, and it has an add(JMenuItem) method that
can be used to add a JMenuItem to the menu. For example, the "Tools"
menu in the MosaicDraw program could be created as follows, where listener
is a variable of type ActionListener:

JMenu toolsMenu = new JMenu("Tools"); // Create a menu with name "Tools"

JMenuItem drawCommand = new JMenuItem("Draw"); // Create a menu item.
drawCommand.addActionListener(listener); // Add listener to menu item.
toolsMenu.add(drawCommand); // Add menu item to menu.

JMenuItem eraseCommand = new JMenuItem("Erase"); // Create a menu item.
eraseCommand.addActionListener(listener); // Add listener to menu item.
toolsMenu.add(eraseCommand); // Add menu item to menu.
 .
 . // Create and add other menu items.
 .

Once a menu has been created, it must be added to a menu bar. A menu bar is represented
by the class JMenuBar. A menu bar is just a container for menus.
It does not have a name, and its constructor does not have any parameters. It has an
add(JMenu) method that can be used to add menus to the menu bar. The name of
the menu then appears in the menu bar. For example,
the MosaicDraw program uses three menus, controlMenu, colorMenu,
and toolsMenu. We could create a menu bar and add the menus to it with
the statements:

JMenuBar menuBar = new JMenuBar();
menuBar.add(controlMenu);
menuBar.add(colorMenu);
menuBar.add(toolsMenu);

The final step in using menus is to use the menu bar in a window such as a JFrame.
We have already seen that a frame has a
"content pane." The menu bar is another component of the frame,
not contained inside the content pane. The JFrame class has
an instance method setMenuBar(JMenuBar) that can be used to set the menu bar.
(There can only be one, so this is a "set" method rather than an "add" method.)
In the MosaicDraw program, the menu bar is created by a MosaicDrawController
object and can be obtained by calling that object's getMenuBar() method.
The main() routine in MosaicDraw.java gets the menu bar from the controller and
adds it to the window.
Here is the basic code that is used (in somewhat modified form) to set up the interface:

MosaicDrawController controller = new MosaicDrawController();

MosaicPanel content = controller.getMosaicPanel();
window.setContentPane(content); // Use panel from controller as content pane.

JMenuBar menuBar = controller.getMenuBar();
window.setJMenuBar(menuBar); // Use the menu bar from the controller.

Using menus always follows the same general pattern: Create a menu bar. Create menus
and add them to the menu bar. Create menu items and add them to the menus (and set up
listening to handle action events from the menu items). Use the menu bar in a
window by calling the window's setJMenuBar() method.

There are other kinds of menu items, defined by subclasses of JMenuItem,
that can be added to menus. One of these is JCheckBoxMenuItem,
which represents menu items that can be in one of two states, selected or not selected.
A JCheckBoxMenuItem has the same functionality and is used in
the same way as a JCheckBox (see Subsection 6.5.3).
Three JCheckBoxMenuItems are used in the "Control" menu
of the MosaicDraw program. One is used to turn the random color variation of
the squares on and off. Another turns a symmetry feature on and off; when symmetry is
turned on, the user's drawing is reflected horizontally and vertically to produce
a symmetric pattern. And the third checkbox menu item shows and hides the
"grouting" in the mosaic; the grouting is the gray lines that are drawn around each
of the little squares in the mosaic. The menu item that corresponds to the
"Use Randomness" option in the "Control" menu could be set up with the statements:

JMenuItem useRandomnessToggle = new JCheckBoxMenuItem("Use Randomness");
useRandomnessToggle.addActionListener(listener); // Set up a listener.
useRandomnessToggle.setSelected(true); // Randomness is initially turned on.
controlMenu.add(useRandomnessToggle); // Add the menu item to the menu.

In my program, the "Use Randomness" JCheckBoxMenuItem
corresponds to a boolean-valued instance variable named useRandomness
in the MosaicDrawController class.
This variable is part of the state of the controller object.
Its value is tested whenever the user draws one
of the squares, to decide whether or not to add a random variation to the color of
the square. When the user selects the "Use Randomness" command
from the menu, the state of the JCheckBoxMenuItem is reversed,
from selected to not-selected or from not-selected to selected. The ActionListener
for the menu item checks whether the menu item is selected or not, and it changes the
value of useRandomness to match. Note that selecting the menu command
does not have any immediate effect on the picture that is shown in the window. It just
changes the state of the program so that future drawing operations on the part of
the user will have a different effect. The "Use Symmetry" option in the "Control"
menu works in much the same way. The "Show Grouting" option is a little different.
Selecting the "Show Grouting" option does have an immediate effect: The picture is
redrawn with or without the grouting, depending on the state of the menu item.

My program uses a single ActionListener to respond to
all of the menu items in all the menus. This is not a particularly good design, but it
is easy to implement for a small program like this one. The actionPerformed() method
of the listener object uses the statement

String command = evt.getActionCommand();

to get the action command of the source of the event; this will be the text of
the menu item. The listener tests the value of command to determine
which menu item was selected by the user. If the menu item is a
JCheckBoxMenuItem, the listener must check the state of
the menu item. The menu item is the source of the event that is being processed.
The listener can get its hands on the menu item object by
calling evt.getSource(). Since the return value of getSource()
is of type Object, the return value must be type-cast to
the correct type. Here, for example, is the code that handles the "Use Randomness"
command:

if (command.equals("Use Randomness")) {
 // Set the value of useRandomness depending on the menu item's state.
 JCheckBoxMenuItem toggle = (JCheckBoxMenuItem)evt.getSource();
 useRandomness = toggle.isSelected();
}

(The actionPerformed() method uses a rather long if..then..else
statement to check all the possible action commands. It might be more natural and efficient
use a switch statement with command as the selector and
all the possible action commands as cases.)

In addition to menu items, a menu can contain lines that separate the menu items
into groups. In the MosaicDraw program, the "Control" menu contains such a separator.
A JMenu has an instance method addSeparator()
that can be used to add a separator to the menu. For example, the separator in the
"Control" menu was created with the statement:

controlMenu.addSeparator();

A menu can also contain a submenu. The name of the submenu appears as an item
in the main menu. When the user moves the mouse over the submenu name, the submenu
pops up. (There is no example of this in the MosaicDraw program.) It is very easy
to do this in Java: You can add one JMenu to another
JMenu using a statement such as
mainMenu.add(submenu), and it becomes a submenu.

6.7.2 Dialogs

One of the commands in the "Color" menu of the MosaicDraw program is
"Custom Color...". When the user selects this command, a new window
appears where the user can select a color. This window is an example
of a dialog or dialog box.
A dialog is a type of window that is generally
used for short, single purpose interactions with the user. For example, a
dialog box can be used to display a message to the user, to ask the user a
question, to let the user select a file to be opened,
or to let the user select a color. In Swing, a dialog box is
represented by an object belonging to the class JDialog
or to a subclass.

The JDialog class is very similar to JFrame
and is used in much the same way.
Like a frame, a dialog box is a separate window. Unlike a frame, however, a
dialog is not completely independent. Every dialog is associated with a
frame (or another dialog), which is called its parent window.
The dialog box is dependent on its parent. For
example, if the parent is closed, the dialog box will also be closed. It is
possible to create a dialog box without specifying a parent, but in that case
an invisible frame is created by the system to serve as the parent.

Dialog boxes can be either modal or
modeless. When a modal dialog is created, its
parent frame is blocked. That is, the user will not be able to interact with
the parent until the dialog box is closed. Modeless dialog boxes do not block
their parents in the same way, so they seem a lot more like independent
windows. In practice, modal dialog boxes are easier to use and are much more
common than modeless dialogs. All the examples we will look at are modal.

Aside from having a parent, a JDialog can be created and used in
the same way as a JFrame. However, I will not give any examples here of using
JDialog directly. Swing has many convenient methods for creating
common types of dialog boxes. For example, the color choice dialog that appears
when the user selects the "Custom Color" command in the MosaicDraw program belongs
to the class JColorChooser, which is a subclass of
JDialog. The JColorChooser class has
a static method that makes color choice dialogs very easy to use:

Color JColorChooser.showDialog(Component parentComp,
 String title, Color initialColor)

When you call this method, a dialog box appears that allows the user to
select a color. The first parameter specifies the parent of the dialog; the parent
window of the dialog will be the window (if any) that contains parentComp;
this parameter can be null and it can itself be a frame or dialog object.
The second parameter is a string that appears in the title bar of the dialog box.
And the third parameter, initialColor, specifies the color that is
selected when the color choice dialog first appears.
The dialog has a sophisticated interface that allows the user to
select a color. When the user presses an "OK" button, the dialog box
closes and the selected color is returned as the value of the method. The user
can also click a "Cancel" button or close the dialog box in some other way; in
that case, null is returned as the value of the method. This is a modal
dialog, and showDialog() does not return until the user dismisses
the dialog box in some way. By using this
predefined color chooser dialog, you can write one line of code that will let
the user select an arbitrary color. Swing also has a JFileChooser
class that makes it almost as easy to show a dialog box that lets the user select
a file to be opened or saved.

The JOptionPane class includes a variety of methods for
making simple dialog boxes that are variations on three basic types: a
"message" dialog, a "confirm" dialog, and an "input" dialog. (The variations
allow you to provide a title for the dialog box, to specify the icon that
appears in the dialog, and to add other components to the dialog box. I will
only cover the most basic forms here.)

A message dialog simply displays a message string to the user. The user
(hopefully) reads the message and dismisses the dialog by clicking the "OK"
button. A message dialog can be shown by calling the static method:

void JOptionPane.showMessageDialog(Component parentComp, String message)

The message can be more than one
line long. Lines in the message should be separated by newline characters, \n.
New lines will not be inserted automatically, even if the message is very
long. For example, assuming that the special variable this
refers to a Component:

JOptionPane.showMessageDialog(this, "This program is about to crash!\n"
 + "Sorry about that.");

An input dialog displays a question or request and lets the user type in a
string as a response. You can show an input dialog by calling:

String JOptionPane.showInputDialog(Component parentComp, String question)

Again, parentComp can be null, and
the question can include newline
characters. The dialog box will contain an input box, an "OK" button, and a
"Cancel" button. If the user clicks "Cancel", or closes the dialog box in some
other way, then the return value of the method is null. If the user
clicks "OK", then the return value is the string that was entered by the user.
Note that the return value can be an empty string (which is not the same as a
null value), if the user clicks "OK" without typing anything in the
input box. If you want to use an input dialog to get a numerical value from the
user, you will have to convert the return value into a number (see Subsection 3.7.2).
As an example,

String name;
name = JOptionPanel.showInputDialog(null, "Hi! What's your name?");
if (name == null)
 JOptionPane.showMessageDialog(null, "Well, I'll call you Grumpy.");
else
 JOptionPane.showMessageDialog(null, "Pleased to meet you, " + name);

Finally, a confirm dialog presents a question and three response buttons:
"Yes", "No", and "Cancel". A confirm dialog can be shown by calling:

int JOptionPane.showConfirmDialog(Component parentComp, String question)

The return value tells you the user's response. It is one of the following
constants:

	
JOptionPane.YES_OPTION -- the user clicked the "Yes" button

	
JOptionPane.NO_OPTION -- the user clicked the "No" button

	
JOptionPane.CANCEL_OPTION -- the user clicked the "Cancel" button

	
JOptionPane.CLOSE_OPTION -- the dialog was closed in some other way.

By the way, it is possible to omit the Cancel button from a confirm dialog
by calling one of the other methods in the JOptionPane class. Just
call:

JOptionPane.showConfirmDialog(
 parent, question, title, JOptionPane.YES_NO_OPTION)

The final parameter is a constant which specifies that only a "Yes" button
and a "No" button should be used. The third parameter is a string that will be
displayed as the title of the dialog box window.

A small demo program,
SimpleDialogDemo.java is available to demonstrate
JColorChooser and several JOptionPane dialogs.

6.7.3 Fine Points of Frames

In previous sections, whenever I used a frame, I created a JFrame
object in a main() routine and installed a panel as the content pane of
that frame. This works fine, but a more object-oriented approach is to define a subclass
of JFrame and to set up the contents of the frame in the constructor
of that class. This is what I did in the case of the
MosaicDraw program. MosaicDraw is defined as a subclass of
JFrame. The definition of this class is very short, but it illustrates
several new features of frames that I want to discuss:

public class MosaicDraw extends JFrame {

 public static void main(String[] args) {
 JFrame window = new MosaicDraw();
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setVisible(true);
 }

 public MosaicDraw() {
 super("Mosaic Draw");
 MosaicDrawController controller = new MosaicDrawController();
 setContentPane(controller.getMosaicPanel());
 setJMenuBar(controller.getMenuBar());
 pack();
 Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();
 setLocation((screensize.width - getWidth())/2,
 (screensize.height - getHeight())/2);
 }

}

The constructor in this class begins with the statement super("Mosaic Draw"),
which calls the constructor in the superclass, JFrame. The parameter
specifies a title that will appear in the title bar of the window. The next three lines
of the constructor set up the contents of the window; a MosaicDrawController
is created, and the content pane and menu bar of the window are obtained from the
controller. The next line is something new. If window is a variable of
type JFrame (or JDialog), then the
statement window.pack() will resize the window so that its size matches
the preferred size of its contents. (In this case, of course, "pack()"
is equivalent to "this.pack()"; that is, it refers to the window that is
being created by the constructor.) The pack() method is usually the best
way to set the size of a window. Note that it will only work correctly if every
component in the window has a correct preferred size. This is only a problem in
two cases: when a panel is used as a drawing surface and when a panel is used as
a container with a null layout manager. In both these cases there is no
way for the system to determine the correct preferred size automatically, and you should
set a preferred size by hand. For example:

panel.setPreferredSize(new Dimension(400, 250));

The last two lines in the constructor position the window so that it is exactly
centered on the screen. The line

Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();

determines the size of the screen. The size of the screen is screensize.width
pixels in the horizontal direction and screensize.height pixels in the vertical
direction. The setLocation() method of the frame sets the position of the
upper left corner of the frame on the screen. The expression "screensize.width - getWidth()"
is the amount of horizontal space left on the screen after subtracting the width of the window.
This is divided by 2 so that half of the empty space will be to the left of the window, leaving
the other half of the space to the right of the window.
Similarly, half of the extra vertical space is above the window, and half is below.

Note that the constructor has created the window and set its size and position, but that
at the end of the constructor, the window is not yet visible on the screen. (More exactly,
the constructor has created the window object, but the visual representation of
that object on the screen has not yet been created.) To show the window on the screen,
it will be necessary to call its instance method, window.setVisible(true).

In addition to the constructor, the MosaicDraw class includes
a main() routine. This makes it possible to run MosaicDraw
as a stand-alone application. (The main() routine, as a static method,
has nothing to do with the function of a MosaicDraw object, and it
could (and perhaps should) be in a separate class.) The main() routine
creates a MosaicDraw and makes it visible on the screen. It
also calls

window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

which means that the program will end when the user closes the window. Note that this
is not done in the constructor because doing it there would make MosaicDraw
less flexible. It is possible, for example, to write a program that lets the user
open multiple MosaicDraw windows. In that case, we don't want to shut down the whole program just
because the user has closed one of the windows.
There are other possible values for the default close operation of a window:

	
JFrame.DO_NOTHING_ON_CLOSE -- the user's attempts to close the window by
clicking its close box will be ignored, except that it will generate a WindowEvent.
A program can listen for this event and take any action it wants when the user attempts to close
the window.

	
JFrame.HIDE_ON_CLOSE -- when the user clicks its close box,
the window will be hidden just as if window.setVisible(false) were called.
The window can be made visible again by calling window.setVisible(true).
This is the value that is used if you do not
specify another value by calling setDefaultCloseOperation.

	
JFrame.DISPOSE_ON_CLOSE -- the window is closed and any operating
system resources used by the window are released. It is not possible to make the
window visible again. (This is the proper way to permanently get rid of a window without
ending the program.
You can accomplish the same thing programmatically by calling the instance method
window.dispose().)

6.7.4 Creating Jar Files

As the final topic for this chapter, we look again at jar files. Recall
that a jar file is a "java archive" that can contain a number of class files. When creating
a program that uses more than one class, it's usually a good idea to place all the classes that
are required by the program into a jar file. If that is done, then a user will only need that
one file to run the program. In fact, it is possible to make a so-called executable
jar file. A user can run an executable jar file in much the same way
as any other application, usually by double-clicking the icon of the jar file.
(The user's computer must have a correct version of Java installed, and the computer
must be configured correctly for this to work. The configuration is usually done automatically when
Java is installed, at least on Windows and Mac OS.)

The question, then, is how to create a jar file. The answer depends on what
programming environment you are using. The two basic types of programming environment -- command line
and IDE -- were discussed in Section 2.6. Any IDE (Integrated Programming Environment)
for Java should have a command for creating jar files. In the Eclipse IDE, for example,
it can be done as follows: In the Package Explorer pane, select the programming project (or just
all the individual source code files that you need). Right-click on the selection, and
choose "Export" from the menu that pops up. In the window that appears, select "JAR file"
and click "Next". In the window that appears next, enter a name for the jar file in
the box labeled "JAR file". (Click the "Browse" button next to this box to select the
file name using a file dialog box.) The name of the file should end with ".jar".
If you are creating a regular jar file, not an executable
one, you can hit "Finish" at this point, and the jar file will be created. To create an
executable file, hit the "Next" button twice to get to the "Jar Manifest
Specification" screen. At the bottom of this screen is an input box labeled "Main class".
You have to enter the name of the class that contains the main() routine
that will be run when the jar file is executed. If you hit the "Browse" button next to
the "Main class" box, you can select the class from a list of classes that contain
main() routines. Once you've selected the main class, you can
click the "Finish" button to create the executable jar file. (Note that newer versions of Eclipse
also have an option for exporting an executable Jar file in fewer steps.)

It is also possible to create jar files on the command line. The Java Development Kit
includes a command-line program named jar that can be used to create jar files.
If all your classes are in the default package (like most of the examples in this book), then
the jar command is easy to use. To create a non-executable jar file on the command line,
change to the directory that contains the class files that you want to include in the jar.
Then give the command

jar cf JarFileName.jar *.class

where JarFileName can be any name that you want to use for the jar file.
The "*" in "*.class" is a wildcard that makes *.class match every class
file in the current directory. This means that all the class files in the directory will be
included in the jar file. If you want to include only certain class files, you
can name them individually, separated by spaces. (Things get more complicated if your classes are not in the
default package. In that case, the class files must be in subdirectories of the
directory in which you issue the jar command. See Subsection 2.6.6.)

Making an executable jar file on the command line is more complicated.
There has to be some way of specifying which class contains the main()
routine. This is done by creating a manifest file. The manifest
file can be a plain text file containing a single line of the form

Main-Class: ClassName

where ClassName should be replaced by the name of the class that contains
the main() routine. For example, if the main() routine is in
the class MosaicDraw, then the manifest file should read
"Main-Class: MosaicDraw". You can give the manifest file any name
you like. Put it in the same directory where you will issue the jar command,
and use a command of the form

jar cmf ManifestFileName JarFileName.jar *.class

to create the jar file. (The jar command is capable of performing a
variety of different operations. The first parameter to the command, such as "cf"
or "cmf", tells it which operation to perform.)

By the way, if you have successfully created an executable jar file, you can run
it on the command line using the command "java -jar". For example:

java -jar JarFileName.jar

Solution for Programming Exercise 6.2

Exercise 6.2:

Write a program that shows a small red square and a small blue
square. The user should be able to drag either square with the mouse.
(You'll need an instance variable to remember which square the user is
dragging.) The user can drag the square out of the panel if she wants; if she
does this, there is no
way to get it back.

Note that for this exercise, you should do all the drawing in the
paintComponent() method (as indeed you should whenever possible).

Discussion

To write this program, you need to understand dragging, as discussed in
Subsection 6.3.4. To support dragging, you have to implement
both the MouseListener and MouseMotionListener interfaces and
register some object to listen for both mouse and mouse motion events. The code
for dragging a square is spread out over three methods, mousePressed,
mouseReleased, and mouseDragged. Several instance variables
are needed to keep track of what is going on while a dragging operation is
being executed. A general framework for dragging is given in Subsection 6.3.4. This
example is simplified a bit because while dragging the square, we only need to
know the current position of the mouse, so that we can move the square to that
position. We don't need to keep track of the previous position of the
mouse. In my solution, I decided to write a nested class inside the panel class
to define the listening object. Another possibility would have been to let
the panel class implement MouseListener and
MouseMotionListener, and then register the panel with
itself to listen for events.

As usual for dragging, I use a boolean variable,
dragging, to keep track of whether or not a drag operation is in
progress. Not every mouse press starts a drag operation. If the user clicks the
panel outside of the squares, there is nothing to drag, and dragging
is set to false in the mousePressed method. If the user clicks one
of the squares, dragging is set to true. Since there are two
squares to be dragged, we have to keep track of which is being dragged. I use a
boolean variable, dragRedSquare, which is true if the red square is
being dragged and is false if the blue square is being dragged. (A boolean
variable is actually not the best choice in this case. It would be a problem if
we wanted to add another square. A boolean variable only has two possible
values, so an integer variable would probably be a better choice.) I keep track
of the locations of the squares with integer instance variables x1 and
y1 for the upper left corner of the red square and x2 and
y2 for the upper left corner of the blue square. These variables
are in the main class, not the nested class that defines the listener, since the
panel needs to use the location of the squares
in the paintComponent() method.

There is one little problem. The mouse location is a single (x,y)
point. A square occupies a whole bunch of points. When we move the square to
follow the mouse, where exactly should we put the square? One possibility is to
put the upper left corner of the square at the mouse location. If we did this,
the mouseDragged routine would look like:

public void mouseDragged(MouseEvent evt) {
 if (dragging == false)
 return;
 int x = evt.getX(); // Get mouse position.
 int y = evt.getY();
 if (dragRedSquare) { // Move the red square.
 x1 = x; // Put top-left corner at mouse position.
 y1 = y;
 }
 else { // Move the blue square.
 x2 = x; // Put top-left corner at mouse position.
 y2 = y;
 }
 repaint();
}

This works, but it is not very aesthetic. When the user starts dragging a
square, no matter where in the square the user clicks, the square will jump so
that its top-left corner is at the mouse position. This is not what a user
typically expects. If I grab a square by clicking its center, then I want the
center to stay under the mouse cursor as I move it. If I grab the lower right
corner, I want the lower right corner to follow the mouse, not the upper left
corner. There is a solution to this, and it's one that is often needed for
dragging operations. We need to record the original position of the mouse
relative to the upper left corner of the square. This tells us where in the
square the user clicked. This is done in the mousePressed routine by
assigning appropriate values to instance variables offsetX and
offsetY:

int x = evt.getX(); // Location where user clicked.
int y = evt.getY();

if (x >= x2 && x < x2+30 && y >= y2 && y < y2+30) {
 // It's the blue square (which should be checked first,
 // since it's drawn on top of the red square.)
 dragging = true;
 dragRedSquare = false;
 offsetX = x - x2; // Distance from corner of square to (x,y).
 offsetY = y - y2;
}
else if (x >= x1 && x < x1+30 && y >= y1 && y < y1+30) {
 // It's the red square.
 dragging = true;
 dragRedSquare = true;
 offsetX = x - x1; // Distance from corner of square to (x,y).
 offsetY = y - y1;
}

In mouseDragged, when the mouse moves to a new (x,y)
point, we move the square so that the vertical and horizontal distances between
the mouse location and the top left corner of the square remain the same:

if (dragRedSquare) { // Move the red square.
 x1 = x - offsetX; // Offset corner from mouse location.
 y1 = y - offsetY;
}
else { // Move the blue square.
 x2 = x - offsetX; // Offset corner from mouse location.
 y2 = y - offsetY;
}

The program is written as a subclass of JPanel.
I included a main() routine in the class, to allow it to be run
as an application, but main() could also be in its own class.
The constructor in the DrawTwoSquares class sets up
the initial positions of the two
squares, creates a listening object, and registers the listening object to
listen for mouse and mouse motion events. It also adds a border around the
panel to make it more attractive. The class has
a paintComponent() method, which just has to draw the two
squares in their current positions; this is easy to write.
The mouse-handling code is in a nested class. Note that the nested class
is non-static, since it need access to instance variables from the main class.

By the way, if you wanted to stop the user from dragging the square outside
the panel, you would just have to add code to the mouseDragged
routine to "clamp" the variables x1, y1, x2, and
y2 so that they lie in the acceptable range. Here is a modified
routine that keeps the square entirely within the panel:

public void mouseDragged(MouseEvent evt) {
 if (dragging == false)
 return;
 int x = evt.getX();
 int y = evt.getY();
 if (dragRedSquare) { // Move the red square.
 x1 = x - offsetX;
 y1 = y - offsetY;
 if (x1 < 0) // Clamp (x1,y1) so the square lies in the panel.
 x1 = 0;
 else if (x1 >= getWidth() - 30)
 x1 = getWidth() - 30;
 if (y1 < 0)
 y1 = 0;
 else if (y1 >= getHeight() - 30)
 y1 = getHeight() - 30;
 }
 else { // Move the blue square.
 x2 = x - offsetX;
 y2 = y - offsetY;
 if (x2 < 0) // Clamp (x2,y2) so the square lies in the panel.
 x2 = 0;
 else if (x2 >= getWidth() - 30)
 x2 = getWidth() - 30;
 if (y2 < 0)
 y2 = 0;
 else if (y2 >= getHeight() - 30)
 y2 = getHeight() - 30;
 }
 repaint();
}

The Solution

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

/**
 * A panel showing a red square and a blue square that the user
 * can drag with the mouse. The user can drag the squares off
 * the panel and drop them. There is no way of getting them back.
 */
public class DragTwoSquares extends JPanel {

 /**
 * A main routine allows this class to be run as an application.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Drag Either Square");
 DragTwoSquares content = new DragTwoSquares();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(400,300);
 window.setVisible(true);
 }

 //---

 private int x1, y1; // Coords of top-left corner of the red square.
 private int x2, y2; // Coords of top-left corner of the blue square.

 /**
 * The constructor places the two squares in their initial positions and
 * sets up listening for mouse events and mouse motion events.
 */
 public DragTwoSquares() {

 x1 = 10; // Set up initial positions of the squares.
 y1 = 10;
 x2 = 50;
 y2 = 10;

 setBackground(Color.LIGHT_GRAY); // Set up appearance of the panel
 setBorder(BorderFactory.createLineBorder(Color.BLACK, 1));

 Dragger listener = new Dragger(); // Listening object, belonging to a nested
 // class that is defined below.

 addMouseListener(listener); // Set up listening.
 addMouseMotionListener(listener);

 }

 /**
 * paintComponent just draws the two squares in their current positions.
 */
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // Fill with background color.
 g.setColor(Color.RED);
 g.fillRect(x1, y1, 30, 30);
 g.setColor(Color.BLUE);
 g.fillRect(x2, y2, 30, 30);
 }

 /**
 * This private class is used to define the listener that listens
 * for mouse events and mouse motion events on the panel.
 */
 private class Dragger implements MouseListener, MouseMotionListener {

 /* Some variables used during dragging */

 boolean dragging; // Set to true when a drag is in progress.

 boolean dragRedSquare; // True if red square is being dragged, false
 // if blue square is being dragged.

 int offsetX, offsetY; // Offset of mouse-click coordinates from the
 // top-left corner of the square that was
 // clicked.

 /**
 * Respond when the user presses the mouse on the panel.
 * Check which square the user clicked, if any, and start
 * dragging that square.
 */
 public void mousePressed(MouseEvent evt) {

 if (dragging) // Exit if a drag is already in progress.
 return;

 int x = evt.getX(); // Location where user clicked.
 int y = evt.getY();

 if (x >= x2 && x < x2+30 && y >= y2 && y < y2+30) {
 // It's the blue square (which should be checked first,
 // since it's drawn on top of the red square.)
 dragging = true;
 dragRedSquare = false;
 offsetX = x - x2; // Distance from corner of square to (x,y).
 offsetY = y - y2;
 }
 else if (x >= x1 && x < x1+30 && y >= y1 && y < y1+30) {
 // It's the red square.
 dragging = true;
 dragRedSquare = true;
 offsetX = x - x1; // Distance from corner of square to (x,y).
 offsetY = y - y1;
 }

 }

 /**
 * Dragging stops when user releases the mouse button.
 */
 public void mouseReleased(MouseEvent evt) {
 dragging = false;
 }

 /**
 * Respond when the user drags the mouse. If a square is
 * not being dragged, then exit. Otherwise, change the position
 * of the square that is being dragged to match the position
 * of the mouse. Note that the corner of the square is placed
 * in the same relative position with respect to the mouse that i
 * had when the user started dragging it.
 */
 public void mouseDragged(MouseEvent evt) {

 if (dragging == false)
 return;
 int x = evt.getX();
 int y = evt.getY();
 if (dragRedSquare) { // Move the red square.
 x1 = x - offsetX;
 y1 = y - offsetY;
 }
 else { // Move the blue square.
 x2 = x - offsetX;
 y2 = y - offsetY;
 }
 repaint(); // (Calls the repaint() method in the DragTwoSquaresPanel class.)
 }

 public void mouseMoved(MouseEvent evt) { } // empty methods required by interfaces.
 public void mouseClicked(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

 } // end nested class Dragger

} // end class DragTwoSquaresPanel

Section 6.5

Basic Components

In preceding sections, you've seen how to use a
graphics context to draw on the screen and how to handle mouse events and
keyboard events. In one sense, that's all there is to GUI programming. If
you're willing to program all the drawing and handle all the mouse and keyboard
events, you have nothing more to learn. However, you would either be doing a
lot more work than you need to do, or you would be limiting yourself to very
simple user interfaces. A typical user interface uses standard GUI components
such as buttons, scroll bars, text-input boxes, and menus. These components
have already been written for you, so you don't have to duplicate the work
involved in developing them. They know how to draw themselves, and they can
handle the details of processing the mouse and keyboard events that concern
them.

Consider one of the simplest user interface components, a push button. The
button has a border, and it displays some text. This text can be changed.
Sometimes the button is disabled, so that clicking on it doesn't have any
effect. When it is disabled, its appearance changes. When the user clicks on
the push button, the button changes appearance while the mouse button is
pressed and changes back when the mouse button is released. In fact, it's more
complicated than that. If the user moves the mouse outside the push button
before releasing the mouse button, the button changes to its regular
appearance. To implement this, it is necessary to respond to mouse exit or
mouse drag events. Furthermore, on many platforms, a button can receive the
input focus. The button changes appearance when it has the focus. If the button
has the focus and the user presses the space bar, the button is triggered. This
means that the button must respond to keyboard and focus events as well.

Fortunately, you don't have to program any of this, provided you
use an object belonging to the standard class javax.swing.JButton. A
JButton object draws itself and processes mouse, keyboard, and focus
events on its own. You only hear from the JButton when the user
triggers it by clicking on it or pressing the space bar while the button has
the input focus. When this happens, the JButton object creates an
event object belonging to the class java.awt.event.ActionEvent. The
event object is sent to any registered listeners to tell them that the button
has been pushed. Your program gets only the information it needs -- the fact
that a button was pushed.

The standard components that are defined as part of the Swing graphical user interface
API are defined by subclasses of the class JComponent, which is
itself a subclass of Component. (Note that this includes the
JPanel class that we have already been working with extensively.)
Many useful methods are
defined in the Component and JComponent
classes and so can be used with any Swing component. We begin by looking at a
few of these methods. Suppose that comp is a variable that refers
to some JComponent. Then the following methods can be
used:

	
comp.getWidth() and comp.getHeight() are functions that
give the current size of the component, in pixels. One warning: When a component is first
created, its size is zero. The size will be set later, probably by a layout
manager. A common mistake is to check the size of a component before that size
has been set, such as in a constructor.

	
comp.setEnabled(true) and
comp.setEnabled(false) can be used to
enable and disable the component. When a component is disabled, its appearance
might change, and the user cannot do anything with it. There is a boolean-valued
function, comp.isEnabled() that you can
call to discover whether the component is enabled.

	
comp.setVisible(true) and
comp.setVisible(false) can be called to
hide or show the component.

	
comp.setFont(font) sets the font that
is used for text displayed on the component. See Subsection 6.2.3
for a discussion of fonts.

	
comp.setBackground(color) and
comp.setForeground(color) set the
background and foreground colors for the component. See Subsection 6.2.2.

	
comp.setOpaque(true) tells the
component that the area occupied by the component should be filled with the
component's background color before the content of the component is painted. By
default, only JLabels are non-opaque. A non-opaque,
or "transparent", component ignores its background color and simply paints its
content over the content of its container. This usually means that it inherits
the background color from its container.

	
comp.setToolTipText(string) sets the
specified string as a "tool tip" for the component. The tool tip is displayed
if the mouse cursor is in the component and the mouse is not moved for a few
seconds. The tool tip should give some information about the meaning of the
component or how to use it.

	
comp.setPreferredSize(size) sets the
size at which the component should be displayed, if possible. The parameter is
of type java.awt.Dimension, where an object of type Dimension
has two public integer-valued instance variables, width and height.
A call to this method usually looks something
like "setPreferredSize(new Dimension(100,50))". The preferred
size is used as a hint by layout managers, but will not be respected in all
cases. Standard components generally compute a correct
preferred size automatically, but it can be useful to set it in some cases. For
example, if you use a JPanel as a drawing surface, it is usually a good
idea to set a preferred size for it, since its default preferred size is zero.

Note that using
any component is a multi-step process. The component object must be created
with a constructor. It must be added to a container. In many cases, a listener
must be registered to respond to events from the component. And in some cases,
a reference to the component must be saved in an instance variable so that the
component can be manipulated by the program after it has been created.
In this section, we will look at a few of the basic standard components that are
available in Swing. In the next section
we will consider the problem of laying out components in containers.

6.5.1 JButton

An object of class JButton is a push button that the user
can click to trigger some action. You've already seen
buttons used in Section 6.1, but we consider
them in much more detail here. To use any component effectively, there are several
aspects of the corresponding class that you should be familiar with. For
JButton, as an example, I list these aspects explicitly:

	
Constructors: The JButton class has a constructor that
takes a string as a parameter. This string becomes the text displayed on the
button. For example: stopGoButton = new JButton("Go"). This creates
a button object that will display the text, "Go" (but remember that the button must still
be added to a container before it can appear on the screen).

	
Events: When the user clicks on a button, the button generates an
event of type ActionEvent. This event is sent to any listener that has
been registered with the button as an ActionListener.

	
Listeners: An object that wants to handle events generated by
buttons must implement the ActionListener interface. This interface
defines just one method, "public void actionPerformed(ActionEvent
evt)", which is called to notify the object of an action event.

	
Registration of Listeners: In order to actually receive notification
of an event from a button, an ActionListener must be registered with
the button. This is done with the button's addActionListener() method.
For example: stopGoButton.addActionListener(buttonHandler);

	
Event methods: When actionPerformed(evt) is called by the
button, the parameter, evt, contains information about the event. This
information can be retrieved by calling methods in the ActionEvent
class. In particular, evt.getActionCommand() returns a String
giving the command associated with the button. By default, this command is the
text that is displayed on the button, but it is possible to set it to some other string.
The method evt.getSource()
returns a reference to the object that produced the event, that is, to
the JButton that was pressed. The return value is of type
Object, not JButton, because other types of components can
also produce ActionEvents.

	
Component methods: Several useful methods are defined in the
JButton class, in addition to the standard Component methods.
For example, stopGoButton.setText("Stop")
changes the text displayed on the button to "Stop". And
stopGoButton.setActionCommand("sgb") changes the action command
associated with this button for action events.
The setEnabled() and setText() methods are
particularly useful for giving the user information about what is going on in
the program. A disabled button is better than a button that gives an obnoxious
error message such as "Sorry, you can't click on me now!"

6.5.2 JLabel

JLabel is certainly the simplest type of component. An object of
type JLabel exists just to display a line of text. The text cannot be edited
by the user, although it can be changed by your program. The constructor for a
JLabel specifies the text to be displayed:

JLabel message = new JLabel("Hello World!");

There is another constructor that specifies where in the label the text is
located, if there is extra space. The possible alignments are given by the
constants JLabel.LEFT, JLabel.CENTER, and
JLabel.RIGHT. For example,

JLabel message = new JLabel("Hello World!", JLabel.CENTER);

creates a label whose text is centered in the available space. You can
change the text displayed in a label by calling the label's setText()
method:

message.setText("Goodbye World!");

Since the JLabel class is a subclass of JComponent,
you can
use methods such as setForeground() and setFont() with labels. If you want the
background color to have any effect, you should call setOpaque(true)
on the label, since otherwise the JLabel might not fill in its
background. For example:

JLabel message = new JLabel("Hello World!", JLabel.CENTER);
message.setForeground(Color.RED); // Display red text...
message.setBackground(Color.BLACK); // on a black background...
message.setFont(new Font("Serif",Font.BOLD,18)); // in a big bold font.
message.setOpaque(true); // Make sure background is filled in.

6.5.3 JCheckBox

A JCheckBox is a component that has two states: selected or
unselected. The user can change the state of a check box by clicking on it. The
state of a checkbox is represented by a boolean value that is
true if the box is selected and is false if the box is
unselected. A checkbox has a label, which is specified when the box is
constructed:

JCheckBox showTime = new JCheckBox("Show Current Time");

Usually, it's the user who sets the state of a JCheckBox, but you
can also set the state programmatically. The current state of a checkbox is set
using its setSelected(boolean) method. For example, if you want the
checkbox showTime to be checked, you would say
"showTime.setSelected(true)". To uncheck the box, say
"showTime.setSelected(false)". You can determine the current state of
a checkbox by calling its isSelected() method, which returns a boolean
value.

In many cases, you don't need to worry about events from checkboxes. Your
program can just check the state whenever it needs to know it by calling the
isSelected() method. However, a checkbox does generate an event when
its state is changed by the user, and you can detect this event and respond to it if you want
something to happen at the moment the state changes. When the state of a
checkbox is changed by the user, it generates an event of type
ActionEvent. If you want something to happen when the user changes the
state, you must register an ActionListener with the
checkbox by calling its addActionListener() method. (Note that if you change the state by calling the
setSelected() method, no ActionEvent is generated. However,
there is another method in the JCheckBox class, doClick(),
which simulates a user click on the checkbox and does generate an
ActionEvent.)

When handling an ActionEvent, you can call evt.getSource()
in the actionPerformed() method to find out which object generated the
event. (Of course, if you are only listening for events from one component, you
don't have to do this.) The returned value is of type Object, but
you can type-cast it to another type if you want. Once you know the object that
generated the event, you can ask the object to tell you its current state. For
example, if you know that the event had to come from one of two checkboxes,
cb1 or cb2, then your actionPerformed() method might
look like this:

 public void actionPerformed(ActionEvent evt) {
 Object source = evt.getSource();
 if (source == cb1) {
 boolean newState = cb1.isSelected();
 ... // respond to the change of state
 }
 else if (source == cb2) {
 boolean newState = cb2.isSelected();
 ... // respond to the change of state
 }
 }

Alternatively, you can use evt.getActionCommand() to retrieve the
action command associated with the source. For a JCheckBox, the action
command is, by default, the label of the checkbox.

6.5.4 JTextField and JTextArea

The JTextField and JTextArea classes
represent components that contain text that can be edited by the user.
A JTextField holds a single line of text, while a
JTextArea can hold multiple lines. It is also possible to set a
JTextField or JTextArea
to be read-only so that the user can read the text that it contains but
cannot edit the text. Both classes are subclasses of an abstract class,
JTextComponent, which defines their common properties.

JTextField and JTextArea have many
methods in common. The instance method setText(), which takes a parameter
of type String, can be used to change the text that is
displayed in an input component. The contents of the component can be retrieved by calling its
getText() instance method, which returns a value of type String.
If you want to stop the user from modifying the text, you can
call setEditable(false). Call the same method with a parameter
of true to make the input component user-editable again.

The user can only type into a text component when it has
the input focus. The user can give the input focus to a text component by clicking
it with the mouse, but sometimes it is useful to give the input focus to a
text field programmatically. You can do this by calling its
requestFocusInWindow() method. For example, when I discover an error
in the user's input, I usually call requestFocusInWindow() on the text
field that contains the error. This helps the user see where the error occurred
and lets the user start typing the correction immediately.

By default, there is no space between the text in a text component and the
edge of the component, which usually doesn't look very good. You can use
the setMargin() method of the component to add some
blank space between the edge of the component and the text.
This method takes a parameter
of type java.awt.Insets which contains four integer instance variables
that specify the margins on the top, left, bottom, and right edge of the component.
For example,

textComponent.setMargin(new Insets(5,5,5,5));

adds a five-pixel margin between the text in textComponent and each edge of
the component.

The JTextField class has a constructor

public JTextField(int columns)

where columns is an integer that specifies the number of characters that should be
visible in the text field. This is used to determine the preferred width of the
text field. (Because characters can be of different sizes and because the preferred
width is not always respected, the actual number of
characters visible in the text field might not be equal to
columns.) You don't have to specify the number of columns; for
example, you might use the text field in a context where it will expand to fill whatever
space is available. In that case, you can use the default constructor
JTextField(), with no parameters. You can also use the following
constructors, which specify the initial contents of the text field:

public JTextField(String contents);
public JTextField(String contents, int columns);

The constructors for a JTextArea are

public JTextArea()
public JTextArea(int rows, int columns)
public JTextArea(String contents)
public JTextArea(String contents, int rows, int columns)

The parameter rows specifies how many lines of text should be
visible in the text area. This determines the preferred height of the text
area, just as columns determines the preferred width. However,
the text area can actually contain any number of lines; the text area
can be scrolled to reveal lines that are not currently visible. It is common
to use a JTextArea as the CENTER
component of a BorderLayout. In that
case, it is less useful to specify the number of lines and columns, since the
TextArea will expand to fill all the space available in the center area of the
container.

The JTextArea class adds a few useful methods to those inherited
from JTextComponent. For example, the instance method append(moreText),
where moreText is of type String, adds the
specified text at the end of the current content of the text area. (When using append()
or setText() to add text to a JTextArea, line breaks
can be inserted in the text by using the newline character, '\n'.) And
setLineWrap(wrap), where wrap is of type boolean,
tells what should happen when a line of text is too long to be displayed in the
text area. If wrap is true, then any line that is too long will be
"wrapped" onto the next line; if wrap is false, the line will simply
extend outside the text area, and the user will have to scroll the text area
horizontally to see the entire line. The default value of wrap is
false.

Since it might be necessary to scroll a text area to see all the text that it
contains, you might expect a text area to come with scroll bars. Unfortunately,
this does not happen automatically. To get scroll bars for a text area, you
have to put the JTextArea inside another component,
called a JScrollPane. This can be done as follows:

JTextArea inputArea = new JTextArea();
JScrollPane scroller = new JScrollPane(inputArea);

The scroll pane provides scroll bars that can be used to scroll the text
in the text area. The scroll bars will appear only when needed, that is
when the size of the text exceeds the size of the text area. Note that when
you want to put the text area into a container, you should add the scroll pane,
not the text area itself, to the container. See the program
TextAreaDemo.java for a very short example of using a text area
in a scroll pane.

When the user is typing in a JTextField and presses
return, an ActionEvent is generated. If you want to respond
to such events, you can register an ActionListener with
the text field, using the text field's addActionListener() method.
(Since a JTextArea can contain multiple lines of text,
pressing return in a text area does not
generate an event; it simply begins a new line of text.)

JTextField has a subclass, JPasswordField, which is
identical except that it does not reveal the text that it contains. The
characters in a JPasswordField are all displayed as asterisks (or some
other fixed character). A password field is, obviously, designed to let the
user enter a password without showing that password on the screen.

Text components are actually quite complex, and I have covered only their
most basic properties here. I will return to the topic of text components
in Chapter 13.

6.5.5 JSlider

A JSlider provides a way for the user to select an integer value
from a range of possible values. The user does this by dragging a "knob" along
a bar. A slider can, optionally, be decorated with tick marks and with labels.
This picture, from the sample program SliderDemo.java, shows
three sliders with different decorations and with different ranges of values:

[image: three sliders with and without labels and tick marks]

Here, the second slider is decorated with tick marks, and the third one
is decorated with labels. It's possible for a single slider to have both types
of decorations.

The most commonly used constructor for JSliders specifies the start
and end of the range of values for the slider and its initial value when it
first appears on the screen:

public JSlider(int minimum, int maximum, int value)

If the parameters are omitted, the values 0, 100, and 50 are used. By
default, a slider is horizontal, but you can make it vertical by calling its
method setOrientation(JSlider.VERTICAL). The current value of a
JSlider can be read at any time with its getValue() method,
which returns a value of type int. If you want to change the
value, you can do so with the method setValue(n), which takes a
parameter of type int.

If you want to respond immediately when the user changes the value of a
slider, you can register a listener with the slider. JSliders, unlike
other components we have seen, do not generate ActionEvents. Instead,
they generate events of type ChangeEvent.
ChangeEvent and
related classes are defined in the package javax.swing.event rather
than java.awt.event, so if you want to use ChangeEvents, you
should import javax.swing.event.* at the beginning of your program.
You must also define some object to implement the ChangeListener
interface, and you must register the change listener with the slider by calling
its addChangeListener() method. A ChangeListener must provide
a definition for the method:

public void stateChanged(ChangeEvent evt)

This method will be called whenever the value of the slider changes. Note
that it will be called when you change the value with the setValue()
method, as well as when the user changes the value. In the
stateChanged() method, you can call evt.getSource() to find
out which object generated the event. If you want to know whether the user
generated the change event, call the slider's getValueIsAdjusting()
method, which returns true if the user is dragging the knob on the slider.

Using tick marks on a slider is a two-step process: Specify the interval
between the tick marks, and tell the slider that the tick marks should be
displayed. There are actually two types of tick marks, "major" tick marks and
"minor" tick marks. You can have one or the other or both. Major tick marks are
a bit longer than minor tick marks. The method setMinorTickSpacing(i)
indicates that there should be a minor tick mark every i units along
the slider. The parameter is an integer. (The spacing is in terms of values on
the slider, not pixels.) For the major tick marks, there is a similar command,
setMajorTickSpacing(i). Calling these methods is not enough to make
the tick marks appear. You also have to call setPaintTicks(true). For
example, the second slider in the above illustration was created and configured using
the commands:

slider2 = new JSlider(); // (Uses default min, max, and value.)
slider2.addChangeListener(this);
slider2.setMajorTickSpacing(25);
slider2.setMinorTickSpacing(5);
slider2.setPaintTicks(true);

Labels on a slider are handled similarly. You have to specify the labels and
tell the slider to paint them. Specifying labels is a tricky business, but the
JSlider class has a method to simplify it. You can create a set of labels and
add them to a slider named sldr with the command:

sldr.setLabelTable(sldr.createStandardLabels(i));

where i is an integer giving the spacing between the labels. To
arrange for the labels to be displayed, call setPaintLabels(true). For
example, the third slider in the above illustration was created and configured with
the commands:

slider3 = new JSlider(2000,2100,2014);
slider3.addChangeListener(this);
slider3.setLabelTable(slider3.createStandardLabels(50));
slider3.setPaintLabels(true);

Solution for Programming Exercise 6.7

Exercise 6.7:

Exercise 5.2 involved a class, StatCalc.java,
that could compute some statistics
of a set of numbers. Write a GUI program that uses the StatCalc class to
compute and display statistics of numbers entered by the user. The panel will
have an instance variable of type StatCalc that does the computations.
The panel should include a JTextField where the user enters a number.
It should have four labels that display four statistics for the numbers that
have been entered: the number of numbers, the sum, the mean, and the standard
deviation. Every time the user enters a new number, the statistics displayed on
the labels should change. The user enters a number by typing it into the
JTextField and pressing return. There should be a "Clear" button that
clears out all the data. This means creating a new StatCalc object and
resetting the displays on the labels. My panel also has an "Enter" button that
does the same thing as pressing the return key in the JTextField.
(Recall that a JTextField generates an ActionEvent when the
user presses return, so your panel should register itself to listen for
ActionEvents from the JTextField as well as the buttons.)
Here is a picture of my solution to this problem:

[image: screenshot from StatCalcGUI program]

Discussion

In my solution, I used four labels to display results and another label at the
top of the panel to display a message to the user. Aside from these labels,
one row of the panel holds three other components: a JTextField and
two JButtons. The panel
uses a GridLayout with six rows. Five of the rows hold
JLabels. The other row contains a JPanel that holds the
JTextField and JButtons. This JPanel uses a
GridLayout with three columns and just one row.

The constructor creates and lays out the
components. Since I want the program to look nice, I set a background color and
a foreground color for most of the components. I set the labels to
be opaque, to make sure that the background of each label will actually be
filled in with the label's background color. After looking at my first attempt,
I decided to use a Monospaced font for the display labels. In a Monospaced
font, all the characters are the same size. This makes it possible to line up
the output values vertically by putting the same number of characters in each
label. To make it easy to play with the colors and fonts, I declared three
named constants

final static Color labelBG = new Color(240,225,200); // beige
final static Color labelFG = new Color(180,0,0); // dark red
final static Font labelFont = new Font("Monospaced", Font.PLAIN, 12);

I could then make one of the labels, such as countLabel, with the
commands:

countLabel = new JLabel("Number of Entries: 0");
countLabel.setBackground(labelBG);
countLabel.setForeground(labelFG);
countLabel.setOpaque(true);
countLabel.setFont(labelFont);

However, since there are four labels to create, I wrote a subroutine to
create a display label to show a given string:

/**
 * A utility routine for creating the labels that are used
 * for display. This routine is called by the constructor.
 * @param text The text to show on the label.
 */
private JLabel makeLabel(String text) {
 JLabel label = new JLabel(text);
 label.setBackground(labelBG);
 label.setForeground(labelFG);
 label.setOpaque(true);
 label.setFont(labelFont);
 return label;
}

Then in the constructor, the labels can be created with four
lines, instead of 16:

countLabel = makeLabel(" Number of Entries: 0");
sumLabel = makeLabel(" Sum: 0.0");
meanLabel = makeLabel(" Average: undefined");
standevLabel = makeLabel(" Standard Deviation: undefined");

Utility routines like makeLabel() are very commonly used when there
are a lot of similar components to create. Note that when the labels are first
created, the text on the labels is appropriate for a dataset that contains zero
elements. In particular, if there are no data, the average and standard
deviation are undefined.

The panel registers itself to listen for action events from the
JTextField and from the JButtons. In the
actionPerformed() method, the function evt.getSource() is
called to find the Object that generated the event. This will be
either the numberInput box, the enterButton, or the
clearButton. The source of the event is checked to decide how to
respond. (This is an alternative to checking the event's action command.)

If the user clicked the "Clear" button, the response is to create a new
StatCalc object and to reset the display labels to reflect the fact
that there is no data in the dataset. It's important to understand the effect
of the command "stats = new StatCalc();". The panel will continue to
use the same StatCalc variable, stats. However, now
the variable refers to a new StatCalc object. The new object
does not yet have any data in its dataset. The next time the user enters a
number, the dataset will get its first value. Always keep in mind the
difference between variables and objects. Also, keep in mind that you have to
think in terms of changing the state of the panel in response to events. I
change the panel's state by starting to use a new StatCalc object,
and the display labels are changed to keep them consistent with the new
state.

When the user clicks the "Enter" button or presses return in the
JTextField, we have to get the user's input and add it to the
StatCalc object. This will cause the values of the four statistics to
change. We have to change the display labels to show the new values. The code
for getting the user's number from the input box includes a check to make sure that the user's
input is a legal number. If the input is not legal, then I show an error
message in the JLabel named message and return from the
actionPerformed() method without entering any new data:

double num; // The user's number.
try {
 num = Double.parseDouble(numberInput.getText());
}
catch (NumberFormatException e) {
 // The user's entry is not a legal number.
 // Put an error message in the message label
 // and return without entering a number.
 message.setText("\"" + numberInput.getText() +
 "\" is not a legal number.");
 numberInput.selectAll();
 numberInput.requestFocus();
 return;
}

The commands "numberInput.selectAll();" and
"numberInput.requestFocus();" are there as a convenience for the user.
The first command, which was not covered in this chapter,
selects all the text in the number input box. The second
command gives the input focus to the input box. That way, the user can just
start typing the next number, without having to click on the input box or erase
the content of the box. (Since the contents of the box are selected, they will
disappear automatically when the user starts typing, to be replaced with the
new input. A surprising number of people have never learned that text
selections work this way.)

Once we have the user's number, the command "stats.enter(num);"
adds the number num into the dataset. The statistics about the data
set can be obtained by calling the functions stats.getCount(),
stats.getSum(), stats.getMean(), and
stats.getStandardDeviation(). This information can be found by reading
the source code for the StatCalc
class. These values are used on the labels that display the statistics. For example,

countLabel.setText(" Number of Entries: " + stats.getCount());

Returning to the topic of variables versus objects, a common novice mistake would
be to try to change the text that is displayed on the label by saying

countLabel = new JLabel(" Number of Entries: " + stats.getCount()); // WRONG

since that type of command is what was used to set the text in the first
place. But this statement has no effect on what is displayed on the screen.
The reason why this doesn't work is instructive: The assignment
command creates a new JLabel and sets countLabel to refer to
that new object. The new label does indeed have the desired text. But the
new label has nothing to do with what's on the screen! The original label was
created in the constructor and added to the panel. The panel has a reference to
the original label, and that original label continues to appear on the screen
even if countLabel now refers to a new label. The correct command,
using countLabel.setText(), modifies the original label,
which is what is shown on the screen.

As a point of interest, I will mention another technique that has not been covered
elsewhere in the book. You might want to limit the number of decimal places that
are displayed in the statistics. You know how to do this in output to the command
line, using System.out.printf or TextIO.putf, but we are not
outputting the data here, just putting it into a String. The String
class has a static method String.format() that solves this
problem. String.format(fmtString,val,val,val,...) works similarly
to System.out.prinf(fmtString,val,val,val,...), but instead of producing
output, String.format just creates a string and returns it.
To set the text of the label that displays the average, for example, you Might say:

meanLabel.setText(String.format(" Average: %1.9g", stats.getMean()));

I don't do this in my solution, but String.format can be very useful,
especially in GUI programs.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * In this panel, the user enters numbers in a text field box.
 * After entering each number, the user presses return (or clicks
 * on a button). Some statistics are displayed about all the
 * numbers that the user has entered.
 */
public class StatCalcGUI extends JPanel implements ActionListener {

 /**
 * A main routine allows this class to be run as an application.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Stat Calc");
 StatCalcGUI content = new StatCalcGUI();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(350,200);
 window.setVisible(true);
 }

 //---

 final static Color labelBG = new Color(240,225,200); // For creating labels
 final static Color labelFG = new Color(180,0,0);
 final static Font labelFont = new Font("Monospaced", Font.PLAIN, 12);

 private JLabel countLabel; // A label for displaying the number of numbers.
 private JLabel sumLabel; // A label for displaying the sum of the numbers.
 private JLabel meanLabel; // A label for displaying the average.
 private JLabel standevLabel; // A label for displaying the standard deviation.

 private JLabel message; // A message at the top of the panel. It will
 // show an error message if the user's input is
 // not a legal number. Otherwise, it just tells
 // the user to enter a number and press return.

 private JButton enterButton; // A button the user can press to enter a number.
 // This is an alternative to pressing return.
 private JButton clearButton; // A button that clears all the data that the
 // user has entered.

 private JTextField numberInput; // The input box where the user enters numbers.

 private StatCalc stats; // An object that keeps track of the statistics
 // for all the numbers that have been entered.

 /**
 * The constructor creates the objects used by the panel. The panel
 * will listen for action events from the buttons and from the text
 * field. (A JTextField generates an ActionEvent when the user presses
 * return while typing in the text field.)
 */
 public StatCalcGUI() {

 stats = new StatCalc();

 numberInput = new JTextField();
 numberInput.setBackground(Color.WHITE);
 numberInput.addActionListener(this);

 enterButton = new JButton("Enter");
 enterButton.addActionListener(this);

 clearButton = new JButton("Clear");
 clearButton.addActionListener(this);

 JPanel inputPanel = new JPanel(); // A panel that will hold the
 // JTextField and JButtons.
 inputPanel.setLayout(new GridLayout(1,3));
 inputPanel.add(numberInput);
 inputPanel.add(enterButton);
 inputPanel.add(clearButton);

 countLabel = makeLabel(" Number of Entries: 0");
 sumLabel = makeLabel(" Sum: 0.0");
 meanLabel = makeLabel(" Average: undefined");
 standevLabel = makeLabel(" Standard Deviation: undefined");

 message = new JLabel("Enter a number, press return:",
 JLabel.CENTER);
 message.setBackground(labelBG);
 message.setForeground(Color.BLUE);
 message.setOpaque(true);
 message.setFont(new Font("SansSerif", Font.BOLD, 12));

 /* Use a GridLayout with 6 rows and 1 column, and add all the
 components that have been created to the panel. */

 setBackground(Color.BLUE);
 setLayout(new GridLayout(6,1,2,2));
 add(message);
 add(inputPanel);
 add(countLabel);
 add(sumLabel);
 add(meanLabel);
 add(standevLabel);

 /* Add a blue border around the panel. */

 setBorder(BorderFactory.createLineBorder(Color.BLUE, 2));

 } // end constructor

 /**
 * A utility routine for creating the labels that are used
 * for display. This routine is called by the constructor.
 * @param text The text to show on the label.
 */
 private JLabel makeLabel(String text) {
 JLabel label = new JLabel(text);
 label.setBackground(labelBG);
 label.setForeground(labelFG);
 label.setFont(labelFont);
 label.setOpaque(true);
 return label;
 }

 /**
 * This is called when the user clicks one of the buttons or
 * presses return in the input box. The response to clicking
 * on the Enter button is the same as the response to pressing
 * return in the JTextField.
 */
 public void actionPerformed(ActionEvent evt) {

 Object source = evt.getSource(); // Object that generated
 // the action event.

 if (source == clearButton) {
 // Handle the clear button by starting with a new,
 // empty StatCalc object and resetting the display
 // labels to show no data entered. The TextField
 // is also made empty.
 stats = new StatCalc();
 countLabel.setText(" Number of Entries: 0");
 sumLabel.setText(" Sum: 0.0");
 meanLabel.setText(" Average: undefined");
 standevLabel.setText(" Standard Deviation: undefined");
 numberInput.setText("");
 }
 else if (source == enterButton || source == numberInput) {
 // Get the user's number, enter it into the StatCalc
 // object, and set the display on the display labels
 // to reflect the new data.
 double num; // The user's number.
 try {
 num = Double.parseDouble(numberInput.getText());
 }
 catch (NumberFormatException e) {
 // The user's entry is not a legal number.
 // Put an error message in the message label
 // and return without entering a number.
 message.setText("\"" + numberInput.getText() +
 "\" is not a legal number.");
 numberInput.selectAll();
 numberInput.requestFocus();
 return;
 }
 stats.enter(num);
 countLabel.setText(" Number of Entries: " + stats.getCount());
 sumLabel.setText(" Sum: " + stats.getSum());
 meanLabel.setText(" Average: " + stats.getMean());
 standevLabel.setText(" Standard Deviation: "
 + stats.getStandardDeviation());
 }

 /* Set the message label back to its normal text, in case it has
 been showing an error message. For the user's convenience,
 select the text in the TextField and give the input focus
 to the text field. That way the user can just start typing
 the next number. */

 message.setText("Enter a number, press return:");
 numberInput.selectAll();
 numberInput.requestFocus();

 } // end ActionPerformed

} // end StatsCalcGUI

Solution for Programming Exercise 6.9

Exercise 6.9:

 A polygon
is a geometric figure made up of a sequence of
connected line segments. The points where the line segments meet are called the
vertices of the polygon. The Graphics
class includes commands for drawing and filling polygons. For these commands,
the coordinates of the vertices of the polygon are stored in arrays. If
g is a variable of type Graphics then

	
g.drawPolygon(xCoords, yCoords,
pointCt) will draw the outline of the polygon with vertices at the points
(xCoords[0],yCoords[0]), (xCoords[1],yCoords[1]), ...,
(xCoords[pointCt-1],yCoords[pointCt-1]). The third parameter,
pointCt, is an int that specifies the number of vertices of
the polygon. Its value should be 3 or greater. The first two parameters are
arrays of type int[]. Note that the polygon automatically includes a
line from the last point, (xCoords[pointCt-1],yCoords[pointCt-1]),
back to the starting point (xCoords[0],yCoords[0]).

	
g.fillPolygon(xCoords, yCoords,
pointCt) fills the interior of the polygon with the current drawing
color. The parameters have the same meaning as in the drawPolygon()
method. Note that it is OK for the sides of the polygon to cross each other,
but the interior of a polygon with self-intersections might not be exactly what
you expect.

Write a program that lets the user draw polygons. As the user clicks a
sequence of points, count them and store their x- and y-coordinates in two
arrays. These points will be the vertices of the polygon. As the user is creating
the polygon, you should just connect all the points with line segments.
When the user clicks near the starting point, draw the complete polygon. Draw
it with a red interior and a black border. Once the user has completed a
polygon, the next click will clear the data and start a new polygon from scratch.
All drawing should be done in the paintComponent() method.

Here is a picture of my solution after the user has drawn a fairly complex polygon:

[image: screen shot of the solution]

Discussion

This is an exercise in using arrays, but it is also an exercise in using instance
variables to record the state of the program. The paintComponent()
method needs enough information to correctly draw the picture. Obviously, that includes
the coordinate arrays and the number of points that have been stored in the arrays.
But the picture is different depending on whether or not the user has completed
the polygon. If the polygon is complete, the picture shows a polygon; if not,
the picture shows line segments connecting each point to the next. We need to
record that basic distinction as part of the state. We can do that using a
boolean variable, complete, which is true when a complete polygon should
be drawn and false while the polygon is under construction.
So, here are the necessary instance variables:

int[] xCoord, yCoord; // Arrays to hold the coordinates for up to 500 points.
int pointCt; // Number of points in the arrays.
boolean complete; // Set to true when a polygon is complete.

The arrays xCoord and yCoord are examples of partially
full arrays, although there is only one counter variable that applies to both arrays.

Given these instance variables, the paintComponent() method can
be written. To make the picture look nicer, I decided to use two Graphics2D
features: antialiasing and wide lines. (See Subsection 6.2.5).
There is also a question about what to draw when there is only one point. It's nice
if the user can see that the point has been added to the data, but one point is not
enough to draw a line or polygon. I decided to draw a small rectangle at the point,
just to make it visible.

protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 if (pointCt == 0)
 return; // Nothing at all to draw
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(2));
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 if (pointCt == 1) {
 // just one point -- draw a small dot there
 g.fillRect(xCoord[0], yCoord[0], 2, 2);
 }
 else if (complete) {
 // The polygon is complete; draw it, with a black border
 g.setColor(polygonColor);
 g.fillPolygon(xCoord, yCoord, pointCt);
 g.setColor(Color.BLACK);
 g.drawPolygon(xCoord, yCoord, pointCt);
 }
 else {
 // The polygon is not complete, just draw a series of lines.
 for (int i = 0; i < pointCt - 1; i++)
 g.drawLine(xCoord[i], yCoord[i], xCoord[i+1], yCoord[i+1]);
 }
}

The rest of the program logic is in the mousePressed() routine.
In that method, state variables have to change in response to the user's actions.
It requires some care to do things in the right order. The three things that
can happen are that the user starts a new polygon, the user completes the current
polygon, or the user just adds a point to the current polygon. The conditions should
be tested in that order:

if the current polygon is complete
 start a new polygon with the point where the user clicked
else if the user clicked near the starting point
 complete the current polygon
else
 add the point that the user clicked to the data
call repaint() to make the change visible

Actually, in my solution, I decided to add another case: The polygon
can also be completed by right-clicking, or -- to be very safe -- if the number of points
has reached 500. Also, there is a bug in the algorithm as
stated, where it tests "if the user clicked near the first point". This test
doesn't make sense unless there actually is a first point, that is unless
pointCt is greater than zero. The test should really read "if
pointCt > 0 and if the user clicked near
(xCoord[0],yCoord[0])."

To complete a polygon just means setting the value of the variable complete
to true. When repaint() is called, the data will be displayed as a polygon.
When a new polygon is stated, the value of the variable complete
has to be reset to false. Also, the first point on the polygon has to be put into
the coordinate arrays, and pointCt must be set to 1 to indicate that
there is only one point in the data. This much is pretty straightforward to implement.

The only thing in the algorithm that still needs implementing is to test
whether the user clicks "near the starting point". The starting point has
coordinates (xCoord[0],yCoord[0]) and the point where the user clicked
has coordinates (evt.getX(),evt.getY()). In my program, I check whether
the x-coordinates of these points are three pixels or less apart and the
y-coordinates are also two pixels or less apart. This is done by
checking whether "Math.abs(xCoord[0] - evt.getX()) <= 3 &&
Math.abs(yCoord[0] - evt.getY()) <= 3".

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * This program lets the user draw colored polygons.
 * The user inputs a polygon by clicking a series of points.
 * The points are connected with lines from each point to the
 * next Clicking near the starting point (within 3 pixels) or
 * right-clicking (or Command-clicking) will complete the
 * polygon, so the user can begin a new one. As soon as the
 * user begins drawing a new polygon, the old one is discarded.
 */
public class SimplePolygons extends JPanel implements MouseListener {

 /**
 * A main() routine to allow this program to be run as an application.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("SimplePolygons");
 SimplePolygons content = new SimplePolygons();
 window.setContentPane(content);
 window.pack();
 window.setLocation(100,100);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setResizable(false);
 window.setVisible(true);
 }

 /* Variables for implementing polygon input. */

 private int[] xCoord, yCoord; // Arrays containing the points of
 // the polygon. Up to 500 points
 // are allowed.

 private int pointCt; // The number of points that have been input.

 private boolean complete; // Set to true when the polygon is complete.
 // When this is false, only a series of lines are drawn.
 // When it is true, a filled polygon is drawn.

 private final static Color polygonColor = Color.RED;
 // Color that is used to draw the polygons.

 /**
 * Initialize the panel and its data; add a black border and set
 * the panel to listen for mouse events on itself. Also sets
 * the preferred size of the panel to be 300-by-300.
 */
 public SimplePolygons() {
 setBackground(Color.WHITE);
 setBorder(BorderFactory.createLineBorder(Color.BLACK,1));
 setPreferredSize(new Dimension(300,300));
 addMouseListener(this);
 xCoord = new int[500];
 yCoord = new int[500];
 pointCt = 0;
 }

 protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 if (pointCt == 0)
 return;
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(2));
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 if (pointCt == 1) {
 g.fillRect(xCoord[0], yCoord[0], 2, 2);
 }
 else if (complete) { // draw a polygon
 g.setColor(polygonColor);
 g.fillPolygon(xCoord, yCoord, pointCt);
 g.setColor(Color.BLACK);
 g.drawPolygon(xCoord, yCoord, pointCt);
 }
 else { // draw a series of lines
 for (int i = 0; i < pointCt - 1; i++)
 g.drawLine(xCoord[i], yCoord[i], xCoord[i+1], yCoord[i+1]);
 }
 }

 /**
 * Processes a mouse click.
 */
 public void mousePressed(MouseEvent evt) {

 if (complete) {
 // Start a new polygon at the point that was clicked.
 complete = false;
 xCoord[0] = evt.getX();
 yCoord[0] = evt.getY();
 pointCt = 1;
 }
 else if (pointCt > 0 && pointCt > 0 && (Math.abs(xCoord[0] - evt.getX()) <= 3)
 && (Math.abs(yCoord[0] - evt.getY()) <= 3)) {
 // User has clicked near the starting point.
 // The polygon is complete.
 complete = true;
 }
 else if (evt.isMetaDown() || pointCt == 500) {
 // The polygon is complete.
 complete = true;
 }
 else {
 // Add the point where the user clicked to the list of
 // points in the polygon, and draw a line between the
 // previous point and the current point. A line can
 // only be drawn if there are at least two points.
 xCoord[pointCt] = evt.getX();
 yCoord[pointCt] = evt.getY();
 pointCt++;
 }
 repaint(); // in all cases, repaint.
 } // end mousePressed()

 public void mouseReleased(MouseEvent evt) { }
 public void mouseClicked(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

} // end class SimplePolygons

Section 6.3

Mouse Events

Events are central to programming for a graphical
user interface. A GUI program doesn't have a main() routine that
outlines what will happen when the program is run, in a step-by-step process
from beginning to end. Instead, the program must be prepared to respond to
various kinds of events that can happen at unpredictable times and in an order
that the program doesn't control. The most basic kinds of events are generated
by the mouse and keyboard. The user can press any key on the keyboard, move the
mouse, or press a button on the mouse. The user can do any of these things at
any time, and the computer has to respond appropriately.

In Java, events are represented by objects. When an event occurs, the system
collects all the information relevant to the event and constructs an object to
contain that information. Different types of events are represented by objects
belonging to different classes. For example, when the user presses one of the
buttons on a mouse, an object belonging to a class called MouseEvent
is constructed. The object contains information such as the source of the event (that is, the component on
which the user clicked), the (x,y) coordinates of the point in the
component where the click occurred, the exact time of the click, and which button on the mouse was pressed.
When the user presses a key on the keyboard, a KeyEvent is created.
After the event object is constructed, it can be passed as a parameter to a
designated method. By writing that method, the programmer says what
should happen when the event occurs.

As a Java programmer, you get a fairly high-level view of events. There is a
lot of processing that goes on between the time that the user presses a key or
moves the mouse and the time that a subroutine in your program is called to
respond to the event. Fortunately, you don't need to know much about that
processing. But you should understand this much: Even though you didn't
write it, there is a routine running somewhere that executes a loop of the form

while the program is still running:
 Wait for the next event to occur
 Call a subroutine to handle the event

This loop is called an event loop. Every GUI
program has an event loop. In Java, you don't have to write the loop. It's part
of "the system." If you write a GUI program in some other language, you might
have to provide a main routine that runs the event loop.

In this section, we'll look at handling mouse events in Java, and we'll
cover the framework for handling events in general. The next
section will cover keyboard-related events and timer events.
Java also has other types of events, which are produced by GUI components.
These will be introduced in Section 6.5.

6.3.1 Event Handling

For an event to have any effect, a program must detect the event and react
to it. In order to detect an event, the program must "listen" for it. Listening
for events is something that is done by an object called an event listener.
An event listener object must contain instance
methods for handling the events for which it listens. For example, if an object
is to serve as a listener for events of type MouseEvent, then it must
contain the following method (among several others):

public void mousePressed(MouseEvent evt) { . . . }

The body of the method defines how the object responds when it is notified
that a mouse button has been pressed. The parameter, evt, contains
information about the event. This information can be used by the listener
object to determine its response.

The methods that are required in a mouse event listener are specified in an
interface named MouseListener. To be used as a listener for
mouse events, an object must implement this MouseListener interface.
Java interfaces were covered in Section 5.7.
(To review briefly: An interface in Java is just a list of
instance methods. A class can "implement" an interface by doing two things:
First, the class must be declared to implement the interface, as in "class
MouseHandler implements MouseListener" or "class MyPanel extends
JPanel implements MouseListener"; and second, the class must include a
definition for each instance method specified in the interface. An
interface can be used as the type for a variable or formal parameter.
We say that an object implements the MouseListener interface if it
belongs to a class that implements the MouseListener interface. Note
that it is not enough for the object to include the specified methods. It must
also belong to a class that is specifically declared to implement the
interface.)

Many events in Java are associated with GUI components. For example, when
the user presses a button on the mouse, the associated component is the one
that the user clicked on. Before a listener object can "hear" events associated
with a given component, the listener object must be registered with the
component. If a MouseListener object, mListener, needs to
hear mouse events associated with a Component object, comp, the
listener must be registered with the component by
calling

comp.addMouseListener(mListener);

The addMouseListener() method is an instance method in class
Component, and so can be used with any GUI component object. In our
first few examples, we will listen for events on a JPanel that is being used as
a drawing surface.

The event classes, such as MouseEvent, and the listener interfaces,
such as MouseListener, are defined in the package
java.awt.event. This means that if you want to work with events, you
should either include the line "import java.awt.event.*;" at the beginning of
your source code file or import the individual classes and interfaces.

Admittedly, there is a large number of details to tend to when you want to
use events. To summarize, you must

	Put the import specification "import java.awt.event.*;" (or individual imports)
at the beginning of your source code;

	Declare that some class implements the appropriate listener interface, such
as MouseListener;

	Provide definitions in that class for the methods specified by the
interface;

	Register an object that belongs to the listener class
with the component that will generate the
events by calling a method such as addMouseListener() in the
component.

Any object can act as an event listener, provided that it implements the
appropriate interface. A component can listen for the events that it itself
generates. A panel can listen for events from components that are contained
in the panel. A special class can be created just for the purpose of defining
a listening object. Many people consider it to be good form to use anonymous
inner classes to define listening objects (see Subsection 5.8.3),
and named nested classes can also be appropriate.
You will see all of these patterns in examples in this textbook.

6.3.2 MouseEvent and MouseListener

The MouseListener interface specifies these five instance
methods:

public void mousePressed(MouseEvent evt);
public void mouseReleased(MouseEvent evt);
public void mouseClicked(MouseEvent evt);
public void mouseEntered(MouseEvent evt);
public void mouseExited(MouseEvent evt);

The mousePressed method is called as soon as the user presses down
on one of the mouse buttons, and mouseReleased is called when the user
releases a button. These are the two methods that are most commonly used, but
any mouse listener object must define all five methods; you can leave the body
of a method empty if you don't want to define a response. The
mouseClicked method is called if the user presses a mouse button and
then releases it, without moving the mouse. (When the user does this,
all three routines -- mousePressed, mouseReleased, and
mouseClicked -- will be called in that order.) In most cases, you
should define mousePressed instead of mouseClicked. The
mouseEntered and mouseExited methods are called when the
mouse cursor enters or leaves the component. For example, if you want the
component to change appearance whenever the user moves the mouse over the
component, you could define these two methods.

As a first example, we will look at a small addition to the RandomStringsPanel
example from the previous section. In the new version,
the panel will repaint itself when the user clicks on it. In order for this to happen,
a mouse listener should listen for mouse events on the panel, and when the listener
detects a mousePressed event, it should respond by calling the
repaint() method of the panel.

For the new version of the program, we need an object that implements the
MouseListener interface. One way to create the
object is to define a separate class, such as:

import java.awt.Component;
import java.awt.event.*;

/**
 * An object of type RepaintOnClick is a MouseListener that
 * will respond to a mousePressed event by calling the repaint()
 * method of the source of the event. That is, a RepaintOnClick
 * object can be added as a mouse listener to any Component;
 * when the user clicks that component, the component will be
 * repainted.
 */
public class RepaintOnClick implements MouseListener {

 public void mousePressed(MouseEvent evt) {
 Component source = (Component)evt.getSource();
 source.repaint(); // Call repaint() on the Component that was clicked.
 }

 public void mouseClicked(MouseEvent evt) { }
 public void mouseReleased(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

}

This class does three of the four things that we need to do in order
to handle mouse events: First, it imports java.awt.event.*
for easy access to event-related classes. Second, it is declared that
the class "implements MouseListener". And third, it provides
definitions for the five methods that are specified in the
MouseListener interface. (Note that four of the
methods have empty bodies, since we don't want to do anything in response
to those events.)

We must do one more thing to set up the event handling for this example:
We must register an event-handling object as a listener with the component
that will generate the events. In this case, the mouse events that we are
interested in will be generated by an object of type RandomStringsPanel.
If panel is a variable that refers to the panel object,
we can create a mouse listener object and register it with the panel with
the statements:

RepaintOnClick listener = new RepaintOnClick(); // Create MouseListener object.
panel.addMouseListener(listener); // Register MouseListener with the panel.

This could be done, for example, in the main() routine where
the panel is created. Once the listener has been registered in this way,
it will be notified of
mouse events on the panel. When a mousePressed event occurs, the
mousePressed() method in the listener will be called.
The code in this method calls the repaint() method in the
component that is the source of the event, that is, in the panel. The result
is that the RandomStringsPanel is repainted with its strings
in new random colors, fonts, and positions.

Although we have written the RepaintOnClick class for use
with our RandomStringsPanel example, the event-handling
class contains no reference at all to the RandomStringsPanel
class. How can this be? The mousePressed() method in
class RepaintOnClick looks at the source of the event,
and calls its repaint() method. If we have registered the
RepaintOnClick object as a listener on a
RandomStringsPanel, then it is that panel that is
repainted. But the listener object could be used with any type of component,
and it would work in the same way.

Similarly, the RandomStringsPanel class contains no
reference to the RepaintOnClick class -- in fact,
RandomStringsPanel was written before we even knew
anything about mouse events! The panel will
send mouse events to any object that has registered with it as a mouse listener.
It does not need to know anything about that object except that it is capable
of receiving mouse events.

The relationship between an object that generates an event and an object
that responds to that event is rather loose. The relationship is set up by
registering one object to listen for events from the other object. This is
something that can potentially be done from outside both objects. Each object
can be developed independently, with no knowledge of the internal operation
of the other object. This is the essence of modular design: Build a complex
system out of modules that interact only in straightforward, easy to understand
ways. Then each module is a separate design problem that can be tackled independently.
Java's event-handling framework is designed to offer strong support for
modular design.

To make this clearer, let's look at a new version of RandomStrings.java,
the program from Subsection 6.2.7 that uses RandomStringsPanel.
The new version is ClickableRandomStrings.java. For convenience, I have added
RepaintOnClick as a static nested class, although it would work just as well
as a separate class:

import java.awt.Component;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

/**
 * Displays a window that shows 25 copies of the string "Java!" in
 * random colors, fonts, and positions. The content of the window
 * is an object of type RandomStringsPanel. When the user clicks
 * the window, the content of the window is repainted, with the
 * strings in newly selected random colors, fonts, and positions.
 */
public class ClickableRandomStrings {

 public static void main(String[] args) {
 JFrame window = new JFrame("Click Me to Redraw!");
 RandomStringsPanel content = new RandomStringsPanel();
 content.addMouseListener(new RepaintOnClick());
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(350,250);
 window.setVisible(true);
 }

 private static class RepaintOnClick implements MouseListener {

 public void mousePressed(MouseEvent evt) {
 Component source = (Component)evt.getSource();
 source.repaint();
 }

 public void mouseClicked(MouseEvent evt) { }
 public void mouseReleased(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

 }

} end class ClickableRandomStrings

6.3.3 MouseEvent Data

Often, when a mouse event occurs, you want to know the location of the mouse
cursor. This information is available from the MouseEvent
parameter to the event-handling method, which
contains instance methods that return information about the event.
If evt is the parameter, then you can find out
the coordinates of the mouse cursor by calling evt.getX() and
evt.getY(). These methods return integers which give the x
and y coordinates where the mouse cursor was positioned at the time
when the event occurred. The
coordinates are expressed in the coordinate system
of the component that
generated the event, where the top left corner of the component is (0,0).

The user can hold down certain modifier keys
while using the mouse. The possible modifier keys include: the Shift key, the
Control key, the Alt key (called the Option key on the Mac), and the Meta
key (called the Command or Apple key on the Mac).
You might want to respond to a mouse event differently when the user
is holding down a modifier key. The boolean-valued instance methods
evt.isShiftDown(), evt.isControlDown(),
evt.isAltDown(), and evt.isMetaDown() can be called to test
whether the modifier keys are pressed.

You might also want to have different responses depending on whether the
user presses the left mouse button, the middle mouse button, or the right mouse
button. For events triggered by a mouse button,
you can determine which button was pressed or released by calling
evt.getButton(), which returns one of the integer constants
MouseEvent.BUTTON1, MouseEvent.BUTTON2, or MouseEvent.BUTTON3
for the left, middle, and right buttons.
For events such as mouseEntered and mouseExited that are not triggered by buttons,
evt.getButton() returns MouseEvent.NOBUTTON.

Now, not every mouse has a middle button and a right button, and Java deals with
that fact in a somewhat peculiar way. If the user clicks with the right mouse
button, then evt.isMetaDown() will return true, even if the user
was not holding down the Meta key. Similarly, if the user clicks with the
middle mouse button, then evt.isAltDown() will return true, even
if the user is not holding down the Alt/Option key. By using these functions,
you can design an interface that will work even on computers that lack a middle
or right mouse button. Note that there is a subtle difference between these functions
and evt.getButton(): evt.getButton() really only applies
to mousePressed, mouseReleased, and mouseClicked events, while evt.isMetaDown()
and evt.isAltDown() are useful in any mouse event. I will often
use them instead of evt.getButton().

As an example, consider a JPanel that does the
following: Clicking on the panel with the
left mouse button will place a red rectangle on the panel at the point
where the mouse was clicked. Clicking with the right
mouse button will place a
blue oval on the panel. Holding down the Shift key while clicking will clear the
panel by removing all the shapes that have been placed. You can try the sample
program SimpleStamper.java. Here is what the panel looks like
after some shapes have been added:

[image: a SillyStamper panel]

There are several ways to write this example. There could be a separate class to handle
mouse events, as in the previous example. However, in this case, I decided to let
the panel itself respond to mouse events. Any object can be a mouse listener, as long
as it implements the MouseListener interface. In this case,
the panel class implements the MouseListener interface,
so the object that represents the main panel of the program can be the mouse
listener for the program. The constructor for the panel class contains the statement

addMouseListener(this);

which is equivalent to saying this.addMouseListener(this). Now, the
ordinary way to register a mouse listener is to say X.addMouseListener(Y)
where Y is the listener and X is the component that will
generate the mouse events. In the statement addMouseListener(this),
both roles are played by this; that is, "this object" (the panel) is
generating mouse events and is also listening for those events. Although this might
seem a little strange, you should get used to seeing things like this. In a large
program, however, it's usually a better idea to write a separate class to do
the listening in order to have a more organized division of responsibilities.

The source code for the panel class is shown below. I have included a main()
routine to allow the class to be run as a program, as discussed in Subsection 6.2.7.
You should check how the instance
methods in the MouseEvent object are used. You can also check for the
Four Steps of Event Handling ("import java.awt.event.*",
"implements MouseListener", definitions for the
event-handling methods, and "addMouseListener"):

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * A simple demonstration of MouseEvents. Shapes are drawn
 * on a black background when the user clicks the panel. If
 * the user Shift-clicks, the panel is cleared. If the user
 * right-clicks the panel, a blue oval is drawn. Otherwise,
 * when the user clicks, a red rectangle is drawn. The contents of
 * the panel are not persistent. For example, they might disappear
 * if the panel is resized.
 * This class has a main() routine to allow it to be run as an application.
 */
public class SimpleStamper extends JPanel implements MouseListener {

 public static void main(String[] args) {
 JFrame window = new JFrame("Simple Stamper");
 SimpleStamper content = new SimpleStamper();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(450,350);
 window.setVisible(true);
 }

 // --

 /**
 * This constructor simply sets the background color of the panel to be black
 * and sets the panel to listen for mouse events on itself.
 */
 public SimpleStamper() {
 setBackground(Color.BLACK);
 addMouseListener(this);
 }

 /**
 * Since this panel has been set to listen for mouse events on itself,
 * this method will be called when the user clicks the mouse on the panel.
 * This method is part of the MouseListener interface.
 */
 public void mousePressed(MouseEvent evt) {

 if (evt.isShiftDown()) {
 // The user was holding down the Shift key. Just repaint the panel.
 // Since this class does not define a paintComponent() method, the
 // method from the superclass, JPanel, is called. That method simply
 // fills the panel with its background color, which is black. The
 // effect is to clear the panel.
 repaint();
 return;
 }

 int x = evt.getX(); // x-coordinate where user clicked.
 int y = evt.getY(); // y-coordinate where user clicked.

 Graphics g = getGraphics(); // Graphics context for drawing directly.
 // NOTE: This is considered to be bad style!

 if (evt.isMetaDown()) {
 // User right-clicked at the point (x,y). Draw a blue oval centered
 // at the point (x,y). (A black outline around the oval will make it
 // more distinct when shapes overlap.)
 g.setColor(Color.BLUE); // Blue interior.
 g.fillOval(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawOval(x - 30, y - 15, 60, 30);
 }
 else {
 // User left-clicked (or middle-clicked) at (x,y).
 // Draw a red rectangle centered at (x,y).
 g.setColor(Color.RED); // Red interior.
 g.fillRect(x - 30, y - 15, 60, 30);
 g.setColor(Color.BLACK); // Black outline.
 g.drawRect(x - 30, y - 15, 60, 30);
 }

 g.dispose(); // We are finished with the graphics context, so dispose of it.

 } // end mousePressed();

 // The next four empty routines are required by the MouseListener interface.
 // They don't do anything in this class, so their definitions are empty.

 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }
 public void mouseClicked(MouseEvent evt) { }
 public void mouseReleased(MouseEvent evt) { }

} // end class SimpleStamper

Note, by the way, that this class violates the rule that all
drawing should be done in a paintComponent() method. The rectangles
and ovals are drawn directly in the mousePressed() routine. To make
this possible, I need to obtain a graphics context by saying
"g = getGraphics()". After using g for drawing, I call
g.dispose() to inform the operating system that I will no longer be
using g for drawing. I do not advise doing this
type of direct drawing if it can be avoided, but you can see that it does work
in this case.

6.3.4 MouseMotionListeners and Dragging

Whenever the mouse is moved, it generates events. The operating system of
the computer detects these events and uses them to move the mouse cursor on the
screen. It is also possible for a program to listen for these "mouse motion"
events and respond to them. The most common reason to do so is to implement
dragging. Dragging occurs when the user moves the
mouse while holding down a mouse button.

The methods for responding to mouse motion events are defined in an
interface named MouseMotionListener. This interface specifies two
event-handling methods:

public void mouseDragged(MouseEvent evt);
public void mouseMoved(MouseEvent evt);

The mouseDragged method is called if the mouse is moved while a
button on the mouse is pressed. If the mouse is moved while no mouse button is
down, then mouseMoved is called instead. The parameter, evt,
is an object of type MouseEvent, which contains the x and
y coordinates of the mouse's location, as usual. As long as the user continues
to move the mouse, one of these methods will be called over and over. (So many
events are generated that it would be inefficient for a program to hear them
all, if it doesn't want to do anything in response. This is why the mouse
motion event-handlers are defined in a separate interface from the other mouse
events: You can listen for the mouse events defined in MouseListener
without automatically hearing all mouse motion events as well.)

If you want your program to respond to mouse motion events, you must create
an object that implements the MouseMotionListener interface, and you
must register that object to listen for events. The registration is done by
calling a component's addMouseMotionListener() method. The object will
then listen for mouseDragged and mouseMoved events associated
with that component. In most cases, the listener object will also implement the
MouseListener interface so that it can respond to the other mouse
events as well.

(To get a better idea of how mouse events work, you should try the sample program
SimpleTrackMouse.java. This program
responds to any of the seven different kinds of mouse events
by displaying the coordinates of the mouse, the type of event, and a list of
the modifier keys that are down (Shift, Control, Meta, and Alt).
You can experiment with the program to see what happens as you do various
things with the mouse. I also encourage you to read the source code.
You should now be familiar with all the techniques that it uses.)

It is interesting to look at what a program needs to do in order to respond
to dragging operations. In general, the response involves three methods:
mousePressed(), mouseDragged(), and mouseReleased().
The dragging gesture starts when the user presses a mouse button, it continues
while the mouse is dragged, and it ends when the user releases the button. This
means that the programming for the response to one dragging gesture must be
spread out over the three methods! Furthermore, the mouseDragged()
method can be called many times as the mouse moves. To keep track of what is
going on between one method call and the next, you need to set up some instance
variables. In many applications, for example, in order to process a
mouseDragged event, you need to remember the previous coordinates of
the mouse. You can store this information in two instance variables
prevX and prevY of type int. It can also
be useful to save the starting coordinates, where the original mousePressed event
occurred, in instance variables. And I suggest having a
boolean variable, dragging, which is set to true
while a dragging gesture is being processed. This is necessary because in many applications, not
every mousePressed event starts a dragging operation to which you want to respond. The
mouseDragged and mouseReleased methods can use the value of
dragging to check whether a drag operation is actually in progress.
You might need other instance variables as well, but in general outline, a class
that handles mouse dragging looks like this:

import java.awt.event.*;

public class MouseDragHandler implements MouseListener, MouseMotionListener {

 private int startX, startY; // Point where the original mousePress occurred.
 private int prevX, prevY; // Most recently processed mouse coords.
 private boolean dragging; // Set to true when dragging is in process.
 . . . // other instance variables for use in dragging

 public void mousePressed(MouseEvent evt) {
 if (we-want-to-start-dragging) {
 dragging = true;
 startX = evt.getX(); // Remember starting position.
 startY = evt.getY();
 prevX = startX; // Remember most recent coords.
 prevY = startY;
 .
 . // Other processing.
 .
 }
 }

 public void mouseDragged(MouseEvent evt) {
 if (dragging == false) // First, check if we are
 return; // processing a dragging gesture.
 int x = evt.getX(); // Current position of Mouse.
 int y = evt.getY();
 .
 . // Process a mouse movement from (prevX, prevY) to (x,y).
 .
 prevX = x; // Remember the current position for the next call.
 prevY = y;
 }

 public void mouseReleased(MouseEvent evt) {
 if (dragging == false) // First, check if we are
 return; // processing a dragging gesture.
 dragging = false; // We are done dragging.
 .
 . // Other processing and clean-up.
 .
 }

}

As an example, let's look at a typical use of dragging: allowing the user to
sketch a curve by dragging the mouse. This example also shows many other
features of graphics and mouse processing. In the program, you can
draw a curve by dragging the mouse on a large white drawing area, and you can
select a color for
drawing by clicking on one of several colored rectangles to the right of the
drawing area. The complete source code can be found in SimplePaint.java.
Here is a picture of the program after some drawing has been done:

[image: screenshot from SimplePaing showing a simple drawing]

I will discuss a few aspects of the source code
here, but I encourage you to read it carefully in its entirety. There are
lots of informative comments in the source code.

The panel for this example is designed to work for any reasonable
size, that is, unless the panel is too small. This means that
coordinates are computed in terms of the actual width and height of the panel.
(The width and height are obtained by calling getWidth() and
getHeight().) This makes things quite a bit harder than they
would be if we assumed some particular fixed size for the panel. Let's look at
some of these computations in detail. For example, the large white drawing
area extends from y = 3 to y = height - 3 vertically and
from x = 3 to x = width - 56 horizontally. These numbers
are needed in order to interpret the meaning of a mouse click. They take into
account a gray border around the panel and the color palette along the right
edge of the panel. The gray border is 3 pixels wide. The colored rectangles are 50
pixels wide. Together with the 3-pixel border around the panel and
a 3-pixel divider between the drawing area and the colored
rectangles, this adds up to put the right edge of the drawing area 56
pixels from the right edge of the panel.

A white square labeled "CLEAR" occupies a 50-by-50 pixel region
beneath the colored rectangles on the right edge of the panel.
Allowing for this square, we can figure out how
much vertical space is available for the seven colored rectangles, and then
divide that space by 7 to get the vertical space available for each rectangle.
This quantity is represented by a variable, colorSpace. Out of this
space, 3 pixels are used as spacing between the rectangles, so the height of
each rectangle is colorSpace - 3. The top of the N-th
rectangle is located (N*colorSpace + 3) pixels down from the top of
the panel, assuming that we count the rectangles starting with zero. This is because there are
N rectangles above the N-th rectangle, each of which uses
colorSpace pixels. The extra 3 is for the border at the top of the
panel. After all that, we can write down the command for drawing the
N-th rectangle:

g.fillRect(width - 53, N*colorSpace + 3, 50, colorSpace - 3);

That was not easy! But it shows the kind of careful thinking and precision
graphics that are sometimes necessary to get good results.

The mouse in this program is used to do three different things: Select a
color, clear the drawing, and draw a curve. Only the third of these involves
dragging, so not every mouse click will start a dragging operation. The
mousePressed() method has to look at the (x,y) coordinates
where the mouse was clicked and decide how to respond. If the user clicked on
the CLEAR rectangle, the drawing area is cleared by calling
repaint(). If the user clicked somewhere in the strip of colored
rectangles, the corresponding color is selected for drawing. This involves computing which color
the user clicked on, which is done by dividing the y coordinate by
colorSpace. Finally, if the user clicked on the drawing area, a drag
operation is initiated. In this case, a boolean variable, dragging, is set to
true so that the mouseDragged and mouseReleased
methods will know that a curve is being drawn. The code for this follows the
general form given above. The actual drawing of the curve is done in the
mouseDragged() method, which draws a line from the previous location of
the mouse to its current location. Some effort is required to make sure that
the line does not extend beyond the white drawing area of the panel. This is
not automatic, since as far as the computer is concerned, the border and the
color bar are part of the drawing surface. If the user drags the mouse outside
the drawing area while drawing a line, the mouseDragged() routine
changes the x and y coordinates to make them lie within the
drawing area.

6.3.5 Anonymous Event Handlers and Adapter Classes

As I mentioned above, it is a fairly common practice to use anonymous inner
classes to define listener objects. As discussed in Subsection 5.8.3,
a special form of the new operator is
used to create an object that belongs to an anonymous class. For example, a
mouse listener object can be created with an expression of the form:

new MouseListener() {
 public void mousePressed(MouseEvent evt) { . . . }
 public void mouseReleased(MouseEvent evt) { . . . }
 public void mouseClicked(MouseEvent evt) { . . . }
 public void mouseEntered(MouseEvent evt) { . . . }
 public void mouseExited(MouseEvent evt) { . . . }
}

This is all just one long expression that both defines an unnamed class and
creates an object that belongs to that class. To use the object as a mouse
listener, it can be passed as the parameter to some component's
addMouseListener() method in a command of the form:

component.addMouseListener(new MouseListener() {
 public void mousePressed(MouseEvent evt) { . . . }
 public void mouseReleased(MouseEvent evt) { . . . }
 public void mouseClicked(MouseEvent evt) { . . . }
 public void mouseEntered(MouseEvent evt) { . . . }
 public void mouseExited(MouseEvent evt) { . . . }
 });

Now, in a typical application, most of the method definitions in this class
will be empty. A class that implements an interface must provide
definitions for all the methods in that interface, even if the definitions are
empty. To avoid the tedium of writing empty method definitions in cases like
this, Java provides adapter classes. An adapter
class implements a listener interface by providing empty definitions for all
the methods in the interface. An adapter class is useful only as a basis for
making subclasses. In the subclass, you can define just those methods that you
actually want to use. For the remaining methods, the empty definitions that are
provided by the adapter class will be used. The adapter class MouseAdapter
implements both the MouseListener interface and the
MouseMotionListener interface, so it can be used as a basis for
creating a listener for any mouse event. As an example,
if you want a mouse listener that only responds to mouse-pressed events, you
can use a command of the form:

component.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent evt) { . . . }
 });

To see how this works in a real example, let's write another version of the
ClickableRandomStrings program from Subsection 6.3.2.
This version uses an anonymous class based on
MouseAdapter to handle mouse events:

import java.awt.Component;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JFrame;

public class ClickableRandomStrings2 {

 public static void main(String[] args) {
 JFrame window = new JFrame("Random Strings");
 RandomStringsPanel content = new RandomStringsPanel();

 content.addMouseListener(new MouseAdapter() {
 // Register a mouse listener that is defined by an anonymous subclass
 // of MouseAdapter. This replaces the RepaintOnClick class that was
 // used in the original version.
 public void mousePressed(MouseEvent evt) {
 Component source = (Component)evt.getSource();
 source.repaint();
 }
 });

 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(100,75);
 window.setSize(300,240);
 window.setVisible(true);
 }

}

Anonymous inner classes can be used for other purposes besides event handling.
For example, suppose that you want to define a subclass of JPanel
to represent a drawing surface. The subclass will only be used once. It will redefine
the paintComponent() method, but will make no other changes to
JPanel. It might make sense to define the subclass as
an anonymous inner class. You will see this pattern used in some future examples.

Solution for Programming Exercise 6.4

Exercise 6.4:

In Exercise 6.3,
you wrote a pair-of-dice panel where the dice are rolled when the user clicks on
the panel. Now make a pair-of-dice program in which the user rolls the
dice by clicking a button. The button should appear under the
panel that shows the dice. Also make the following change: When the
dice are rolled, instead of just showing the new value, show a short animation
during which the values on the dice are changed in every frame. The animation
is supposed to make the dice look more like they are actually rolling.

Discussion

In Exercise 6.3, there was a single panel,
which was being used as a drawing surface. In the new version, there are two
panels: One is the drawing surface on which the dice are drawn; the other is
a container that holds the button and the drawing surface panel. If we write
a class to define the container, we need another class to define the drawing
surface. One way to write that class is as a simple nested class that contains only a
paintComponent method. Since it is so simple, I decided to
define it as an anonymous inner class:

JPanel dicePanel = new JPanel() {
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // fill with background color.
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 drawDie(g, die1, 10, 10); // Just draw the dice.
 drawDie(g, die2, 55, 55);
 }
};

This just makes dicePanel into a JPanel object
that contains a paintComponent method that differs from the one
defined in the JPanel class.

The constructor of the main class is responsible for setting up the user
interface and the event handling. It sets the layout manager of the panel to be a
BorderLayout, creates the drawing surface and button, adds
the drawing surface in the CENTER position and the button in the
SOUTH position. It adds a blue border to the panel, and leaves a gap
in the border layout through which a blue background color will show.
It also adds an action listener to the button
that will call the roll() method to roll the dice when the button
is pressed. Here is the complete constructor:

public DicePanelWithButton() {

 setLayout(new BorderLayout(2,2));
 setBackground(Color.BLUE); // Will show through the gap in the BorderLayout.
 setBorder(BorderFactory.createLineBorder(Color.BLUE,2));

 JPanel dicePanel = new JPanel() { // the drawing surface, where dice are shown
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // fill with background color.
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 drawDie(g, die1, 10, 10); // Just draw the dice.
 drawDie(g, die2, 55, 55);
 }
 };
 dicePanel.setPreferredSize(new Dimension(100,100));
 dicePanel.setBackground(new Color(200,200,255)); // light blue
 add(dicePanel, BorderLayout.CENTER);

 JButton rollButton = new JButton("Roll!"); // the button that rolls the dice
 rollButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 roll();
 }
 });
 add(rollButton, BorderLayout.SOUTH);

} // end constructor

The method for drawing the dice was discussed in the solution to
Exercise 6.3. But we still have to think about animating
the rolling of the dice. The roll() method is responsible
for rolling the dice. In the original version, this method simply set
the numbers showing on the dice to random values and called repaint().
In the new version, we want to repeat this action several times over a period
of time. That is, we want an animation in which the action for each frame
is to randomize the numbers on the dice and call repaint().
The code for doing one frame goes in the ActionListener
that responds to events from the timer. The roll() method
simply creates the timer and starts it running. (Timers and animation
are discussed in Subsection 6.4.1.)

There is, however, one big problem: How is the timer stopped? If it's
not stopped, the dice will keep rolling forever! The solution is not so hard.
We have to stop the timer after a certain number of frames. The
action listener can keep track of how many frames it has handled, and after
a certain number of frames it can stop the timer. After some experimentation,
I found that 10 frames, with a delay between frames of 100 milliseconds, looks
pretty good. So in the tenth frame, the actionPerformed method
stops the timer.

There is still one little problem: The user might click the "Roll" button
while the animation is in progress. If the dice are already ready rolling,
it doesn't make sense to start another animation. So, the program needs
a way of determining whether an animation is in progress when the "Roll" button
is clicked; if it is, then the click should be ignored. In my program,
there is a Timer variable that is set to a non-null
value when an animation is in progress. When the timer is stopped, the
animation is finished, and the Timer variable is
set back to null. The roll() method checks the Timer
variable to determine whether or not an animation is already in progress.
(Another way of handling the problem would be to disable the Roll button while
the animation is in progress.)
Here's the roll() method. Note that the ActionListener
for the timer is defined as an anonymous inner class.

/**
 * Run an animation that randomly changes the values shown on
 * the dice 10 times, every 100 milliseconds.
 */
private void roll() {
 if (timer != null)
 return;
 timer = new Timer(100, new ActionListener() {
 int frames = 1;
 public void actionPerformed(ActionEvent evt) {
 die1 = (int)(Math.random()*6) + 1;
 die2 = (int)(Math.random()*6) + 1;
 repaint();
 frames++;
 if (frames == 10) {
 timer.stop();
 timer = null;
 }
 }
 });
 timer.start();
}

For this program, I decided to put the main() routine for the program in
a separate class, just to remind you that it can be done that way!

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Shows a pair of dice that are rolled when the user clicks a button
 * that appears below the dice.
 */
public class DicePanelWithButton extends JPanel {

 private int die1 = 4; // The values shown on the dice.
 private int die2 = 3;

 private Timer timer; // Used to animate rolling of the dice.

 /**
 * The constructor sets up the panel. It creates the button and
 * the drawing surface panel on which the dice are drawn and puts
 * them into a BorderLayout. It adds an ActionListener to the button
 * that rolls the dice when the user clicks the button.
 */
 public DicePanelWithButton() {

 setLayout(new BorderLayout(2,2));
 setBackground(Color.BLUE); // Will show through the gap in the BorderLayout.
 setBorder(BorderFactory.createLineBorder(Color.BLUE,2));

 JPanel dicePanel = new JPanel() {
 public void paintComponent(Graphics g) {
 super.paintComponent(g); // fill with background color.
 drawDie(g, die1, 10, 10); // Just draw the dice.
 drawDie(g, die2, 55, 55);
 }
 };
 dicePanel.setPreferredSize(new Dimension(100,100));
 dicePanel.setBackground(new Color(200,200,255)); // light blue
 add(dicePanel, BorderLayout.CENTER);

 JButton rollButton = new JButton("Roll!");
 rollButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 roll();
 }
 });
 add(rollButton, BorderLayout.SOUTH);

 } // end constructor

 /**
 * Draw a die with upper left corner at (x,y). The die is
 * 35 by 35 pixels in size. The val parameter gives the
 * value showing on the die (that is, the number of dots).
 */
 void drawDie(Graphics g, int val, int x, int y) {
 g.setColor(Color.white);
 g.fillRect(x, y, 35, 35);
 g.setColor(Color.black);
 g.drawRect(x, y, 34, 34);
 if (val > 1) // upper left dot
 g.fillOval(x+3, y+3, 9, 9);
 if (val > 3) // upper right dot
 g.fillOval(x+23, y+3, 9, 9);
 if (val == 6) // middle left dot
 g.fillOval(x+3, y+13, 9, 9);
 if (val % 2 == 1) // middle dot (for odd-numbered val's)
 g.fillOval(x+13, y+13, 9, 9);
 if (val == 6) // middle right dot
 g.fillOval(x+23, y+13, 9, 9);
 if (val > 3) // bottom left dot
 g.fillOval(x+3, y+23, 9, 9);
 if (val > 1) // bottom right dot
 g.fillOval(x+23, y+23, 9,9);
 }

 /**
 * Run an animation that randomly changes the values shown on
 * the dice 10 times, every 100 milliseconds.
 */
 private void roll() {
 if (timer != null)
 return;
 timer = new Timer(100, new ActionListener() {
 int frames = 1;
 public void actionPerformed(ActionEvent evt) {
 die1 = (int)(Math.random()*6) + 1;
 die2 = (int)(Math.random()*6) + 1;
 repaint();
 frames++;
 if (frames == 10) {
 timer.stop();
 timer = null;
 }
 }
 });
 timer.start();
 }

} // end class DicePanelWithButton

To use this in a stand-alone application, we need a class that defines the main()
routine of the program. For this exercise, I used a separate class, which can be written as follows:

import javax.swing.JFrame;

/**
 * A main program that just opens a window that shows a DicePanelWithButton.
 */
public class DiceWithButtonMain {

 public static void main(String[] args) {
 JFrame window = new JFrame();
 DicePanelWithButton content = new DicePanelWithButton();
 window.setContentPane(content);
 window.pack();
 window.setLocation(100,100);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setResizable(false); // User can't change the window's size.
 window.setVisible(true);
 }

}

Quiz on Chapter 6

Question 1:

Programs written for a
graphical user interface have to deal with "events." Explain what is meant by
the term event. Give at least two different examples of events, and
discuss how a program might respond to those events.

Question 2:

Explain carefully what the
repaint() method does.

Question 3:

Java has a standard class
called JPanel. Discuss two ways in which JPanels can be
used.

Question 4:

Draw the picture that will
be produced by the following paintComponent() method:

public static void paintComponent(Graphics g) {
 super.paintComponent(g);
 for (int i=10; i <= 210; i = i + 50)
 for (int j = 10; j <= 210; j = j + 50)
 g.drawLine(i,10,j,60);
}

Question 5:

Suppose you would like a
panel that displays a green square inside a red circle, as illustrated. Write
a paintComponent() method for the panel class that will draw the image.

[image: (Picture of Circle in Square)]

Question 6:

Java has a standard class
called MouseEvent. What is the purpose of this class? What does an
object of type MouseEvent do?

Question 7:

One of the main classes in
Swing is the JComponent class. What is meant by a component? What are
some examples?

Question 8:

 What is the function of a
LayoutManager in Java?

Question 9:

Consider the illustration of nested panels from the beginning of Section 6.6.
What type of layout manager is being used for each of the three panels
in that picture?

Question 10:

Explain how Timers
are used to do animation.

Question 11:

What is a JCheckBox
and how is it used?

Question 12:

How is the preferred size of a component set, and how is it used?

See the Answers

Section 6.4

Timers, KeyEvents, and State Machines

Not every event is generated by an action on the
part of the user. Events can also be generated by objects as part of their
regular programming, and these events can be monitored by other objects so that
they can take appropriate actions when the events occur. One example of this
is the class javax.swing.Timer. A Timer
generates events at regular intervals. These events can be used to drive
an animation or to perform some other task at regular intervals. We will
begin this section with a look at timer events and animation. We will then
look at another type of basic user-generated event: the KeyEvents
that are generated when the user types on the keyboard. The example at the end
of the section uses both a timer and keyboard events to implement a simple game
and introduces the important idea of state machines.

6.4.1 Timers and Animation

An object belonging to the class javax.swing.Timer exists only to
generate events. A Timer, by default, generates a sequence of events
with a fixed delay between each event and the next. (It is also possible to set a
Timer to emit a single event after a specified time delay;
in that case, the timer is being used as an "alarm.") Each event belongs to the
class ActionEvent. An object that is to listen for the
events must implement the interface ActionListener, which
defines just one method:

public void actionPerformed(ActionEvent evt)

To use a Timer, you must create an object that
implements the ActionListener interface. That is, the
object must belong to a class that is declared to "implement ActionListener",
and that class must define the actionPerformed method. Then, if
the object is set to listen for events from the timer, the code in the listener's
actionPerformed method will be executed every time the timer generates
an event.

Since there is no point to having a timer without having a listener to respond to
its events, the action listener for a timer is specified as a parameter in the
timer's constructor. The time delay between timer events is also specified in
the constructor. If timer is a variable of type Timer,
then the statement

timer = new Timer(millisDelay, listener);

creates a timer with a delay of millisDelay milliseconds
between events (where 1000 milliseconds equal one second). Events from the
timer are sent to the listener. (millisDelay must be
of type int, and listener must be of type
ActionListener.) The listener's actionPerfomed()
will be executed every time the timer emits an event.
Note that a timer is not guaranteed
to deliver events at precisely regular intervals. If the computer is busy
with some other task, an event might be delayed or even dropped altogether.

A timer does not automatically start generating events when the timer object
is created. The start() method in the timer must be called to tell
the timer to start running. The timer's stop() method
can be used to turn the stream of events off. It can be restarted later by calling
start() again.

One application of timers is computer animation.
A computer animation is just a sequence of still images, presented to the user
one after the other. If the time between images is short, and if the change from one
image to another is not too great, then the user perceives continuous motion.
The easiest way to do animation in Java is to use a Timer to
drive the animation. Each time the timer generates an event, the next frame of
the animation is computed and drawn on the screen -- the code that implements this goes
in the actionPerformed method of an object that listens for events from
the timer.

Our first example of using a timer is not exactly an animation, but it does
display a new image for each timer event. The program shows randomly generated
images that vaguely resemble works of abstract art. In fact, the program
draws a new random image every time its paintComponent() method is
called, and the response to a timer event is simply to call repaint(),
which in turn triggers a call to paintComponent. The work
of the program is done in a subclass of JPanel, which
starts like this:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class RandomArtPanel extends JPanel {

 /**
 * A RepaintAction object calls the repaint method of this panel each
 * time its actionPerformed() method is called. An object of this
 * type is used as an action listener for a Timer that generates an
 * ActionEvent every four seconds. The result is that the panel is
 * redrawn every four seconds.
 */
 private class RepaintAction implements ActionListener {
 public void actionPerformed(ActionEvent evt) {
 repaint(); // Call the repaint() method in the panel class.
 }
 }

 /**
 * The constructor creates a timer with a delay time of four seconds
 * (4000 milliseconds), and with a RepaintAction object as its
 * ActionListener. It also starts the timer running.
 */
 public RandomArtPanel() {
 RepaintAction action = new RepaintAction();
 Timer timer = new Timer(4000, action);
 timer.start();
 }

 /**
 * The paintComponent() method fills the panel with a random shade of
 * gray and then draws one of three types of random "art". The type
 * of art to be drawn is chosen at random.
 */
 public void paintComponent(Graphics g) {
 .
 . // The rest of the class is omitted
 .

You can find the full source code for this class in the file RandomArt.java.
I will only note that the very short RepaintAction class is a natural
candidate to be replaced by an anonymous inner class. That can be done where the timer is
created:

Timer timer = new timer(4000, new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 repaint();
 }
 });

Later in this section, we will use a timer to drive the animation in a simple
computer game.

6.4.2 Keyboard Events

In Java, user actions become events in a program. These events
are associated with GUI components.
When the user presses a button on the mouse, the event that is generated is
associated with the component that contains the mouse cursor. What about
keyboard events? When the user presses a key, what component is associated with
the key event that is generated?

A GUI uses the idea of input focus to determine
the component associated with keyboard events. At any given time, exactly one
interface element on the screen has the input focus, and that is where all
keyboard events are directed. If the interface element happens to be a Java
component, then the information about the keyboard event becomes a Java object
of type KeyEvent, and it is delivered to any listener objects that are
listening for KeyEvents associated with that component. The necessity
of managing input focus adds an extra twist to working with keyboard events.

It's a good idea to give the user some visual feedback about which component
has the input focus. For example, if the component is the typing area of a
word-processor, the feedback is usually in the form of a blinking text cursor.
Another possible visual clue is to draw a brightly colored border around the edge
of a component when it has the input focus, as I do in the examples given
later in this section.

If comp is any component, and you would like it to have the
input focus, you can call requestFocusInWindow(), which should
work as long as the window that contains the component is active and there
is only one component that is requesting focus. In some cases,
when there is only one component involved, it is enough to call this method
once, just after opening the window, and the component will retain the focus
for the rest of the program. (Note that there is also a requestFocus()
method that might work even when the window is not active,
but the newer method requestFocusInWindow() is preferred in
most cases.)

In a typical user interface, the user can choose to give the focus to a component by
clicking on that component with the mouse. And pressing the tab key will often
move the focus from one component to another. This is handled automatically by
the components involved, without any programming on your part.
However, some components do not automatically request the input focus when the user
clicks on them. To solve this problem, a program can register a mouse
listener with the component to detect user clicks. In response to a user click,
the mousePressed() method should call requestFocusInWindow() for the
component. This is true, in particular, for JPanels that are used as
drawing surfaces, since JPanel objects do not receive the input
focus automatically.

As our first example of processing key events, we look at a simple program in
which the user moves a square up, down, left, and right by pressing arrow keys.
When the user hits the 'R', 'G', 'B', or 'K' key, the color of the square is set to
red, green, blue, or black, respectively. Of course, none of these key events
are delivered to the panel unless it has the input focus. The panel in the
program changes its appearance when it has the input focus: When it does,
a cyan-colored border is drawn around the panel; when it does not, a gray-colored
border is drawn. The complete source code for this example
can be found in the file KeyboardAndFocusDemo.java.
I will discuss some aspects of it below. After reading this section, you should be
able to understand the source code in its entirety. I suggest running the program to
see how it works.

In Java, keyboard event objects belong to a class called KeyEvent.
An object that needs to listen for KeyEvents must implement the
interface named KeyListener. Furthermore, the object must be
registered with a component by calling the component's
addKeyListener() method. The registration is done with the command
"component.addKeyListener(listener);" where listener is the
object that is to listen for key events, and component is the object
that will generate the key events (when it has the input focus). It is possible
for component and listener to be the same object. All this
is, of course, directly analogous to what you learned about mouse events in the
previous section. The KeyListener interface
defines the following methods, which must be included in any class that
implements KeyListener:

public void keyPressed(KeyEvent evt);
public void keyReleased(KeyEvent evt);
public void keyTyped(KeyEvent evt);

Java makes a careful distinction between the keys that you press and
the characters that you type. There are lots of keys on a keyboard:
letter keys, number keys, modifier keys such as Control and Shift, arrow keys,
page up and page down keys, keypad keys, function keys, and so on. In some cases, such as the shift key,
pressing a key does not type a character. On the other hand, typing a character
sometimes involves pressing several keys. For example, to type an uppercase
'A', you have to press the Shift key and then press the A key before releasing
the Shift key. On my Mac OS computer, I can type an accented e, by
holding down the Option key, pressing the E key, releasing the Option key, and
pressing E again. Only one character was typed, but I had to perform three
key-presses and I had to release a key at the right time. In Java, there are
three types of KeyEvent. The types correspond to pressing a key,
releasing a key, and typing a character. The keyPressed method is
called when the user presses a key, the keyReleased method is called
when the user releases a key, and the keyTyped method is called when
the user types a character (whether that's done with one key press or several).
Note that one user action, such as pressing the E
key, can be responsible for two events, a keyPressed event and a
keyTyped event. Typing an upper case 'A' can generate two
keyPressed events, two keyReleased events, and one keyTyped
event.

Usually, it is better to think in terms of two separate streams of events,
one consisting of keyPressed and keyReleased events and the
other consisting of keyTyped events. For some applications, you want
to monitor the first stream; for other applications, you want to monitor the
second one. Of course, the information in the keyTyped stream could be
extracted from the keyPressed/keyReleased stream, but it would be
difficult (and also system-dependent to some extent). Some user actions, such
as pressing the Shift key, can only be detected as keyPressed events.
I used to have a computer solitaire game that highlighted every card that could be
moved, when I held down the Shift key. You can do something like that in Java
by highlighting the cards when the Shift key is pressed and removing the highlight
when the Shift key is released.

There is one more complication. Usually, when you hold down a key on the
keyboard, that key will auto-repeat. This means
that it will generate multiple keyPressed events with just one
keyReleased at the end of the sequence.
It can also generate multiple keyTyped events. For the most
part, this will not affect your programming, but you should not expect every
keyPressed event to have a corresponding keyReleased
event.

Every key on the keyboard has an integer code number. (Actually, this is
only true for keys that Java knows about. Many keyboards have extra keys that
can't be used with Java.) When the keyPressed or keyReleased
method is called, the parameter, evt, contains the code of the key
that was pressed or released. The code can be obtained by calling the function
evt.getKeyCode(). Rather than asking you to memorize a table of code
numbers, Java
provides a named constant for each key. These constants are defined in the
KeyEvent class. For example the constant for the shift key is
KeyEvent.VK_SHIFT. If you want to test whether the key that the user
pressed is the Shift key, you could say "if (evt.getKeyCode() ==
KeyEvent.VK_SHIFT)". The key codes for the four arrow keys are
KeyEvent.VK_LEFT, KeyEvent.VK_RIGHT, KeyEvent.VK_UP,
and KeyEvent.VK_DOWN. Other keys have similar codes. (The "VK" stands
for "Virtual Keyboard". In reality, different keyboards use different key
codes, but Java translates the actual codes from the keyboard into its own
"virtual" codes. Your program only sees these virtual key codes, so it will
work with various keyboards on various platforms without modification.)

In the case of a keyTyped event, you want to know which character
was typed. This information can be obtained from the parameter, evt,
in the keyTyped method by calling the function
evt.getKeyChar(). This function returns a value of type char
representing the character that was typed.

In the KeyboardAndFocusDemo program, I use the
keyPressed routine to respond when the user presses one of the arrow
keys. The program includes instance variables, squareLeft and
squareTop, that give the position of the upper left corner of the movable
square. When the user presses one of the arrow keys, the keyPressed
routine modifies the appropriate instance variable and calls
repaint() to redraw the panel with the square in its new position. Note that the
values of squareLeft and squareTop are restricted so that
the square never moves outside the white area of the panel:

/**
 * This is called each time the user presses a key while the panel has
 * the input focus. If the key pressed was one of the arrow keys,
 * the square is moved (except that it is not allowed to move off the
 * edge of the panel, allowing for a 3-pixel border).
 */
public void keyPressed(KeyEvent evt) {

 int key = evt.getKeyCode(); // keyboard code for the pressed key

 if (key == KeyEvent.VK_LEFT) { // left-arrow key; move the square left
 squareLeft -= 8;
 if (squareLeft < 3)
 squareLeft = 3;
 repaint();
 }
 else if (key == KeyEvent.VK_RIGHT) { // right-arrow key; move the square right
 squareLeft += 8;
 if (squareLeft > getWidth() - 3 - SQUARE_SIZE)
 squareLeft = getWidth() - 3 - SQUARE_SIZE;
 repaint();
 }
 else if (key == KeyEvent.VK_UP) { // up-arrow key; move the square up
 squareTop -= 8;
 if (squareTop < 3)
 squareTop = 3;
 repaint();
 }
 else if (key == KeyEvent.VK_DOWN) { // down-arrow key; move the square down
 squareTop += 8;
 if (squareTop > getHeight() - 3 - SQUARE_SIZE)
 squareTop = getHeight() - 3 - SQUARE_SIZE;
 repaint();
 }

} // end keyPressed()

Color changes -- which happen when the user types the characters 'R', 'G',
'B', and 'K', or the lower case equivalents -- are handled in the
keyTyped method. I won't include it here, since it is so similar to
the keyPressed method. Finally, to complete the KeyListener
interface, the keyReleased method must be defined. In the sample
program, the body of this method is empty since the program does nothing in
response to keyReleased events.

6.4.3 Focus Events

If a component is to change its appearance when it has the input focus, it
needs some way to know when it has the focus. In Java, objects are notified
about changes of input focus by events of type FocusEvent. An object
that wants to be notified of changes in focus can implement the
FocusListener interface. This interface declares two methods:

public void focusGained(FocusEvent evt);
public void focusLost(FocusEvent evt);

Furthermore, the addFocusListener() method must be used to set up a
listener for the focus events. When a component gets the input focus, it calls
the focusGained() method of any registered with
FocusListener. When it loses the focus, it calls
the listener's focusLost() method.

In the sample KeyboardAndFocusDemo program, the response to
a focus event is simply to redraw the panel. The paintComponent()
method checks whether the panel has the input focus by calling the
boolean-valued function hasFocus(), which is
defined in the Component class, and it draws a
different picture depending on whether or not the panel has the input focus.
The net result is that the appearance of the panel changes when the panel
gains or loses focus. The methods from the FocusListener
interface are defined simply as:

public void focusGained(FocusEvent evt) {
 // The panel now has the input focus.
 repaint(); // will redraw with a new message and a cyan border
}

public void focusLost(FocusEvent evt) {
 // The panel has now lost the input focus.
 repaint(); // will redraw with a new message and a gray border
}

The other aspect of handling focus is to make sure that the panel
actually gets the focus. In this case, I called requestFocusInWindow()
for the panel in the program's main() routine, just after
opening the window. This approach works because there is only one component
in the window, and it should have focus as long as the window is active.
If the user clicks over to another window while using the program, the
window becomes inactive and the panel loses focus temporarily, but gets
is back when the user clicks back to the program window.

There are still decisions to be made about the overall structure of
the program. In this case, I decided to use a nested class named Listener to define
an object that listens for both focus and key events. In the constructor for the panel, I create
an object of type Listener and register it to listen for both
key events and focus events from the panel. See the source code
for full details.

6.4.4 State Machines

The information stored in an object's instance variables is said to
represent the state of that object. When one of
the object's methods is called, the action taken by the object can depend on
its state. (Or, in the terminology we have been using, the definition of the
method can look at the instance variables to decide what to do.) Furthermore,
the state can change. (That is, the definition of the method can assign new
values to the instance variables.) In computer science, there is the idea of a
state machine, which is just something that has a
state and can change state in response to events or inputs. The response of a
state machine to an event depends on what state it's in when the event occurs. An object is
a kind of state machine. Sometimes, this point of view can be very useful in
designing classes.

The state machine point of view can be especially useful in the type of
event-oriented programming that is required by graphical user interfaces. When
designing a GUI program, you can ask yourself: What information about state do I
need to keep track of? What events can change the state of the program? How will
my response to a given event depend on the current state? Should the appearance
of the GUI be changed to reflect a change in state? How should the
paintComponent() method take the state into account? All this is an
alternative to the top-down, step-wise-refinement style of program design,
which does not apply to the overall design of an event-oriented program.

In the KeyboardAndFocusDemo program, shown above, the state of the
program is recorded in the instance variables squareColor,
squareLeft, and squareTop. These state variables are used in
the paintComponent() method to decide how to draw the panel. Their values are
changed in the two key-event-handling methods.

In the rest of this section, we'll look at another example, where the state
plays an even bigger role. In this example, the user plays a
simple arcade-style game by pressing the arrow keys. The
program is defined in the source code file SubKiller.java.
As usual, it would be a good idea to compile and run the program as well
as read the full source code. Here is a picture:

[image: the SubKiller window, showing a 'boat' and a 'submarine']

The program shows a black "submarine" near the bottom of the panel.
While the panel has the input focus, this submarine
moves back and forth erratically near the bottom. Near the top,
there is a blue "boat." You can move this boat back and forth by pressing the
left and right arrow keys. Attached to the boat is a red "bomb" (or "depth charge"). You
can drop the bomb by hitting the down arrow key. The objective is to
blow up the submarine by hitting it with the bomb. If the bomb
falls off the bottom of the screen, you get a new one. If the submarine explodes, a
new sub is created and you get a new bomb. Try it! Make sure to hit the
sub at least once, so you can see the explosion.

Let's think about how this game can be programmed. First of all, since we
are doing object-oriented programming, I decided to represent the boat, the depth
charge, and the submarine as objects. Each of these objects is defined by a
separate nested class inside the main panel class, and each object has its own
state which is represented by the instance variables in the corresponding class.
I use variables boat, bomb, and sub in
the panel class to refer to the boat, bomb, and submarine objects.

Now, what constitutes the
"state" of the program? That is, what things change from time to time and affect
the appearance or behavior of the program? Of course, the state includes the
positions of the boat, submarine, and bomb, so those objects have instance
variables to store the positions. Anything else, possibly less obvious? Well,
sometimes the bomb is falling, and sometimes it's not. That is a
difference in state. Since there are two possibilities, I represent this aspect
of the state with a boolean variable in the bomb object,
bomb.isFalling. Sometimes the
submarine is moving left and sometimes it is moving right. The difference is
represented by another boolean variable, sub.isMovingLeft. Sometimes,
the sub is exploding. This is also part of the state, and it is represented
by a boolean variable, sub.isExploding. However, the explosions
require a little more thought. An explosion is something that takes place
over a series of frames. While an explosion is in progress, the sub
looks different in each frame, as the size of the explosion increases. Also,
I need to know when the explosion is over so that I can go back to moving and drawing the
sub as usual. So, I use an integer variable, sub.explosionFrameNumber
to record how many frames have been drawn since the explosion
started; the value of this variable is used only when an explosion is in progress.

How and when do the values of these state variables change? Some of them seem
to change on their own: For example, as the sub moves left and right, the state variables
that specify its position change. Of course, these variables are changing
because of an animation, and that animation is driven by a timer. Each time an
event is generated by the timer, some of the state variables have to change to
get ready for the next frame of the animation. The changes are made by the
action listener that listens for events from the timer. The boat,
bomb, and sub objects each contain an
updateForNextFrame() method that updates the state variables of
the object to get ready for the next frame of the animation. The action listener
for the timer calls these methods with the statements

boat.updateForNewFrame();
bomb.updateForNewFrame();
sub.updateForNewFrame();

The action listener also calls repaint(), so that the panel will be
redrawn to reflect its new state. There are several state variables that change
in these update methods, in addition to the position of the sub: If the bomb is
falling, then its y-coordinate increases from one frame to the next. If the
bomb hits the sub, then the isExploding variable of the sub
changes to true, and the isFalling variable of the bomb becomes false.
The isFalling variable also becomes false when the bomb falls off the
bottom of the screen. If the sub is exploding, then its explosionFrameNumber
increases from one frame to the next, and when it reaches a certain value, the
explosion ends and isExploding is reset to false. At random times,
the sub switches between moving to the left and moving to the right. Its
direction of motion is recorded in the sub's isMovingLeft variable.
The sub's updateForNewFrame() method includes these lines to
change the value of isMovingLeft at random times:

if (Math.random() < 0.04)
 isMovingLeft = ! isMovingLeft;

There is a 1 in 25 chance that Math.random() will be less than
0.04, so the statement "isMovingLeft = ! isMovingLeft" is executed
in one in every twenty-five frames, on average. The effect of this statement
is to reverse the value of isMovingLeft, from false to true or from
true to false. That is, the direction of motion of the sub is reversed.

In addition to changes in state that take place from one frame to the next, a few state
variables change when the user presses certain keys. In the program, this is checked
in a method that responds to user keystrokes. If the user presses the left or right
arrow key, the position of the boat is changed. If the user presses the down
arrow key, the bomb changes from not-falling to falling. This is coded in the
keyPressed()method of a KeyListener that is
registered to listen for key events on the panel; that method
reads as follows:

public void keyPressed(KeyEvent evt) {
 int code = evt.getKeyCode(); // which key was pressed.
 if (code == KeyEvent.VK_LEFT) {
 // Move the boat left. (If this moves the boat out of the frame, its
 // position will be adjusted in the boat.updateForNewFrame() method.)
 boat.centerX -= 15;
 }
 else if (code == KeyEvent.VK_RIGHT) {
 // Move the boat right. (If this moves boat out of the frame, its
 // position will be adjusted in the boat.updateForNewFrame() method.)
 boat.centerX += 15;
 }
 else if (code == KeyEvent.VK_DOWN) {
 // Start the bomb falling, if it is not already falling.
 if (bomb.isFalling == false)
 bomb.isFalling = true;
 }
}

Note that it's not necessary to call repaint() in this method,
since this panel shows an animation that is constantly being redrawn
anyway. Any changes in the state will become visible to the user as soon as the
next frame is drawn. At some point in the program, I have to make sure that the
user does not move the boat off the screen. I could have done this in
keyPressed(), but I choose to check for this in another routine, in
the boat object.

The program uses four listeners, to respond to
action events from the timer, key events from the user, focus events, and
mouse events. In this program, the user must click the panel to start the game.
The game is programmed to run as long as the panel has the input focus.
In this example, the program does not automatically request the focus; the user
has to do it. When the user clicks the panel, the mouse listener requests the input focus and the
game begins. The timer runs only when the panel has the input focus; this
is programmed by having the focus listener start the timer when the panel
gains the input focus and stop the timer when the panel loses the input focus.
All four listeners are created in the constructor of the SubKillerPanel
class using anonymous inner classes. (See Subsection 6.3.5.)

I encourage you to read the source code in SubKiller.java.
Although a few points are tricky, you should with some effort be able to read and
understand the entire program. Try to understand the program in terms of state
machines. Note how the state of each of the three objects in the program changes
in response to events from the timer and from the user.

While it's not at all sophisticated as arcade games go, the
SubKiller game does use some interesting programming. And it
nicely illustrates how to apply state-machine thinking in event-oriented
programming.

Solution for Programming Exercise 6.10

Exercise 6.10:

Write a GUI Blackjack program
that lets the user play a game of Blackjack, with the computer as the dealer.
The program should draw the user's cards and the dealer's cards, just as was
done for the graphical HighLow card game in Subsection 6.6.6.
You can use the source code for that game, HighLowGUI.java, for some ideas about how to
write your Blackjack game. The structures of the HighLow panel and the
Blackjack panel are very similar. You will certainly want to use the
drawCard() method from the HighLow program.

You can find a description of the game of Blackjack in Exercise 5.5.
Add the following rule to that
description: If a player takes five cards without going over 21, that player
wins immediately. This rule is used in some casinos. For your program, it means
that you only have to allow room for five cards. You should assume that the
panel is just wide enough to show five cards, and that it is tall enough
show the user's hand and the dealer's hand.

Note that the design of a GUI Blackjack game is very different from the
design of the text-oriented program that you wrote for Exercise 5.5. The user
should play the game by clicking on "Hit" and "Stand" buttons. There should be
a "New Game" button that can be used to start another game after one game ends.
You have to decide what happens when each of these buttons is pressed. You
don't have much chance of getting this right unless you think in terms of the
states that the game can be in and how the state can change.

Your program will need the classes defined in
Card.java,
Hand.java,
Deck.java, and
BlackjackHand.java.

The next exercise has a picture of a blackjack game that
you can use a guide, except that the version for this exercise does not allow betting.

Discussion

The constructor for this exercise can be almost identical to that in
the HighLow game. The text of the buttons
just has to be changed from "Higher" and "Lower" to "Hit" and "Stand". However,
the nested class, CardPanel has to be rewritten to
implement a game of Blackjack instead of a game of HighLow. The basic structure
of the revised class remains similar to the original.
All the programming for the game is in this class.

In the HighLow game, there is one "hand," which holds all the cards that
have been dealt. Blackjack is a two-player game, so there are two hands, one
for the player and one for the dealer. These hands are of type
BlackjackHand. So, we need instance variables

BlackjackHand dealerHand; // The dealer's cards.
BlackjackHand playerHand; // The user's cards.

We also need a deck and a boolean-valued instance variable,
gameInProgress, to keep track of the two basic states of the game: Is
a game in progress, or are we between games. Finally, there is a
message variable, which holds the string that is shown at the bottom
of the game board.

The paintComponent() method uses the information in the
dealerHand, playerHand, message, and
gameInProgress variables. The reason it needs to look at the
gameInProgress variable is that when a game is in progress, one of the
dealer's cards is drawn face down, so the user can't see it. Once the game is
over, the card is drawn face up so the user can see what the dealer was
holding. Note that there is no point in the program where I say, "turn the
dealer's first card face up"! It happens automatically because the state of the
game changes, and the paintComponent() method checks the state when it
draws the panel. If the game is over, the card is face up. If the game is in
progress, the card is face down. This is nice
example of state-machine thinking.

Note that writing the paintComponent() method required some
calculation. The cards are 80 pixels wide and 100 pixels tall. Horizontally,
there is a gap of 10 pixels between cards, and there are gaps of 10 pixels
between the cards and the left and right edges. The total width needed for the
card panel, 460, allows for five 80-pixel cards and six 10-pixel gaps:
 5*80 + 6*10 = 460. The panel is another 6 pixels wide because of a 3-pixel wide
border on each side. The N-th card,
counting from 0, has its left edge at 10+90*N. It might be easier to
see this as 10+80*N+10*N, 10 pixels on the left plus N
80-pixel cards, plus N 10-pixel gaps between cards. Vertically, I
allow 30 pixels for each string, "Dealer's Cards" and "Your Cards". This puts
the top of the first row of cards at y=30. Allowing 100 pixels for
that row of cards and 30 pixels for the string "Your Cards", the top of the
second row of cards is at 160. Given all this, you should be able to understand
the paintComponent() method. Allowing 100 pixels for the second row of
cards and 30 pixels for the message at the bottom of the board, we need a
height of at least 290 pixels for the drawing area. I set the preferred height of the CardPanel to
310 to for some extra space between the cards and the message at the bottom of the
panel.

In this GUI version of Blackjack, things happen when the user clicks the
"Hit", "Stand", and "New Game" buttons. The program handles these events by
calling the routines doHit(), doStand(), and
doNewGame(). Each of these routines has responsibility for one part of
the game of Blackjack. Note that each routine starts by checking the state of
the game to make sure that it is legal to call the routine at this time. If
gameInProgress is true, the user can legally click "Hit" or "Stand".
If gameInProgress is false, the user can legally click "New Game". If
the user made an illegal move, an error message is stored in the
message variable, and repaint() is called so the user will
see the new message. This is similar to the way the three buttons in HighLowGUI
are handled.

The doNewGame() routine has to set up a new game. This means
creating the deck and hands, shuffling the deck and dealing two cards into each
hand. At this point, the first time I wrote the game, I just set
gameInProgress to true, to record the fact that the state of the game
has changed. Later, I realized that the doNewGame() routine also has
to check whether one of the players has Blackjack, since there is really no
other place where this can be done. If one of the players has Blackjack, the
game is over as soon as it starts, so gameIsProgress has to be false, and the only action
that the user can take at that point is to click the "New Game" button again.
(Note that the doNewGame() routine is also called by the constructor
of the CardPanel class. This sets up the first game, when the
panel is first created, so the user doesn't have to click on the "New Game"
button to start the first game.)

When the user clicks "Hit", if the game is in progress, we deal a card into
the user's hand. At this point, the state of the game might have changed. If
the user has over 21, the user loses and the game is over. If the user has
taken 5 cards without going over 21, the user wins and the game is over. In
either of these cases, the value of the state variable gameInProgress
becomes false. Otherwise, gameInProgress retains the value
true, and the game will continue. Since gameInProgress is
true, the user still has the choice of clicking "Hit" or "Stand".
(Note that there is no loop in the program that says "while the user continues
to hit." The progress of the game is driven by events.)

Finally, when the user clicks "Stand", the game is definitely over, so
gameInProgress is set to false. However, before the game can end, the
dealer gets to draw cards and a winner is determined. This all has to be done
in the doStand() routine. Then, the panel is repainted to show the
final state of the game.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * In this program, the user plays a game of Blackjack. The
 * computer acts as the dealer. The user plays by clicking
 * "Hit!" and "Stand!" buttons.
 *
 * This class defines a panel, but it also contains a main()
 * routine that makes it possible to run the program as a
 * stand-alone application.
 *
 * This program depends on the following classes: Card, Hand,
 * BlackjackHand, Deck.
 */
public class BlackjackGUI extends JPanel {

 /**
 * The main routine simply opens a window that shows a BlackjackGUI.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Blackjack");
 BlackjackGUI content = new BlackjackGUI();
 window.setContentPane(content);
 window.pack(); // Set size of window to preferred size of its contents.
 window.setResizable(false); // User can't change the window's size.
 Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();
 window.setLocation((screensize.width - window.getWidth())/2,
 (screensize.height - window.getHeight())/2);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setVisible(true);
 }

 /**
 * The constructor lays out the panel. A CardPanel occupies the CENTER
 * position of the panel (where CardPanel is a subclass of JPanel that is
 * defined below). On the bottom is a panel that holds three buttons.
 * The CardPanel listens for ActionEvents from the buttons and does all
 * the real work of the program.
 */
 public BlackjackGUI() {

 setBackground(new Color(130,50,40));

 setLayout(new BorderLayout(3,3));

 CardPanel board = new CardPanel();
 add(board, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel();
 buttonPanel.setBackground(new Color(220,200,180));
 add(buttonPanel, BorderLayout.SOUTH);

 JButton hitButton = new JButton("Hit!");
 hitButton.addActionListener(board);
 buttonPanel.add(hitButton);

 JButton standButton = new JButton("Stand!");
 standButton.addActionListener(board);
 buttonPanel.add(standButton);

 JButton newGame = new JButton("New Game");
 newGame.addActionListener(board);
 buttonPanel.add(newGame);

 setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

 } // end constructor

 /**
 * A nested class that displays the game and does all the work
 * of keeping track of the state and responding to user events.
 */
 private class CardPanel extends JPanel implements ActionListener {

 Deck deck; // A deck of cards to be used in the game.

 BlackjackHand dealerHand; // Hand containing the dealer's cards.
 BlackjackHand playerHand; // Hand containing the user's cards.

 String message; // A message drawn on the canvas, which changes
 // to reflect the state of the game.

 boolean gameInProgress; // Set to true when a game begins and to false
 // when the game ends.

 Font bigFont; // Font that will be used to display the message.
 Font smallFont; // Font that will be used to draw the cards.

 /**
 * The constructor creates the fonts and starts the first game.
 * It also sets a preferred size of 460-by-310 for the panel.
 * The paintComponent() method assumes that this is in fact the
 * size of the panel (although it can be a little taller with
 * no bad effect).
 */
 CardPanel() {
 setPreferredSize(new Dimension(460,310));
 setBackground(new Color(0,120,0));
 smallFont = new Font("SansSerif", Font.PLAIN, 12);
 bigFont = new Font("Serif", Font.BOLD, 14);
 doNewGame();
 }

 /**
 * Respond when the user clicks on a button by calling the appropriate
 * method. Note that the buttons are created and listening is set
 * up in the constructor of the BlackjackGUI class.
 */
 public void actionPerformed(ActionEvent evt) {
 String command = evt.getActionCommand();
 if (command.equals("Hit!"))
 doHit();
 else if (command.equals("Stand!"))
 doStand();
 else if (command.equals("New Game"))
 doNewGame();
 }

 /**
 * This method is called when the user clicks the "Hit!" button. First
 * check that a game is actually in progress. If not, give an error
 * message and exit. Otherwise, give the user a card. The game can end
 * at this point if the user goes over 21 or if the user has taken 5 cards
 * without going over 21.
 */
 void doHit() {
 if (gameInProgress == false) {
 message = "Click \"New Game\" to start a new game.";
 repaint();
 return;
 }
 playerHand.addCard(deck.dealCard());
 if (playerHand.getBlackjackValue() > 21) {
 message = "You've busted! Sorry, you lose.";
 gameInProgress = false;
 }
 else if (playerHand.getCardCount() == 5) {
 message = "You win by taking 5 cards without going over 21.";
 gameInProgress = false;
 }
 else {
 message = "You have " + playerHand.getBlackjackValue() + ". Hit or Stand?";
 }
 repaint();
 }

 /**
 * This method is called when the user clicks the "Stand!" button.
 * Check whether a game is actually in progress. If it is, the game
 * ends. The dealer takes cards until either the dealer has 5 cards
 * or more than 16 points. Then the winner of the game is determined.
 */
 void doStand() {
 if (gameInProgress == false) {
 message = "Click \"New Game\" to start a new game.";
 repaint();
 return;
 }
 gameInProgress = false;
 while (dealerHand.getBlackjackValue() <= 16 && dealerHand.getCardCount() < 5)
 dealerHand.addCard(deck.dealCard());
 if (dealerHand.getBlackjackValue() > 21)
 message = "You win! Dealer has busted with " + dealerHand.getBlackjackValue() + ".";
 else if (dealerHand.getCardCount() == 5)
 message = "Sorry, you lose. Dealer took 5 cards without going over 21.";
 else if (dealerHand.getBlackjackValue() > playerHand.getBlackjackValue())
 message = "Sorry, you lose, " + dealerHand.getBlackjackValue()
 + " to " + playerHand.getBlackjackValue() + ".";
 else if (dealerHand.getBlackjackValue() == playerHand.getBlackjackValue())
 message = "Sorry, you lose. Dealer wins on a tie.";
 else
 message = "You win, " + playerHand.getBlackjackValue()
 + " to " + dealerHand.getBlackjackValue() + "!";
 repaint();
 }

 /**
 * Called by the constructor, and called by actionPerformed() if the
 * user clicks the "New Game" button. Start a new game. Deal two cards
 * to each player. The game might end right then if one of the players
 * had blackjack. Otherwise, gameInProgress is set to true and the game
 * begins.
 */
 void doNewGame() {
 if (gameInProgress) {
 // If the current game is not over, it is an error to try
 // to start a new game.
 message = "You still have to finish this game!";
 repaint();
 return;
 }
 deck = new Deck(); // Create the deck and hands to use for this game.
 dealerHand = new BlackjackHand();
 playerHand = new BlackjackHand();
 deck.shuffle();
 dealerHand.addCard(deck.dealCard()); // Deal two cards to each player.
 dealerHand.addCard(deck.dealCard());
 playerHand.addCard(deck.dealCard());
 playerHand.addCard(deck.dealCard());
 if (dealerHand.getBlackjackValue() == 21) {
 message = "Sorry, you lose. Dealer has Blackjack.";
 gameInProgress = false;
 }
 else if (playerHand.getBlackjackValue() == 21) {
 message = "You win! You have Blackjack.";
 gameInProgress = false;
 }
 else {
 message = "You have " + playerHand.getBlackjackValue() + ". Hit or stand?";
 gameInProgress = true;
 }
 repaint();
 } // end newGame();

 /**
 * The paint method shows the message at the bottom of the
 * canvas, and it draws all of the dealt cards spread out
 * across the canvas.
 */
 public void paintComponent(Graphics g) {

 super.paintComponent(g); // fill with background color.

 g.setFont(bigFont);
 g.setColor(Color.GREEN);
 g.drawString(message, 10, getHeight() - 10);

 // Draw labels for the two sets of cards.

 g.drawString("Dealer's Cards:", 10, 23);
 g.drawString("Your Cards:", 10, 153);

 // Draw dealer's cards. Draw first card face down if
 // the game is still in progress, It will be revealed
 // when the game ends.

 g.setFont(smallFont);
 if (gameInProgress)
 drawCard(g, null, 10, 30);
 else
 drawCard(g, dealerHand.getCard(0), 10, 30);
 for (int i = 1; i < dealerHand.getCardCount(); i++)
 drawCard(g, dealerHand.getCard(i), 10 + i * 90, 30);

 // Draw the user's cards.

 for (int i = 0; i < playerHand.getCardCount(); i++)
 drawCard(g, playerHand.getCard(i), 10 + i * 90, 160);

 } // end paint();

 /**
 * Draws a card as a 80 by 100 rectangle with upper left corner at (x,y).
 * The card is drawn in the graphics context g. If card is null, then
 * a face-down card is drawn. (The cards are rather primitive!)
 */
 void drawCard(Graphics g, Card card, int x, int y) {
 if (card == null) {
 // Draw a face-down card
 g.setColor(Color.blue);
 g.fillRect(x,y,80,100);
 g.setColor(Color.white);
 g.drawRect(x+3,y+3,73,93);
 g.drawRect(x+4,y+4,71,91);
 }
 else {
 g.setColor(Color.white);
 g.fillRect(x,y,80,100);
 g.setColor(Color.gray);
 g.drawRect(x,y,79,99);
 g.drawRect(x+1,y+1,77,97);
 if (card.getSuit() == Card.DIAMONDS || card.getSuit() == Card.HEARTS)
 g.setColor(Color.red);
 else
 g.setColor(Color.black);
 g.drawString(card.getValueAsString(), x + 10, y + 30);
 g.drawString("of", x+ 10, y + 50);
 g.drawString(card.getSuitAsString(), x + 10, y + 70);
 }
 } // end drawCard()

 } // end nested class CardPanel

} // end class BlackjackGUI

Answers for Quiz on Chapter 6

Question 1:

Programs written for a
graphical user interface have to deal with "events." Explain what is meant by
the term event. Give at least two different examples of events, and
discuss how a program might respond to those events.

Answer:

 An event is anything that can
occur asynchronously, not under the control of the program, to which the
program might want to respond. GUI programs are said to be "event-driven"
because for the most part, such programs simply wait for events and respond to
them when they occur. In many (but not all) cases, an event is the result of a
user action, such as when the user clicks the mouse button, types a character,
or clicks a button. The program might respond to a mouse-click on a canvas by
drawing a shape, to a typed character by adding the character to an input box,
or to a click on a button by clearing a drawing. More generally, a programmer
can set up any desired response to an event by writing an event-handling
routine for that event.

Question 2:

Explain carefully what the
repaint() method does.

Answer:

The repaint() method of a component is
called to notify the system that the component
needs to be redrawn. It does not itself do any drawing, and
does not itself call paintComponent(), but
sometime shortly after you call it, the system will call
the component's paintComponent() routine.
You should call repaint() for a component when you have made some change to
the state of a program that requires the appearance of that component to change.

Question 3:

Java has a standard class
called JPanel. Discuss two ways in which JPanels can be
used.

Answer:

A JPanel can be used as a container for other components or
as a drawing surface. A JPanel is a type of component.
That is, it is a visible element of a GUI. By itself, a JPanel is simply a
blank rectangular region on the screen. However, a JPanel is a "container",
which means that other components can be added to it and will then appear on
the screen inside the JPanel. A JPanel can also be used as a drawing surface.
In order to do this, it is necessary to create a subclass of JPanel
and define a paintComponent() method in that subclass. An object
belonging to that subclass can then be added to another panel or other container.
The paintComponent() method defines how that object will draw itself
on the screen.

Question 4:

Draw the picture that will
be produced by the following paintComponent() method:

public static void paintComponent(Graphics g) {
 super.paintComponent(g);
 for (int i=10; i <= 210; i = i + 50)
 for (int j = 10; j <= 210; j = j + 50)
 g.drawLine(i,10,j,60);
}

Answer:

The outer loop is executed for
values of i equal to 10, 60, 110, 160, and 210. For each of
these values, the inner loop is executed for j equal to 10, 60, 110,
160, and 210. The drawLine command is therefore executed 25 times -- and
so, 25 different lines are drawn. These lines connect the five points
(10,10), (60,10), (110,10), (160,10), and (210,10) to the five points (10,60),
(60,60), (110,60), (160,60), and (210,60) in all possible pairings. Here is the
picture:

[image: (25 criss-crossed lines)]

Question 5:

Suppose you would like a
panel that displays a green square inside a red circle, as illustrated. Write
a paintComponent() method for the panel class that will draw the image.

[image: (Picture of Circle in Square)]

Answer:

(The size of the square and
circle are not specified in the problem, so any size would be acceptable, as
long as the square is in the middle of the circle. Notice that the drawing
commands are fillOval and fillRect. There are no special
routines for drawing circles or squares. If your circle looks more jagged around
the edges than the one in the picture, it's because my solution turns on
antialiasing!)

public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D)g; // turn on antialiasing
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 g.setColor(Color.RED); // draw the shapes
 g.fillOval(10,10,80,80);
 g.setColor(Color.GREEN);
 g.fillRect(30,30,40,40);

}

Question 6:

Java has a standard class
called MouseEvent. What is the purpose of this class? What does an
object of type MouseEvent do?

Answer:

When an event occurs, the system
packages information about the event into an object. That object is passed as a
parameter to the event-handling routine. Different types of events are
represented by different classes of objects. An object of type
MouseEvent represents a mouse or mouse motion event. It contains
information about the location of the mouse cursor and any modifier keys that
the user is holding down. This information can be obtained by calling the
instance methods of the object. For example, if evt is a
MouseEvent object, then evt.getX() is the
x-coordinate of the mouse cursor, and evt.isShiftDown() is a
boolean value that tells you whether the user was holding down the Shift
key.

Question 7:

One of the main classes in
Swing is the JComponent class. What is meant by a component? What are
some examples?

Answer:

A JComponent represents
a visual component of the computer's graphical user interface. A
JComponent is not completely independent. It must be added to a
"container," such as a panel. Examples of JComponents are
JButtons, JTextFields, and JPanels.

Question 8:

 What is the function of a
LayoutManager in Java?

Answer:

A LayoutManager
implements some policy for laying out all the visual components that have been
added to a container, such as a JPanel.
That is, it sets the sizes and positions of the components.
Different types of layout managers have different rules about how components
are to be arranged. Some standard layout manager classes are
BorderLayout and GridLayout.

Question 9:

Consider the illustration of nested panels from the beginning of Section 6.6.
What type of layout manager is being used for each of the three panels
in that picture?

Answer:

The outer panel, shown in pink, seems to be using a GridLayout
with two rows and one column. A GridLayout is most likely
since the two components in the main panel -- the other two panels, shown in light cyan -- are
exactly the same size. Similarly, the bottom subpanel seems to
be using a GridLayout with one row and three columns.
The top subpanel could be using a BorderLayout.
The components on the left and right ends of the subpanel would be in the
WEST and EAST positions of the BorderLayout.
Each of these components would then be shown at its own preferred width, which would
explain how their widths could be different. The third component, in the center
of the subpanel, would then be in the CENTER position.

Question 10:

Explain how Timers
are used to do animation.

Answer:

Displaying an animation requires
showing a sequence of frames. The frames are shown one after the other, with a
short delay between each frame and the next. A Timer can generate a
sequence of ActionEvents. When a timer is used to do animation, each
event triggers the display of another frame. The ActionListener that
processes events from the timer just needs to be programmed to display a new frame
each time its actionPerformed() method is called. Usually,
the actionPerformed() method just changes the values of some state variables and
calls repaint() to make the effect of the changes visible on the screen.

Question 11:

What is a JCheckBox
and how is it used?

Answer:

A JCheckBox is a
component that has two possible states, "selected" and "not selected". The user can
change the state by clicking on the JCheckBox. If box is a
variable of type JCheckBox, then a program can set the state of the box
to "selected" by
calling box.setSelected(true) and can unselect the box by calling
box.setSelected(false). The current state can be determined by calling
box.isSelected(), which is a boolean-valued function. A
JCheckBox generates an event of type ActionEvent when it
changes state. A program can listen for these events if it wants to take some
action at the time the state changes. Often, however, it's enough for a program
simply to look at the state of the JCheckBox when it needs it.

Question 12:

How is the preferred size of a component set, and how is it used?

Answer:

Standard components such as JButton and JLabel
are responsible for computing their own preferred size, and the preferred size of a container
is usually computed by the layout manager for that container, but it is possible to set the
preferred size of a component, comp, by calling the method comp.setPreferredSize(dim),
where dim is an object of type Dimension. When a JPanel
is used as a drawing surface, it is usually necessary to set its preferred size in this way,
since otherwise its preferred size will be zero.

A layout uses the preferred sizes of all the components in a container when it decides how to
lay out those components. It also uses the components' preferred sizes when computing the
preferred size of the container. (Note that the preferred size is only preferred; it is not
necessarily the size at which the component will appear on screen. The actual size can depend
on which layout manager is used, the position of the component in the layout, the size of the
container, and the preferred sizes of other components in the container.)

Solution for Programming Exercise 6.5

Exercise 6.5:

In Exercise 3.8, you drew a checkerboard. For this
exercise, write a program where the user can select a square by
clicking on it. (Use a JPanel for the checkerboard.)
Highlight the selected square by drawing a colored border around
it. When the program starts, no square is selected. When the user
clicks on a square that is not currently selected, it becomes selected (and the
previously selected square, if any, is unselected). If the
user clicks the square that is selected, it becomes unselected. Assume that the
size of the panel is exactly 160 by 160 pixels, so that each square on the
checkerboard is 20 by 20 pixels. Here is my checkerboard, with the square in
row 3, column 3 selected:

[image: checkerboard]

Discussion

See the solution to Exercise 3.8 for
a discussion of how to draw the checkerboard. In that exercise, the code for
drawing the board was in a drawFrame() method.
Now, we can use a JPanel
as a drawing surface for the checkerboard, with the drawing code in the panel's
paintComponent() method. The code for drawing the checkerboard
is the same.

As always, there are many ways to organize the program. In this case, I decided to
let the main panel class implement MouseListener. The panel listens
for mouse events on itself.

To keep track of which square is selected, if any, the class
contains instance variables, selectedRow and selectedCol.
When no square is selected, selectedRow is -1 (and I don't care what
selectedCol is). When a square is selected, selectedRow is
the number of the row that contains that square and selectedCol is the
number of the column that contains the selected square. Remember that rows and
columns are numbered from 0 to 7. This makes some of the calculations easier
than numbering them from 1 to 8.

After drawing the checkerboard, the paintComponent()
method has to highlight the selected square, if there is one. I do
this by drawing a cyan border around the inside of the selected square. This is
the new code that is added to the checkerboard-drawing code:

if (selectedRow >= 0) {
 // Since there is a selected square, draw a cyan
 // border around it.
 g.setColor(Color.CYAN);
 y = selectedRow * 20;
 x = selectedCol * 20;
 g.drawRect(x, y, 19, 19);
 g.drawRect(x+1, y+1, 17, 17);
}

Since the squares are 20 pixels on each side, you might wonder why the first
drawRect() command specifies a width and height of 19 instead of 20.
In the fillRect() method that is used earlier in the paintComponent()
method to fill in the square, a width and height of 20 is used. Remember that
the drawRect() method actually draws a rectangle whose width and
height are one more than the values specified in the parameters. (Remember the
bit about the pen that hangs one pixel outside the rectangle?)

To respond to user mouse clicks, the panel must implement the
MouseListener interface. The constructor calls
addMouseListener(this) to register the board to listen for mouse
events on itself. (Remember that calling addMouseListener(this) is the
same as calling this.addMouseListener(this).) Of the five methods
specified in the MouseListener interface, only mousePressed
has a non-empty definition. This method must figure out which square the user
clicked and adjust the values of the instance variables selectedRow
and selectedCol accordingly.

Let's say that the user clicked at the point (x,y). The problem is
to determine which square on the checkerboard contains that point. The column
number of the square is obtained by dividing the x coordinate by the
width of the squares. Since the squares are 20 pixels wide, the row number of
the clicked square is x/20. For values of x between 0 and 19,
this gives a column number of 0, which is correct. For the next 20 pixels, from
20 to 39, x/20 is 1, which is the correct column number. For the next
strip of pixels, from 40 to 59, the answer is 2. And so on. Similarly,
y/20 gives the row number of the square where the user clicked.
(I often get rows and columns mixed up -- remember that the x coordinate corresponds to
columns and the y coordinate corresponds to rows.)

Once we know the row and column where the user clicked, we can compare them
to selectedRow and selectedCol. If the values are the same,
then the user clicked in a square that was already selected. We want to remove
the highlighting. That can be done by setting selectedRow = -1, the value
that indicates that no square is selected. Otherwise, the values of
selectedRow and selectedCol are set to the row and column
that the user clicked. In the end, repaint() is called so that the
change will be reflected in what is shown on the screen.

All this explains the reasoning behind the mousePressed() routine,
which you can see below.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * This program draws a red-and-black checkerboard.
 * It is assumed that the size of the panel is 160
 * by 160 pixels. When the user clicks a square, that
 * square is selected, unless it is already selected.
 * When the user clicks the selected square, it is
 * unselected. If there is a selected square, it is
 * highlighted with a cyan border.
 */
public class ClickableCheckerboard extends JPanel implements MouseListener {

 /**
 * A main routine lets this class be run as an application.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Clickable Checkerboard");
 ClickableCheckerboard content = new ClickableCheckerboard();
 window.setContentPane(content);
 window.pack(); // Size the window to the preferred size of its content.
 window.setLocation(100,100);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setResizable(false); // User can't change the window's size.
 window.setVisible(true);
 }

 //---

 int selectedRow; // Row and column of selected square. If no
 int selectedCol; // square is selected, selectedRow is -1.

 /**
 * Constructor. Set selectedRow to -1 to indicate that
 * no square is selected. And set the board object
 * to listen for mouse events on itself.
 */
 public ClickableCheckerboard() {
 selectedRow = -1;
 addMouseListener(this);
 setPreferredSize(new Dimension(160,160));
 }

 /**
 * Draw the checkerboard and highlight selected square, if any.
 * (Note: super.paintComponent(g) is not necessary, since this
 * method already paints the entire surface of the object.
 * This assumes that the object is exactly 160-by-160 pixels.
 */
 public void paintComponent(Graphics g) {

 int row; // Row number, from 0 to 7
 int col; // Column number, from 0 to 7
 int x,y; // Top-left corner of square

 for (row = 0; row < 8; row++) {

 for (col = 0; col < 8; col++) {
 x = col * 20;
 y = row * 20;
 if ((row % 2) == (col % 2))
 g.setColor(Color.red);
 else
 g.setColor(Color.black);
 g.fillRect(x, y, 20, 20);
 }

 } // end for row

 if (selectedRow >= 0) {
 // Since there is a selected square, draw a cyan
 // border around it. (If selectedRow < 0, then
 // no square is selected and no border is drawn.)
 g.setColor(Color.CYAN);
 y = selectedRow * 20;
 x = selectedCol * 20;
 g.drawRect(x, y, 19, 19);
 g.drawRect(x+1, y+1, 17, 17);
 }

 } // end paint()

 /**
 * When the user clicks on the panel, figure out which
 * row and column the click was in and change the
 * selected square accordingly.
 */
 public void mousePressed(MouseEvent evt) {

 int col = evt.getX() / 20; // Column where user clicked.
 int row = evt.getY() / 20; // Row where user clicked.

 if (selectedRow == row && selectedCol == col) {
 // User clicked on the currently selected square.
 // Turn off the selection by setting selectedRow to -1.
 selectedRow = -1;
 }
 else {
 // Change the selection to the square the user clicked on.
 selectedRow = row;
 selectedCol = col;
 }
 repaint();

 } // end mousePressed()

 public void mouseReleased(MouseEvent evt) { }
 public void mouseClicked(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

} // end class ClickableCheckerboard

Chapter 6

Introduction to GUI Programming

Computer users today expect to interact
with their computers using a graphical user interface (GUI). Java can
be used to write GUI programs ranging from simple applets which run on
a Web page to sophisticated stand-alone applications.

GUI programs
differ from traditional "straight-through" programs that you have
encountered in the first few chapters of this book. One big difference is
that GUI programs are event-driven. That is, user actions such as
clicking on a button or pressing a key on the keyboard generate events, and the
program must respond to these events as they occur.

Event-driven programming builds on all the skills you have learned in the
first five chapters of this text. You need to be able to write the methods
that respond to events. Inside those methods, you are doing the kind of
programming-in-the-small that was covered in Chapter 2
and Chapter 3.
And of course, objects are everywhere in GUI programming.
Events are objects. Colors and fonts are objects. GUI components such as buttons and
menus are objects. Events are handled by instance methods contained in objects.
In Java, GUI programming is object-oriented programming.

This chapter covers the basics of GUI programming.
The discussion will continue in Chapter 13
with more details and with more advanced
techniques.

Contents of Chapter 6:

	Section 1: The Basic GUI Application

	Section 2: Graphics and Painting

	Section 3: Mouse Events

	Section 4: Timers, KeyEvents, and State Machines

	Section 5: Basic Components

	Section 6: Basic Layout

	Section 7: Menus and Dialogs

	
Programming Exercises

	
Quiz on This Chapter

Solution for Programming Exercise 6.8

Exercise 6.8:

 Write a program that has a
JTextArea where the user can enter some text.
Then program should have a
button such that when the user clicks on the button, the panel will count the number
of lines in the user's input, the number of words in the user's input, and the
number of characters in the user's input. This information should be displayed
on three labels. Recall that if textInput is a
JTextArea, then you can get the contents of the JTextArea by
calling the function textInput.getText(). This function returns a
String containing all the text from the text area. The number
of characters is just the length of this String. Lines in the
String are separated by the new line character, '\n', so the number of
lines is just the number of new line characters in the String, plus
one. Words are a little harder to count. Exercise 3.4
has some advice about finding the
words in a String. Essentially, you want to count the number of
characters that are first characters in words. Don't forget to put your
JTextArea in a JScrollPane,
and add the scroll pane to the container, not the text area. Scrollbars should appear when the
user types more text than will fit in the available area. Here is a picture of my solution:

[image: TextCounter program showing some text and the numbers of words, lines and chars]

Discussion

The panel contains five components. There are several ways to lay them out.
A GridLayout with five rows certainly will not work, because the
JTextArea should be taller than the other components. One possible
layout is to use a GridLayout with two rows. The JTextArea
would occupy the first row. The bottom half would contain a JPanel
that holds the other four components. (A GridLayout with two columns
and one row would also work, if you wanted a panel that was wider and not so
tall. You could put the JTextArea in the left half and the other
components in a JPanel in the right half.) However, I decided to use a
BorderLayout. The JTextArea occupies the CENTER position, and
the SOUTH position is occupied by a JPanel that contains the other
components. The nested JPanel uses a GridLayout with four rows.
My main() program sets the size of the window to 300-by-350, and the text area gets the
space not occupied by the bottom panel.
Once this choice has been made, writing the constructor is not hard.

I use an anonymous inner class to listen for ActionEvents
from the button. The actionPerformed() method of the listener
just calls a method named processInput() in the main class; this
method does the real work.
The processInput() method just has to get the text from the JTextArea, do the
counting, and set the labels. The only interesting part is counting the words.
Back in Exercise 3.4, words such as
"can't", that contain an apostrophe, were counted as two words. This time
around, let's handle this special case. Two letters with an apostrophe between
them should be counted as part of the same word. The algorithm for counting
words is still

wordCt = 0
for each character in the string:
 if the character is the first character of a word:
 Add 1 to wordCt

but testing whether a given character is the first character in a word has
gotten a little more complicated. To make the test easier, I use a boolean
variable, startOfWord. The value of this variable is set to true if
the character is the start of a word and to false if not. That is, the
algorithm becomes:

wordCt = 0
for each character in the string:
 Let startOfWord be true if at start of word, false otherwise
 if startOfWord is true:
 Add 1 to wordCt

The use of a "flag variable" like startOfWord can simplify the
calculation of a complicated boolean condition. The value is computed as a
series of tests:

boolean startOfWord; // Is character i the start of a word?
if (Character.isLetter(text.charAt(i)) == false)
 startOfWord = false; // No. It's not a letter.
else if (i == 0)
 startOfWord = true; // Yes. It's a letter at start of text.
else if (Character.isLetter(text.charAt(i-1)))
 startOfWord = false; // No. It's a letter preceded by a letter.
else if (text.charAt(i-1) == '\'' && i > 1
 && Character.isLetter(text.charAt(i-2)))
 startOfWord = false; // No. It's a continuation of a word
 // after an apostrophe.
else
 startOfWord = true; // Yes. It's a letter preceded by
 // a non-letter.

The first test checks whether the character in position i is a
letter. If it is not, then we know that it can't be the start of a word, so
startOfWord is false. If it is a letter, it might be the start of a
word, so we go on to make additional tests. Note that if we get to the other
tests at all, we already know that the character in position i is a
letter. And so on. This style of "cascading tests" is very useful. In each
test, we already have all the information from the previous tests. Note that
the cascade effect works only with "else if". Using "if" in
place of "else if" in the preceding code would not give the right
answer. (You should be sure to understand why this is so.) You should
also note why the test if (i == 0) has to
be made before the test if (Character.isLetter(text.charAt(i-1))) -- it's
because text.charAt(i-1) gives an index-out-of-bounds exception if i is zero.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * In this panel, the user types some text in a JTextArea and presses
 * a button. The panel computes and displays the number of lines
 * in the text, the number of words in the text, and the number of
 * characters in the text. A word is defined to be a sequence of
 * letters, except that an apostrophe with a letter on each side
 * of it is considered to be a letter. (Thus "can't" is one word,
 * not two.)
 */
public class TextCounter extends JPanel {

	/**
	 * A main routine allows this class to be run as an application.
	 */
	public static void main(String[] args) {
		JFrame window = new JFrame("Text Counter");
		TextCounter content = new TextCounter();
		window.setContentPane(content);
		window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		window.setLocation(120,70);
		window.setSize(300,350);
		window.setVisible(true);
	}

	//---

	private JTextArea textInput; // For the user's input text.

	private JLabel lineCountLabel; // For displaying the number of lines.
	private JLabel wordCountLabel; // For displaying the number of words.
	private JLabel charCountLabel; // For displaying the number of chars.

	/**
	 * The constructor creates components and lays out the panel.
	 */
	public TextCounter() {

		setBackground(Color.DARK_GRAY);

		/* Create the text input area and make sure it has a
 white background. */

		textInput = new JTextArea();
		textInput.setBackground(Color.WHITE);

		/* Create a panel to hold the button and three display
 labels. These will be laid out in a GridLayout with
 4 rows and 1 column. */

		JPanel south = new JPanel();
		south.setBackground(Color.DARK_GRAY);
		south.setLayout(new GridLayout(4,1,2,2));

		/* Create the button and a listener to listen for
 clicks on the button, and add it to the panel. */

		JButton countButton = new JButton("Process the Text");
		countButton.addActionListener(new ActionListener() {
			public void actionPerformed(ActionEvent evt) {
				processInput();
			}
		});
		south.add(countButton);

		/* Create each of the labels, set their colors, and
 add them to the panel. */

		lineCountLabel = new JLabel(" Number of lines:");
		lineCountLabel.setBackground(Color.WHITE);
		lineCountLabel.setForeground(Color.BLUE);
		lineCountLabel.setOpaque(true);
		south.add(lineCountLabel);

		wordCountLabel = new JLabel(" Number of words:");
		wordCountLabel.setBackground(Color.WHITE);
		wordCountLabel.setForeground(Color.BLUE);
		wordCountLabel.setOpaque(true);
		south.add(wordCountLabel);

		charCountLabel = new JLabel(" Number of chars:");
		charCountLabel.setBackground(Color.WHITE);
		charCountLabel.setForeground(Color.BLUE);
		charCountLabel.setOpaque(true);
		south.add(charCountLabel);

		/* Use a BorderLayout on the panel. Although a BorderLayout
 is the default, I want one with a vertical gap of two
 pixels, to let the dark gray background color show through.
 Also add a gray border around the panel. */

		setLayout(new BorderLayout(2,2));
		setBorder(BorderFactory.createLineBorder(Color.DARK_GRAY));

		/* The text area is put into a JScrollPane to provide
 scroll bars for the TextArea, and the scroll pane is put in
 the Center position. The panel that holds the button and
 labels is in the South position. Note that the text area
 will be sized to fill the space that is left after the
 panel is assigned its preferred height. */

		JScrollPane scroller = new JScrollPane(textInput);
		add(scroller, BorderLayout.CENTER);
		add(south, BorderLayout.SOUTH);

	} // end constructor

	/**
	 * This will be called by the action listener for the button when the user
	 * clicks the button. It gets the text from the text area, counts the number
	 * of chars, words, and lines that it contains, and sets the labels to
	 * display the results.
	 */
	public void processInput() {

		String text; // The user's input from the text area.

		int charCt, wordCt, lineCt; // Char, word, and line counts.

		text = textInput.getText();

		charCt = text.length(); // The number of characters in the
		 // text is just its length.

		/* Compute the wordCt by counting the number of characters
 in the text that lie at the beginning of a word. The
 beginning of a word is a letter such that the preceding
 character is not a letter. This is complicated by two
 things: If the letter is the first character in the
 text, then it is the beginning of a word. If the letter
 is preceded by an apostrophe, and the apostrophe is
 preceded by a letter, than its not the first character
 in a word.
		 */

		wordCt = 0;
		for (int i = 0; i < charCt; i++) {
			boolean startOfWord; // Is character i the start of a word?
			if (Character.isLetter(text.charAt(i)) == false)
				startOfWord = false; // No. It's not a letter.
			else if (i == 0)
				startOfWord = true; // Yes. It's a letter at start of text.
			else if (Character.isLetter(text.charAt(i-1)))
				startOfWord = false; // No. It's a letter preceded by a letter.
			else if (text.charAt(i-1) == '\'' && i > 1
					&& Character.isLetter(text.charAt(i-2)))
				startOfWord = false; // No. It's a continuation of a word
			 // after an apostrophe.
			else
				startOfWord = true; // Yes. It's a letter preceded by
			 // a non-letter.
			if (startOfWord)
				wordCt++;
		}

		/* The number of lines is just one plus the number of times the
 end of line character, '\n', occurs in the text. */

		lineCt = 1;
		for (int i = 0; i < charCt; i++) {
			if (text.charAt(i) == '\n')
				lineCt++;
		}

		/* Set the labels to display the data. */

		lineCountLabel.setText(" Number of Lines: " + lineCt);
		wordCountLabel.setText(" Number of Words: " + wordCt);
		charCountLabel.setText(" Number of Chars: " + charCt);

	} // end processInput()

} // end class TextCounter

Solution for Programming Exercise 6.6

Exercise 6.6:

For this exercise, you
should modify the SubKiller game from Subsection 6.4.4. You
can start with the existing source code, from the file
SubKiller.java. Modify the game so it
keeps track of the number of hits and misses and displays these quantities.
That is, every time the depth charge blows up the sub, the number of hits goes
up by one. Every time the depth charge falls off the bottom of the screen
without hitting the sub, the number of misses goes up by one. There is room at
the top of the panel to display these numbers. To do this exercise, you only
have to add a half-dozen lines to the source code. But you have to figure out
what they are and where to add them. To do this, you'll have to read the source
code closely enough to understand how it works.

Discussion

You can do this exercise by adding just seven lines to the original
version, SubKiller.java (plus changing the name of the class, if you want to do that).
I used two lines to declare instance variables named hits and
misses. These variables have to be updated whenever the depth charge
hits the sub or falls off the bottom of the panel. These events are already
detected by the panel, in the updateForNextFrame() method of the
Bomb class. At the point
where this method detects that the depth charge has hit the sub, I add the
command "hits++;" to chalk up another hit for the user. At the point
in where it is determined that the y-coordinate
of the depth charge has exceeded the height of the panel, I add the command
"misses++;" to record the fact that the sub has escaped destruction
this time.

The only other thing to do is to display the number of hits and misses at
the top of the panel. This is part of drawing the picture, so it is done in the
paintComponent() method. The information is output with two
drawString commands. We need one more command to make sure that the
strings are displayed in a color that can be seen:

g.setColor(Color.BLACK);
g.drawString("Number of hits: " + hits, 15, 24);
g.drawString("Number of misses: " + misses, 15, 45);

(Using the coordinates in these statements, the messages about hits and misses were
drawn over the "CLICK TO ACTIVATE" message, so I also move the
"CLICK TO ACIVATE" message to the bottom of the screen.)

I made one further change when I decided that I wanted the output to be
displayed in a larger font. I create a new font, store it in an instance
variable named infoFont, and use the command
"g.setFont(infoFont);" before drawing the strings.

The source code is shown below. Changes from the original version are shown
in red italic.

The Solution

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * This panel implements a simple arcade game in which the user tries to blow
 * up a "submarine" (a black oval) by dropping "depth charges" (a red disk) from
 * a "boat" (a blue roundrect). The user moves the boat with the left- and
 * right-arrow keys and drops the depth charge with the down-arrow key.
 * The sub moves left and right erratically along the bottom of the panel.
 * This class contains a main() routine to allow it to be run as a program.
 * The number of hits and the number of misses are shown at the top of the panel.
 */
public class SubKillerWithScore extends JPanel {

 public static void main(String[] args) {
 JFrame window = new JFrame("Sub Killer Game");
 SubKillerWithScore content = new SubKillerWithScore();
 window.setContentPane(content);
 window.setSize(600, 480);
 window.setLocation(100,100);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setResizable(false); // User can't change the window's size.
 window.setVisible(true);
 }

 //--

 private Timer timer; // Timer that drives the animation.

 private int width, height; // The size of the panel -- the values are set
 // the first time the paintComponent() method
 // is called. This class is not designed to
 // handle changes in size; once the width and
 // height have been set, they are not changed.
 // Note that width and height cannot be set
 // in the constructor because the width and
 // height of the panel have not been set at
 // the time that the constructor is called.

 private Boat boat; // The boat, bomb, and sub objects are defined
 private Bomb bomb; // by nested classes Boat, Bomb, and Submarine,
 private Submarine sub; // which are defined later in this class.
 // Note that the objects are created in the
 // paintComponent() method, after the width
 // and height of the panel are known.

 private int hits; // The number of times the user has hit the sub.
 private int misses; // The number of times the user has missed the sub.

 private Font infoFont = new Font("Monospaced", Font.PLAIN, 16);
 // A font for displaying the numbers of hits and misses.

 /**
 * The constructor sets the background color of the panel, creates the
 * timer, and adds a KeyListener, FocusListener, and MouseListener to the
 * panel. These listeners, as well as the ActionListener for the timer
 * are defined by anonymous inner classes. The timer will run only
 * when the panel has the input focus.
 */
 public SubKillerWithScore() {

 setBackground(new Color(0,200,0));

 ActionListener action = new ActionListener() {
 // Defines the action taken each time the timer fires.
 public void actionPerformed(ActionEvent evt) {
 if (boat != null) {
 boat.updateForNewFrame();
 bomb.updateForNewFrame();
 sub.updateForNewFrame();
 }
 repaint();
 }
 };
 timer = new Timer(30, action); // Fires every 30 milliseconds.

 addMouseListener(new MouseAdapter() {
 // The mouse listener simply requests focus when the user
 // clicks the panel.
 public void mousePressed(MouseEvent evt) {
 requestFocus();
 }
 });

 addFocusListener(new FocusListener() {
 // The focus listener starts the timer when the panel gains
 // the input focus and stops the timer when the panel loses
 // the focus. It also calls repaint() when these events occur.
 public void focusGained(FocusEvent evt) {
 timer.start();
 repaint();
 }
 public void focusLost(FocusEvent evt) {
 timer.stop();
 repaint();
 }
 });

 addKeyListener(new KeyAdapter() {
 // The key listener responds to keyPressed events on the panel. Only
 // the left-, right-, and down-arrow keys have any effect. The left- and
 // right-arrow keys move the boat while down-arrow releases the bomb.
 public void keyPressed(KeyEvent evt) {
 int code = evt.getKeyCode(); // Which key was pressed?
 if (code == KeyEvent.VK_LEFT) {
 // Move the boat left. (If this moves the boat out of the frame, its
 // position will be adjusted in the boat.updateForNewFrame() method.)
 boat.centerX -= 15;
 }
 else if (code == KeyEvent.VK_RIGHT) {
 // Move the boat right. (If this moves boat out of the frame, its
 // position will be adjusted in the boat.updateForNewFrame() method.)
 boat.centerX += 15;
 }
 else if (code == KeyEvent.VK_DOWN) {
 // Start the bomb falling, if it is not already falling.
 if (bomb.isFalling == false)
 bomb.isFalling = true;
 }
 }
 });

 } // end constructor

 /**
 * The paintComponent() method draws the current state of the game. It
 * draws a gray or cyan border around the panel to indicate whether or not
 * the panel has the input focus. It draws the boat, sub, and bomb by
 * calling their respective draw() methods.
 */
 public void paintComponent(Graphics g) {

 super.paintComponent(g); // Fill panel with background color, green.

 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

 if (boat == null) {
 // The first time that paintComponent is called, it assigns
 // values to the instance variables.
 width = getWidth();
 height = getHeight();
 boat = new Boat();
 sub = new Submarine();
 bomb = new Bomb();
 }

 if (hasFocus())
 g.setColor(Color.CYAN);
 else {
 g.setColor(Color.BLACK);
 g.drawString("CLICK TO ACTIVATE", 20, height - 10);
 g.setColor(Color.GRAY);
 }
 g.drawRect(0,0,width-1,height-1); // Draw a 3-pixel border.
 g.drawRect(1,1,width-3,height-3);
 g.drawRect(2,2,width-5,height-5);

 boat.draw(g);
 sub.draw(g);
 bomb.draw(g);

 g.setFont(infoFont);
 g.setColor(Color.BLACK);
 g.drawString("Number of hits: " + hits, 15, 24);
 g.drawString("Number of misses: " + misses, 15, 45);

 } // end paintComponent()

 /**
 * This nested class defines the boat. Note that its constructor cannot
 * be called until the width of the panel is known!
 */
 private class Boat {
 int centerX, centerY; // Current position of the center of the boat.
 Boat() { // Constructor centers the boat horizontally, 80 pixels from top.
 centerX = width/2;
 centerY = 80;
 }
 void updateForNewFrame() { // Makes sure boat has not moved off screen.
 if (centerX < 0)
 centerX = 0;
 else if (centerX > width)
 centerX = width;
 }
 void draw(Graphics g) { // Draws the boat at its current location.
 g.setColor(Color.BLUE);
 g.fillRoundRect(centerX - 40, centerY - 20, 80, 40, 20, 20);
 }
 } // end nested class Boat

 /**
 * This nested class defines the bomb.
 */
 private class Bomb {
 int centerX, centerY; // Current position of the center of the bomb.
 boolean isFalling; // If true, the bomb is falling; if false, it
 // is attached to the boat.
 Bomb() { // Constructor creates a bomb that is initially attached to boat.
 isFalling = false;
 }
 void updateForNewFrame() { // If bomb is falling, take appropriate action.
 if (isFalling) {
 if (centerY > height) {
 // Bomb has missed the submarine. It is returned to its
 // initial state, with isFalling equal to false.
 isFalling = false;
 misses++; // USER HAS MISSED THE SUB
 }
 else if (Math.abs(centerX - sub.centerX) <= 36 &&
 Math.abs(centerY - sub.centerY) <= 21) {
 // Bomb has hit the submarine. The submarine
 // enters the "isExploding" state.
 sub.isExploding = true;
 sub.explosionFrameNumber = 1;
 isFalling = false; // Bomb reappears on the boat.
 hits++; // USER HAS HIT THE SUB
 }
 else {
 // If the bomb has not fallen off the panel or hit the
 // sub, then it is moved down 10 pixels.
 centerY += 10;
 }
 }
 }
 void draw(Graphics g) { // Draw the bomb.
 if (! isFalling) { // If not falling, set centerX and centerY
 // to show the bomb on the bottom of the boat.
 centerX = boat.centerX;
 centerY = boat.centerY + 23;
 }
 g.setColor(Color.RED);
 g.fillOval(centerX - 8, centerY - 8, 16, 16);
 }
 } // end nested class Bomb

 /**
 * This nested class defines the sub. Note that its constructor cannot
 * be called until the width of the panel is known!
 */
 private class Submarine {
 int centerX, centerY; // Current position of the center of the sub.
 boolean isMovingLeft; // Tells whether the sub is moving left or right
 boolean isExploding; // Set to true when the sub is hit by the bomb.
 int explosionFrameNumber; // If the sub is exploding, this is the number
 // of frames since the explosion started.
 Submarine() { // Create the sub at a random location 40 pixels from bottom.
 centerX = (int)(width*Math.random());
 centerY = height - 40;
 isExploding = false;
 isMovingLeft = (Math.random() < 0.5);
 }
 void updateForNewFrame() { // Move sub or increase explosionFrameNumber.
 if (isExploding) {
 // If the sub is exploding, add 1 to explosionFrameNumber.
 // When the number reaches 15, the explosion ends and the
 // sub reappears in a random position.
 explosionFrameNumber++;
 if (explosionFrameNumber == 15) {
 centerX = (int)(width*Math.random());
 centerY = height - 40;
 isExploding = false;
 isMovingLeft = (Math.random() < 0.5);
 }
 }
 else { // Move the sub.
 if (Math.random() < 0.04) {
 // In one frame out of every 25, on average, the sub
 // reverses its direction of motion.
 isMovingLeft = ! isMovingLeft;
 }
 if (isMovingLeft) {
 // Move the sub 5 pixels to the left. If it moves off
 // the left edge of the panel, move it back to the left
 // edge and start it moving to the right.
 centerX -= 5;
 if (centerX <= 0) {
 centerX = 0;
 isMovingLeft = false;
 }
 }
 else {
 // Move the sub 5 pixels to the right. If it moves off
 // the right edge of the panel, move it back to the right
 // edge and start it moving to the left.
 centerX += 5;
 if (centerX > width) {
 centerX = width;
 isMovingLeft = true;
 }
 }
 }
 }
 void draw(Graphics g) { // Draw sub and, if it is exploding, the explosion.
 g.setColor(Color.BLACK);
 g.fillOval(centerX - 30, centerY - 15, 60, 30);
 if (isExploding) {
 // Draw an "explosion" that grows in size as the number of
 // frames since the start of the explosion increases.
 g.setColor(Color.YELLOW);
 g.fillOval(centerX - 4*explosionFrameNumber,
 centerY - 2*explosionFrameNumber,
 8*explosionFrameNumber,
 4*explosionFrameNumber);
 g.setColor(Color.RED);
 g.fillOval(centerX - 2*explosionFrameNumber,
 centerY - explosionFrameNumber/2,
 4*explosionFrameNumber,
 explosionFrameNumber);
 }
 }
 } // end nested class Submarine

} // end class SubKillerWithScore

Section 6.2

Graphics and Painting

Everything you see on a computer screen has to be
drawn there, even the text. The Java API includes a range of classes and
methods that are devoted to drawing. In this section, I'll look at some of the
most basic of these. Some of this material was already covered in preliminary
form in Section 3.9.

The physical structure of a GUI is built of components. The term component
refers to a visual element in a GUI, including buttons, menus, text-input boxes, scroll bars,
check boxes, and so on. In Java,
GUI components are represented by objects belonging to subclasses of the class
java.awt.Component. Most components in the Swing GUI toolkit -- although not
top-level components like JFrame -- belong to subclasses of the class
javax.swing.JComponent, which is itself a subclass of java.awt.Component.
Every component is responsible for drawing
itself. If you want to use a standard component, you only have to
add it to your program. You don't have to worry about painting it on the screen.
That will happen automatically, since it already knows how to draw itself.

Sometimes, however, you do want to draw on a component. You will have to do
this whenever you want to display something that is not included among the
standard, pre-defined component classes. When you want to do this, you have to
define your own component class and provide a method in that class for drawing
the component. I will always use a subclass of JPanel
when I need a drawing surface of this kind, as I did for the
HelloWorldDisplay class in the example
HelloWorldGUI2.java in the
previous section.
A JPanel, like any JComponent, draws its content in the method

public void paintComponent(Graphics g)

To create a drawing surface, you should define a subclass of JPanel
and provide a custom paintComponent() method. Create an object
belonging to this class and use it in your program. When the time comes
for your component to be drawn on the screen, the system will call its
paintComponent() to do the drawing. That is, the code that you put
into the paintComponent() method will be executed whenever the
panel needs to be drawn on the screen; by writing this method, you determine
the picture that will be displayed in the panel. Note that you are not likely to
call a paintComponent() method any more than you are likely to call
a main() routine. The system calls the method. You write
the method to say what will happen when the system calls it.

Note that the paintComponent() method has a parameter of type
Graphics. The Graphics object will be provided by the system
when it calls your method. You need this object to do the actual drawing. To do
any drawing at all in Java, you need a graphics context.
A graphics context is an object belonging to the class
java.awt.Graphics. Instance methods are provided in this class for
drawing shapes, text, and images. Any given Graphics object can draw
to only one location. In this chapter, that location will always be a GUI
component belonging to some subclass of JPanel. The
Graphics class is an abstract class, which means that it is impossible
to create a graphics context directly, with a constructor. There are actually
two ways to get a graphics context for drawing on a component: First of all, of
course, when the paintComponent() method of a component is called by
the system, the parameter to that method is a graphics context for drawing on
the component. Second, every component has an instance method called
getGraphics(). This method is a function that returns a graphics
context that can be used for drawing on the component outside its
paintComponent() method. The official line is that you should
not do this, and I will almost always avoid it. But I have
found it convenient to use getGraphics() in a few examples.
(Note that if g is a graphics context created with getGraphics(),
it is good form to call g.dispose() when finished using it. This
releases any operating system resources that might be held by g.)

The paintComponent() method in the JPanel
class simply fills the panel with the panel's background color. When defining a
subclass of JPanel for use as a drawing surface, you will
usually want to fill the panel with the background color before drawing
other content onto the panel (although it is not necessary to do this if the drawing
commands in the method cover the background of the component completely).
This is traditionally done with a call to
super.paintComponent(g), so most paintComponent()
methods that you write will have the form:

public void paintComponent(g) {
 super.paintComponent(g);
 . . . // Draw the content of the component.
}

In general, a component should do all drawing operations in its
paintComponent() method. What happens if, in the middle of some other
method, you realize that the content of the component needs to be changed? You
should not call paintComponent() directly to make the
change. Instead, you have
to inform the system that the component needs to be redrawn, and let the system
do its job by calling paintComponent(). You do this by calling the
component's repaint() method. The method

public void repaint();

is defined in the Component class, and so can be used with any
component. You should call repaint() to inform the system that the
component needs to be redrawn. It is important to understand that the
repaint() method returns
immediately, without doing any painting itself. The system will call the
component's paintComponent() method later, as soon as it gets
a chance to do so, after processing other pending events if there are any.
It is even possible that many calls to repaint() will all be handled
by one call to paintComponent(), if the calls to repaint()
occur in a very short timespan.

Note that the system can also call paintComponent() for other
reasons. It is called when the component first appears on the screen. It will
also be called if the size of the component changes, which can happen when
the user resizes the window that contains the component. This means that
paintComponent() should be capable of redrawing the content
of the component on demand. As you will see, however, some of our early examples
will not be able to do this correctly.

This means that, to work properly, the paintComponent() method must
be smart enough to correctly redraw the component at any time. To make this
possible, a program should store data in its instance variables
about the state of the component. These variables should contain all the information
necessary to redraw the component completely. The paintComponent()
method should use the data in these variables to decide what to draw. When the
program wants to change the content of the component, it should not simply draw
the new content. It should change the values of the relevant variables and call
repaint(). When the system calls paintComponent(), that
method will use the new values of the variables and will draw the component
with the desired modifications. This might seem a roundabout way of doing
things. Why not just draw the modifications directly? There are at least two
reasons. First of all, it really does turn out to be easier to get things right
if all drawing is done in one method. Second, even if you could directly
draw the modifications, you would still have to save enough information about
the modifications to enable paintComponent()
to redraw the component correctly on demand.

You will see how all this works in practice as we work through examples in
the rest of this chapter. For now, we will spend the rest of this section
looking at how to get some actual drawing done.

6.2.1 Coordinates

The screen of a computer is a grid of little squares called pixels.
The color of each pixel can be set individually, and
drawing on the screen just means setting the colors of individual pixels.

[image: pixel coordinate system]

A graphics context draws in a rectangle made up of pixels. A position in the
rectangle is specified by a pair of integer coordinates, (x,y). The
upper left corner has coordinates (0,0). The x coordinate
increases from left to right, and the y coordinate increases from top
to bottom. The illustration shows a 20-pixel by 12-pixel component (with
very large pixels). A small line, rectangle, and oval are shown as they would
be drawn by coloring individual pixels. (Note that, properly speaking, the
coordinates don't belong to the pixels but to the grid lines between them.)

For any component, you can find out the size of the rectangle that it
occupies by calling the instance methods getWidth() and
getHeight(), which return the number of pixels in the
horizontal and vertical directions, respectively. In general, it's not
a good idea to assume that you know the size of a component, since the
size is often set by a layout manager and can even change if the component
is in a window and that window is resized by the user. This means that it's good
form to check the size of a component before doing any drawing on that
component. For example, you can use a paintComponent() method that
looks like:

public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int width = getWidth(); // Find out the width of this component.
 int height = getHeight(); // Find out its height.
 . . . // Draw the content of the component.
}

Of course, your drawing commands will have to take the size into account.
That is, they will have to use (x,y) coordinates that are calculated
based on the actual height and width of the component. (However, if you are
sure that you know the size, using constants for the width and height can
make the drawing easier.)

6.2.2 Colors

You will probably want to use some color when you draw.
Java is designed to work with the RGB color system.
An RGB color is specified by three numbers that give the level
of red, green, and blue, respectively, in the color. A color in Java is an
object of the class, java.awt.Color. You can construct a new color by
specifying its red, blue, and green components. For example,

Color myColor = new Color(r,g,b);

There are two constructors that you can call in this way. In the one that I
almost always use, r, g, and b are integers in the
range 0 to 255. In the other, they are numbers of type float in the
range 0.0F to 1.0F. (Recall that a literal of type float is
written with an "F" to distinguish it from a double number.) Often,
you can avoid constructing new colors altogether, since the Color
class defines several named constants representing common colors: Color.WHITE,
Color.BLACK, Color.RED, Color.GREEN,
Color.BLUE, Color.CYAN, Color.MAGENTA,
Color.YELLOW, Color.PINK, Color.ORANGE,
Color.LIGHT_GRAY, Color.GRAY, and Color.DARK_GRAY.
(There are older, alternative names for these constants that use lower case rather than
upper case constants, such as Color.red instead of Color.RED,
but the upper case versions are preferred because they follow the convention that
constant names should be upper case.)

An alternative to RGB is the HSB color system.
In the HSB system, a color is specified by three numbers called the
hue, the saturation,
and the brightness. The hue is the basic color,
ranging from red through orange through all the other colors of the rainbow.
The brightness is pretty much what it sounds like. A fully saturated color is a
pure color tone. Decreasing the saturation is like mixing white or gray paint
into the pure color. In Java, the hue, saturation and brightness are always
specified by values of type float in the range from 0.0F to 1.0F. The
Color class has a static member function named
getHSBColor for creating HSB colors. To create the color with HSB
values given by h, s, and b, you can say:

Color myColor = Color.getHSBColor(h,s,b);

For example, to make a color with a random hue that is as bright and as
saturated as possible, you could use:

Color randomColor = Color.getHSBColor((float)Math.random(), 1.0F, 1.0F);

The type cast is necessary because the value returned by
Math.random() is of type double, and
Color.getHSBColor() requires values of type float. (By the
way, you might ask why RGB colors are created using a constructor while HSB
colors are created using a static member function. The problem is that we would
need two different constructors, both of them with three parameters of type
float. Unfortunately, this is impossible. You can have two
constructors only if the number of parameters or the parameter types differ.)

The RGB system and the HSB system are just different ways of describing the
same set of colors. It is possible to translate between one system and the
other. The best way to understand the color systems is to experiment with them.
(The sample program SimpleColorChooser.java lets you do that.
You won't understand the source code at this time, but you can run it to play
with color selection or to find the RGB or HSB values for the color that want.)

One of the properties of a Graphics object is the current
drawing color, which is used for all drawing of shapes and text. If g
is a graphics context, you can change the current drawing color for g
using the method g.setColor(c), where c is a Color.
For example, if you want to draw in green, you would just say
g.setColor(Color.GREEN) before doing the drawing. The graphics context
continues to use the color until you explicitly change it with another
setColor() command. If you want to know what the current drawing color
is, you can call the function g.getColor(), which returns an object of
type Color. This can be useful if you want to change to another
drawing color temporarily and then restore the previous drawing color.

Every component has an associated foreground color and
background color. Generally, the
component is filled with the background color before anything else is drawn
(although some components are "transparent," meaning that the background color
is ignored). When a new graphics context is created for a component, the
current drawing color is set to the foreground color. Note that the foreground
color and background color are properties of the component, not of a graphics
context.

The foreground and background colors of a component can be set by calling instance methods
component.setForeground(color) and component.setBackground(color), which are defined in
the Component class and therefore are available for use with any
component. This can be useful even for standard components, if you want them
to use colors that are different from the defaults.

6.2.3 Fonts

A font represents a particular size and style
of text. The same character will appear different in different fonts. In Java,
a font is characterized by a font name, a style, and a size. The available font
names are system dependent, but you can always use the following four strings
as font names: "Serif", "SansSerif", "Monospaced", and "Dialog". (A "serif" is a
little decoration on a character, such as a short horizontal line at the bottom
of the letter i. "SansSerif" means "without serifs." "Monospaced" means that
all the characters in the font have the same width. The "Dialog" font is the
one that is typically used in dialog boxes.)

The style of a font is specified using named constants that are defined in
the Font class. You can specify the style as one of the four
values:

	
Font.PLAIN,

	
Font.ITALIC,

	
Font.BOLD, or

	
Font.BOLD + Font.ITALIC.

The size of a font is an integer. Size typically ranges from about 9 to 36,
although larger sizes can also be used. The size of a font is usually about
equal to the height of the largest characters in the font, in pixels, but this
is not an exact rule. The size of the default font is 12.

Java uses the class named java.awt.Font for representing fonts. You
can construct a new font by specifying its font name, style, and size in a
constructor:

Font plainFont = new Font("Serif", Font.PLAIN, 12);
Font bigBoldFont = new Font("SansSerif", Font.BOLD, 24);

Every graphics context has a current font, which is used for drawing text.
You can change the current font with the setFont() method. For
example, if g is a graphics context and bigBoldFont is a
font, then the command g.setFont(bigBoldFont) will set the current
font of g to bigBoldFont. The new font will be used
for any text that is drawn after the setFont() command is given.
You can find out the current font
of g by calling the method g.getFont(), which returns an
object of type Font.

Every component also has an associated font. It can be set with the instance
method component.setFont(font), which is defined in the Component
class. When a graphics context is created for drawing on a component, the
graphic context's current font is set equal to the font of the component.

6.2.4 Shapes

The Graphics class includes a large number of instance methods for
drawing various shapes, such as lines, rectangles, and ovals. The shapes are
specified using the (x,y) coordinate system described above. They are
drawn in the current drawing color of the graphics context. The current drawing
color is set to the foreground color of the component when the graphics context
is created, but it can be changed at any time using the setColor()
method.

Some drawing methods were already listed in Subsection 3.9.1.
Here, I describe those methods in more detail and add a few more.
With all these
commands, any drawing that is done outside the boundaries of the component is
ignored. Note that all these methods are in the Graphics class, so
they all must be called through an object of type Graphics.
It is shown here as g, but of course
the name of the graphics context is up to the programmer.

	
g.drawString(String str, int x, int y) -- Draws
the text given by the string str. The string is drawn using
the current color and font of the graphics context. x specifies the
x-coordinate of the left end of the string. y is the y-coordinate of the
baseline of the string. The baseline is a horizontal line on which the
characters rest. Some parts of the characters, such as the tail on a y or g,
extend below the baseline.

	
g.drawLine(int x1, int y1, int x2, int y2) -- Draws
a line from the point (x1,y1) to the point
(x2,y2). The line is drawn as if with a pen that extends one pixel to
the right and one pixel down from the (x,y) point where the pen is
located. For example, if g refers to an object of type
Graphics, then the command g.drawLine(x,y,x,y), which
corresponds to putting the pen down at a point, colors the single pixel with upper left corner
at the point (x,y). Remember that coordinates really refer to the lines
between the pixels.

	
g.drawRect(int x, int y, int width, int height) -- Draws
the outline of a rectangle. The upper left corner
is at (x,y), and the width and height of the rectangle are as
specified. If width equals height, then the rectangle is a
square. If the width or the height is negative, then nothing
is drawn. The rectangle is drawn with the same pen that is used for
drawLine(). This means that the actual width of the rectangle as drawn
is width+1, and similarly for the height. There is an extra pixel
along the right edge and the bottom edge. For example, if you want to draw a
rectangle around the edges of the component, you can say "g.drawRect(0, 0,
getWidth()-1, getHeight()-1);". If you use "g.drawRect(0, 0,
getWidth(), getHeight());", then the right and bottom edges of the
rectangle will be drawn outside the component and will not appear
on the screen.

	
g.drawOval(int x, int y, int width, int height) -- Draws
the outline of an oval. The oval is one that just
fits inside the rectangle specified by x, y, width,
and height. If width equals height, the oval is a
circle.

	
g.drawRoundRect(int x, int y, int width, int height,
int xdiam, int ydiam) -- Draws the outline of a rectangle with
rounded corners. The basic rectangle is specified by x, y,
width, and height, but the corners are rounded. The degree of
rounding is given by xdiam and ydiam. The corners are arcs of
an ellipse with horizontal diameter xdiam and vertical diameter
ydiam. A typical value for xdiam and ydiam is 16,
but the value used should really depend on how big the rectangle is.

	
g.draw3DRect(int x, int y, int width, int height,
boolean raised) -- Draws the outline of a rectangle that is
supposed to have a three-dimensional effect, as if it is raised from the screen
or pushed into the screen. The basic rectangle is specified by x,
y, width, and height. The raised parameter
tells whether the rectangle seems to be raised from the screen or pushed into
it. The 3D effect is achieved by using brighter and darker versions of the
drawing color for different edges of the rectangle. The documentation
recommends setting the drawing color equal to the background color before using
this method. The effect won't work well for some colors.

	
g.drawArc(int x, int y, int width, int height, int
startAngle, int arcAngle) -- Draws part of the oval that just fits
inside the rectangle specified by x, y, width, and
height. The part drawn is an arc that extends arcAngle
degrees from a starting angle at startAngle degrees. Angles are
measured with 0 degrees at the 3 o'clock position (the positive direction of
the horizontal axis). Positive angles are measured counterclockwise from zero,
and negative angles are measured clockwise. To get an arc of a circle, make
sure that width is equal to height.

	
g.fillRect(int x, int y, int width, int
height) -- Draws a filled-in rectangle. This fills in the interior
of the rectangle that would be drawn by drawRect(x,y,width,height).
The extra pixel along the bottom and right edges is not included. The
width and height parameters give the exact width and height
of the rectangle. For example, if you wanted to fill in the entire component,
you could say "g.fillRect(0, 0, getWidth(),
getHeight());"

	
g.fillOval(int x, int y, int width, int
height) -- Draws a filled-in oval.

	
g.fillRoundRect(int x, int y, int width, int height,
int xdiam, int ydiam) -- Draws a filled-in rounded rectangle.

	
g.fill3DRect(int x, int y, int width, int height,
boolean raised) -- Draws a filled-in three-dimensional
rectangle.

	
g.fillArc(int x, int y, int width, int height, int
startAngle, int arcAngle) -- Draw a filled-in arc. This looks like
a wedge of pie, whose crust is the arc that would be drawn by the
drawArc method.

6.2.5 Graphics2D

All drawing in Java is done through an object of type Graphics. The
Graphics class provides basic commands for such things as drawing
shapes and text and for selecting a drawing color. These commands are adequate in many cases, but
they fall far short of what's needed in a serious computer graphics program.
Java has another class, Graphics2D, that provides a larger
set of drawing operations. Graphics2D is a sub-class of
Graphics, so all the methods from the Graphics class are
also available in a Graphics2D.

The paintComponent() method of a JComponent gives you a
graphics context of type Graphics that you can use for drawing on the
component. In fact, the graphics context actually belongs to the sub-class
Graphics2D, and can be type-cast to
gain access to the advanced Graphics2D drawing methods:

public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2;
 g2 = (Graphics2D)g;
 .
 . // Draw on the component using g2.
 .
}

I mention Graphics2D here for completeness.
I will cover some important aspects of Graphics2D
in Section 13.2, but a full treatment is more than we will have
time for in this book. However, there are two simple applications
that I would like to start using now, without explaining how they work.
If g2 is a variable of type Graphics2D,
as in the paintComponent() method above, then the
intimidating-looking command

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

turns on antialiasing in the graphics context. Aliasing is a jagged appearance
that can be seen when shapes are drawn using pixels. Antialiasing tries to reduce
the jaggedness. It can make diagonal lines and the outlines of ovals look much nicer.
It can also improve the appearance of text. Another useful command is

g2.setStroke(new BasicStroke(lineWidth));

where lineWidth is an integer or a float. This command can be used to
draw thicker lines. Lines drawn after the command will be lineWidth pixels
wide. This also affects the thickness of the outlined shapes drawn by methods such as
g.drawRect and g.drawOval().

6.2.6 An Example

Let's use some of the material covered in this section to write a subclass
of JPanel for use as a drawing surface.
All the drawing will be done in the
paintComponent() method of the panel class.
The panel will draw multiple copies of a message on a black background.
Each copy of the message is in a random color. Five different fonts are used,
with different sizes and styles. The message can be specified in the constructor;
if the default constructor is used, the message is the string "Java!". The
panel works OK no matter what its size.

There is one problem with the way this class works. When the panel's
paintComponent() method is called, it chooses random colors, fonts,
and locations for the messages. The information about which colors, fonts, and
locations are used is not stored anywhere. The next time
paintComponent() is called, it will make different random choices and
will draw a different picture. If you resize a window containing the panel,
the picture will be continually redrawn as the size of the window is changed!
To avoid that, you would store enough information about the picture in instance variables
to enable the paintComponent() method to draw the same picture each
time it is called.

The source code for the panel class is shown below. I use an instance variable called
message to hold the message that the panel will display. There are
five instance variables of type Font that represent different sizes
and styles of text. These variables are initialized in the constructor
and are used in the paintComponent() method.

The paintComponent() method for the panel simply draws 25
copies of the message. For each copy, it chooses one of the five fonts at
random, and it uses g.setFont() to select that font for drawing.
It creates a random HSB color and uses g.setColor() to select
that color for drawing. It then chooses random (x,y) coordinates for
the location of the message. The x coordinate gives the horizontal
position of the left end of the string. The formula used for the x
coordinate is "-50 + (int)(Math.random() * (width+40))". This gives a random
integer in the range from -50 to width-10. This makes it
possible for the string to extend beyond the left edge or the right edge of the
panel. Similarly, the formula for y allows the string to extend
beyond the top and bottom.

Here is the complete source code for the RandomStringsPanel:

import java.awt.*;
import javax.swing.JPanel;

/**
 * This panel displays 25 copies of a message. The color and
 * position of each message is selected at random. The font
 * of each message is randomly chosen from among five possible
 * fonts. The messages are displayed on a black background.
 * Note: The style of drawing used here is poor, because every
 * time the paintComponent() method is called, new random values are
 * used. This means that a different picture will be drawn each time.
 */
public class RandomStringsPanel extends JPanel {

 private String message; // The message to be displayed. This can be set in
 // the constructor. If no value is provided in the
 // constructor, then the string "Java!" is used.

 private Font font1, font2, font3, font4, font5; // The five fonts.

 /**
 * Default constructor creates a panel that displays the message "Java!".
 */
 public RandomStringsPanel() {
 this(null); // Call the other constructor, with parameter null.
 }

 /**
 * Constructor creates a panel to display 25 copies of a specified message.
 * @param messageString The message to be displayed. If this is null,
 * then the default message "Java!" is displayed.
 */
 public RandomStringsPanel(String messageString) {

 message = messageString;
 if (message == null)
 message = "Java!";

 font1 = new Font("Serif", Font.BOLD, 14);
 font2 = new Font("SansSerif", Font.BOLD + Font.ITALIC, 24);
 font3 = new Font("Monospaced", Font.PLAIN, 30);
 font4 = new Font("Dialog", Font.PLAIN, 36);
 font5 = new Font("Serif", Font.ITALIC, 48);

 setBackground(Color.BLACK);

 }

 /**
 * The paintComponent method is responsible for drawing the content of the panel.
 * It draws 25 copies of the message string, using a random color, font, and
 * position for each string.
 */
 public void paintComponent(Graphics g) {

 super.paintComponent(g); // Call the paintComponent method from the
 // superclass, JPanel. This simply fills the
 // entire panel with the background color, black.

 Graphics2D g2 = (Graphics2D)g; // (To make the text smoother.)
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 int width = getWidth();
 int height = getHeight();

 for (int i = 0; i < 25; i++) {

 // Draw one string. First, set the font to be one of the five
 // available fonts, at random.

 int fontNum = (int)(5*Math.random()) + 1;
 switch (fontNum) {
 case 1:
 g.setFont(font1);
 break;
 case 2:
 g.setFont(font2);
 break;
 case 3:
 g.setFont(font3);
 break;
 case 4:
 g.setFont(font4);
 break;
 case 5:
 g.setFont(font5);
 break;
 } // end switch

 // Set the color to a bright, saturated color, with random hue.

 float hue = (float)Math.random();
 g.setColor(Color.getHSBColor(hue, 1.0F, 1.0F));

 // Select the position of the string, at random.

 int x,y;
 x = -50 + (int)(Math.random()*(width+40));
 y = (int)(Math.random()*(height+20));

 // Draw the message.

 g.drawString(message,x,y);

 } // end for

 } // end paintComponent()

} // end class RandomStringsPanel

6.2.7 Where is main()?

The source code for the RandomStringsPanel class can be
found in the example file RandomStringsPanel.java. You can
compile that file, but you won't be able to run the compiled class. The problem is
that the class doesn't have a main() routine. Only a class that has a
main() routine can be run as a program.

Another problem is that a JPanel is not something that
can stand on its own. It has to be placed into a container such as another
panel or a window. In general, to make a complete program, we need a main()
routine that will create a window of type JFrame. It can then
create a panel and place the panel in the window. Here is a class with a
main() routine that does this:

import javax.swing.JFrame;

public class RandomStrings {

 public static void main(String[] args) {
 JFrame window = new JFrame("Java!");
 RandomStringsPanel content = new RandomStringsPanel();
 window.setContentPane(content);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setLocation(120,70);
 window.setSize(350,250);
 window.setVisible(true);
 }

}

This class is defined by the file RandomStrings.java. You can compile
and run the program, as long as the RandomStringsPanel class is also
available.

The main routine is not logically a part of the panel class. It is just one way
of using a panel. However, it's possible to include main() as part of the
panel class, even if it doesn't logically belong there. This makes it possible to run
the panel class as a program, and it has the advantage of keeping everything in one
file. For an example, you can look at
RandomStringsPanelWithMain.java, which is identical to
the original class except for the addition of a main() routine.
Although it might not be great style, I will usually take a similar approach
in future examples.

I am not going to discuss the
details of using JFrame here, but you can look ahead
and find them in Subsection 6.7.3. You won't completely understand
my main() routines until you read that section.

Section 6.1

The Basic GUI Application

The command-line programs that you have
learned how to program would seem very alien to most computer users.
The style of interaction where the user and the computer take turns
typing strings of text seems like something out of the early days
of computing, although it was only in the mid 1980s that home computers
with graphical user interfaces started to become available. Today,
most people interact with their computers exclusively through a GUI.
A GUI program offers a much richer type of user interface, where the user uses a mouse
and keyboard to interact with GUI components such as windows, menus, buttons,
check boxes, text input boxes, scroll bars, and so on.

A GUI program still has a main() subroutine, but in general, that main
routine just creates one or more GUI components and displays them
on the computer screen. Once the GUI
components have been created, they follow their own programming -- programming
that tells them how to draw themselves on the screen and how to respond to events
such as being clicked on by the user.

A GUI program doesn't have to be immensely complex. We can, for example,
write a very simple GUI "Hello World" program that says "Hello" to the user,
but does it by opening a window where the greeting is displayed:

import javax.swing.JOptionPane;

public class HelloWorldGUI1 {

 public static void main(String[] args) {
 JOptionPane.showMessageDialog(null, "Hello World!");
 }

}

When this program is run, a window appears on the screen that contains the
message "Hello World!". The window also contains an "OK" button for the user
to click after reading the message. When the user clicks this button, the
window closes and the program ends. This program can be placed
in a file named HelloWorldGUI1.java, compiled, and run
using the java command on the command line
just like any other Java program.

Now, this program is already doing some pretty fancy stuff. It creates a window,
it draws the contents of that window, and it handles the event that is generated
when the user clicks the button. The reason the program was so easy to write is that all
the work is done by showMessageDialog(), a static method in the
built-in class JOptionPane. (Note that the source code
"imports" the class javax.swing.JOptionPane to make it possible
to refer to the JOptionPane class using its simple name.
See Subsection 4.5.3 for information about importing classes from
Java's standard packages.)

If you want to display a message to the user in a GUI program, this is a good way to
do it: Just use a standard class that already knows how to do the work! And in fact,
JOptionPane is regularly used for just this purpose
(but as part of a larger program, usually).
Of course, if you want to do anything serious in a GUI program, there is a lot more to learn. To give you
an idea of the types of things that are involved, we'll look at a short GUI program that
does the same things as the previous program -- open a window containing a message
and an OK button, and respond to a click on the button by ending the program -- but
does it all by hand instead of by using the built-in JOptionPane class.
Mind you, this is not a good way to write the program, but it will
illustrate some important aspects of GUI programming in Java.

Here is the source code for the program. You are not expected to understand it yet.
I will explain how it works below, but it will take the rest of the chapter before you
will really understand completely. In this section, you will just get a brief overview
of GUI programming.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloWorldGUI2 {

 private static class HelloWorldDisplay extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawString("Hello World!", 20, 30);
 }
 }

 private static class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 }

 public static void main(String[] args) {

 HelloWorldDisplay displayPanel = new HelloWorldDisplay();
 JButton okButton = new JButton("OK");
 ButtonHandler listener = new ButtonHandler();
 okButton.addActionListener(listener);

 JPanel content = new JPanel();
 content.setLayout(new BorderLayout());
 content.add(displayPanel, BorderLayout.CENTER);
 content.add(okButton, BorderLayout.SOUTH);

 JFrame window = new JFrame("GUI Test");
 window.setContentPane(content);
 window.setSize(250,100);
 window.setLocation(100,100);
 window.setVisible(true);

 }

}

6.1.1 JFrame and JPanel

In a Java GUI program, each GUI component in the interface is represented by an object in the program.
One of the most fundamental types of component is the window. Windows have
many behaviors. They can be opened and closed. They can be resized. They have "titles" that
are displayed in the title bar above the window. And most important, they can contain other
GUI components such as buttons and menus.

Java, of course, has a built-in class to represent windows. There are actually several
different types of window, but the most common type is represented by the JFrame
class (which is included in the package javax.swing).
A JFrame is an independent window that can, for example, act as the main window
of an application. One of the most important things to understand is that a JFrame
object comes with many of the behaviors of windows already programmed in. In particular, it
comes with the basic properties shared by all windows, such as a titlebar and the ability to be opened and
closed. Since a JFrame comes with these behaviors, you don't have to
program them yourself! This is, of course, one of the central ideas of object-oriented programming.
What a JFrame doesn't come with, of course, is content, the
stuff that is contained in the window. If you don't add any other content to a JFrame,
it will just display a blank area -- or, if you don't set its size, it will be so tiny that it will
be hard to find on the screen. You can add content either by creating a JFrame
object and then adding the content to it or by creating a subclass of JFrame and
adding the content in the constructor of that subclass.

The main program above declares a variable, window, of type JFrame
and sets it to refer to a new window object with the statement:

JFrame window = new JFrame("GUI Test");

The parameter (the string "GUI test") in the constructor specifies the title that will be displayed in
the titlebar of the window. This line creates the window object, but the window itself is
not yet visible on the screen. Before making the window visible, some of its properties are set
with these statements:

window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);

The first line here sets the content of the window. (The content itself was created earlier
in the main program.) The second line says that the window will be 250 pixels wide and 100 pixels
high. The third line says that the upper left corner of the window will be 100 pixels over from
the left edge of the screen and 100 pixels down from the top. Once all this has been set
up, the window is actually made visible on the screen with the command:

window.setVisible(true);

It might look as if the program ends at that point, and, in fact, the main() routine
does end. However, the window is still on the screen and the program as a whole does not end
until the user clicks the OK button. Once the window was opened, a new thread was created
to manage the graphical user interface, and that thread continues to run even after
main() has finished.

The content that is displayed in a JFrame is called its
content pane. (In addition to its content pane, a JFrame can also have
a menu bar, which is a separate thing that I will talk about later.)
A basic JFrame
already has a blank content pane; you can either add things to that pane or you can replace the
basic content pane entirely. In my sample program, the line
window.setContentPane(content) replaces the original blank content pane with
a different component. (Remember that a "component" is just a visual element of a graphical user interface.)
In this case, the new content is a component of type JPanel.

JPanel is another of the fundamental classes in Swing. The basic JPanel
is, again, just a blank rectangle. There are two ways to make a useful JPanel:
The first is to add other components to the panel; the second is to draw something in
the panel. Both of these techniques are illustrated in the sample program. In fact, you will find two JPanels
in the program: content, which is used to contain other components, and displayPanel, which
is used as a drawing surface.

Let's look more closely at displayPanel. This variable is of type HelloWorldDisplay,
which is a static nested class inside the HelloWorldGUI2 class. (Nested classes were introduced
in Section 5.8.) This class defines just one instance method, paintComponent(), which
overrides a method of the same name in the JPanel class:

private static class HelloWorldDisplay extends JPanel {
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawString("Hello World!", 20, 30);
 }
}

The paintComponent() method is called by the system when a component needs to be painted
on the screen. In the JPanel class, the paintComponent method simply
fills the panel with the panel's background color. The paintComponent() method in
HelloWorldDisplay begins by calling super.paintComponent(g). This
calls the version of paintComponent() that is defined in the superclass, JPanel;
that is, it fills the panel with the background color. (See Subsection 5.6.2 for a discussion of the
special variable super.) Then it calls g.drawString() to paint
the string "Hello World!" onto the panel. The net result is that whenever a HelloWorldDisplay
is shown on the screen, it displays the string "Hello World!".

We will often use JPanels in this way, as drawing surfaces. Usually, when we do this,
we will define a class that is a subclass of JPanel and we will write a paintComponent
method in that class to draw the desired content in the panel. The subclass of JPanel
can be defined either as a separate class in its own file or as a nested class. In simple cases, I will
tend to use a nested class for the convenience.

6.1.2 Components and Layout

Another way of using a JPanel is as a container
to hold other components. Java has many classes that define GUI components. Except for top-level
components like windows, components must be added to a container before
they can appear on the screen. In the sample program,
the variable named content refers to a JPanel that is
used as a container. Two other components are added to that container. This is done in the
statements:

content.add(displayPanel, BorderLayout.CENTER);
content.add(okButton, BorderLayout.SOUTH);

Here, content refers to an object of type JPanel;
later in the program, this panel becomes the content pane of the window.
The first component that is added to content is
displayPanel which, as discussed above, displays
the message, "Hello World!". The second is okButton which represents the button that
the user clicks to close the window. The variable
okButton is of type JButton, the Java class that represents
push buttons.

The "BorderLayout" stuff in these statements has to do with
how the two components are arranged in the container. When components
are added to a container, there has to be some way of deciding how those components are arranged
inside the container. This is called "laying out" the components in the container, and the
most common technique for laying out components is to use a layout manager.
A layout manager is an object that implements some policy for how to arrange the components
in a container; different types of layout manager implement different policies. One type of
layout manager is defined by the BorderLayout class. In the program, the
statement

content.setLayout(new BorderLayout());

creates a new BorderLayout object and tells the content
panel to use the new object as its layout manager. Essentially, this line determines how
components that are added to the content panel will be arranged inside the panel. We will
cover layout managers in much more detail later, but for now all you need to know is
that adding okButton in the BorderLayout.SOUTH position puts
the button at the bottom of the panel, and putting displayPanel in the
BorderLayout.CENTER position makes it fill any space that is not taken
up by the button.

This example shows a general technique for setting up a GUI: Create a container and
assign a layout manager to it, create components and add them to the container, and
use the container as the content pane of a window. A container is itself a
component, so it is possible that some of the components that are added to the top-level
container are themselves containers, with their own layout managers and components.
This makes it possible to build up complex user interfaces in a hierarchical fashion,
with containers inside containers inside containers...

6.1.3 Events and Listeners

The structure of containers and components sets up the physical appearance of a
GUI, but it doesn't say anything about how the GUI behaves. That is, what
can the user do to the GUI and how will it respond? GUIs are largely
event-driven; that is, the program waits for events that are generated
by the user's actions (or by some other cause). When an event occurs, the program
responds by executing an event-handling method. In order to
program the behavior of a GUI, you have to write event-handling methods to respond
to the events that you are interested in.

The most common technique for handling events in Java is to use event
listeners. A listener is an object that includes one or more event-handling
methods. When an event is detected by another object, such as a button or menu,
the listener object is notified and it responds by running the appropriate event-handling
method. An event is detected or generated by an object. Another object, the listener,
has the responsibility of responding to the event. The event itself is actually represented
by a third object, which carries information about the type of event, when it occurred,
and so on. This division of responsibilities makes it easier to organize large programs.

[image: illustration of event being generated and sent to listener]

As an example, consider the OK button in the sample program. When the user
clicks the button, an event is generated. This event is represented by an object belonging
to the class ActionEvent. The event that is generated is associated
with the button; we say that the button is the source of the event.
The listener object in this case is an object belonging to the class ButtonHandler,
which is defined as a nested class inside HelloWorldGUI2:

private static class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
}

This class implements the ActionListener interface -- a requirement for
listener objects that handle events from buttons. (Interfaces were introduced in
Section 5.7.) The event-handling method is named actionPerformed,
as specified by the ActionListener interface. This method contains the
code that is executed when the user clicks the button; in this case, the code is simply a call
to System.exit(), which will terminate the program.

There is one more ingredient that is necessary to get the event from the button to the
listener object: The listener object must register itself with the button
as an event listener. This is done with the statement:

okButton.addActionListener(listener);

This statement tells okButton that when the user clicks the button, the
ActionEvent that is generated should be sent to listener. Without this statement,
the button has no way of knowing that there is something that would like to listen for events
from the button.

This example shows a general technique for programming the behavior of a GUI:
Write classes that include event-handling methods. Create objects that belong to these
classes and register them as listeners with the objects that will actually detect or
generate the events. When an event occurs, the listener is notified, and the code that you
wrote in one of its event-handling methods is executed. At first, this might seem like
a very roundabout and complicated way to get things done, but as you gain experience
with it, you will find that it is very flexible and that it goes together very well with
object oriented programming.

This section has introduced some of the fundamentals of GUI programming. We will
spend the rest of the chapter exploring them in more detail.

6.1.4 Some Java GUI History

The original GUI toolkit for Java was the AWT, the "Abstract Windowing Toolkit." It provided
a common interface to the GUI components already built into various operating systems. At the
very beginning, it used a simpler event model that did not require listener objects, but that model
was abandoned in favor of listeners very quickly in Java 1.1.

When Java was first introduced, one of the important applications was
applets. An applet is a GUI program that can run on a web page
in a web browser. Applets were covered in previous versions of this textbook,
but they have become much less widely used and have been dropped from this
seventh edition of the book.

The Swing GUI toolkit was introduced in Java 1.2
as an improved alternative to the AWT, with a larger variety of
sophisticated components and a more logical structure. Although Swing uses some aspects of
the AWT, most of its components are written in Java rather than being based on operating system
components. Swing has been the standard toolkit for writing GUI programs in Java for over
ten years, and it is the toolkit that I cover in this book.

More recently, however, another GUI toolkit called JavaFX has been
introduced. It uses many of the same core ideas as Swing, including components, layout, and
events, but uses a different structure for its applications and a different set of classes.
With Java 8, JavaFX becomes the preferred approach to writing GUI applications.
However, I do not cover JavaFX in this book. JavaFX is compatible with Swing and can use
Swing components, and Swing will continue to be supported in Java. (Indeed, the AWT is
still supported!) And as I've said, JavaFX is built on the same core ideas as Swing.

Solution for Programming Exercise 6.11

Exercise 6.11:

In the Blackjack game
from Exercise 6.10, the user can click on the "Hit",
"Stand", and "NewGame" buttons even when it doesn't make sense to do so. It
would be better if the buttons were disabled at the appropriate times. The "New
Game" button should be disabled when there is a game in progress. The "Hit" and
"Stand" buttons should be disabled when there is not a game in progress. The
instance variable gameInProgress tells whether or not a game is in
progress, so you just have to make sure that the buttons are properly enabled
and disabled whenever this variable changes value.
I strongly advise writing a subroutine that can be called whenever it is
necessary to set the value of the gameInProgress variable. Then the
subroutine can take responsibility for enabling and disabling the buttons.
Recall that if bttn is a variable of type JButton, then
bttn.setEnabled(false) disables the button and
bttn.setEnabled(true) enables the button.

As a second (and more difficult) improvement, make it possible
for the user to place bets on the Blackjack game. When the program starts, give
the user $100. Add a JTextField to the strip of controls along the
bottom of the panel. The user can enter the bet in this JTextField.
When the game begins, check the amount of the bet. You should do this when the
game begins, not when it ends, because several errors can occur: The contents
of the JTextField might not be a legal number, the bet that the user
places might be more money than the user has, or the bet might be <= 0. You
should detect these errors and show an error message instead of starting the
game. The user's bet should be an integral number of dollars.

It would be a good idea to make the JTextField uneditable while the
game is in progress. If betInput is the JTextField, you can
make it editable and uneditable by the user with the commands
betInput.setEditable(true) and betInput.setEditable(false).

In the paintComponent() method, you should include commands to
display the amount of money that the user has left.

There is one other thing to think about: Ideally, the program should not start a new
game when it is first created. The user should have a chance to set a bet
amount before the game starts. So, in the constructor for the drawing surface class, you
should not call doNewGame(). You might want to display a message such
as "Welcome to Blackjack" before the first game starts.

Here is a picture of my program:

[image: a blackjack game in progress]

Discussion

 In the original program, the button variables are declared in the
constructor of the main class, where the buttons are created. There are
no instance variables that refer to the buttons, so it is not possible to do
anything with the buttons outside the constructor. For this
exercise, references to the buttons must be stored in instance variables.
The program uses instance variables hitButton, standButton, and
newGameButton to refer to the buttons. These
variables are required in order to call the buttons' setEnabled()
methods. I also introduced a JTextField, betInput, as an instance
variable and modified the constructor so that it creates the text field and adds it
to the panel that occupies the SOUTH position in the main panel.

The buttons must be enabled and
disabled whenever the value of the variable gameInProgress changes.
At the same time, the text field should be made editable or non-editable. As
recommended in the exercise, I wrote a method for changing the value of
gameInProgress. This method also sets the buttons and text field to reflect the
state of the program, which allows the state of the buttons and text field
to be controlled in one location:

/**
 * This method is called whenever the value of the gameInProgress
 * property has to be changed. In addition to setting the value
 * of the gameInProgress variable, it also enables and disables
 * the buttons and text input box to reflect the state of the
 * game.
 * @param inProgress The new value of gameInProgress.
 */
private void setGameInProgress(boolean inProgress) {
 gameInProgress = inProgress;
 if (gameInProgress) {
 hitButton.setEnabled(true);
 standButton.setEnabled(true);
 newGameButton.setEnabled(false);
 betInput.setEditable(false);
 }
 else {
 hitButton.setEnabled(false);
 standButton.setEnabled(false);
 newGameButton.setEnabled(true);
 betInput.setEditable(true);
 }
}

Once this routine is available, then any line in the old program that said
"gameInProgress = false;" should be changed to
"setGameInProgress(false);". And any line that said
"gameInProgress = true;" should be changed to
"setGameInProgress(true);". In this way, we can be sure that the
buttons are always properly enabled and disabled. Note that I added
lines to the BlackjackGUI2 constructor to disable
hitButton and standButton when they are created.
This ensures that they have the correct state at the start of the program,
before the first game has been started.

You should understand why I used a subroutine to set the value of
gameInProgress. Every time gameInProgress changes, each of
the buttons has to be enabled or disabled and the text field has
to be made editable or uneditable. That's four extra lines of code
each time the program says gameInProgress = true
or gameInProgress = false. We can avoid some extra typing by calling the subroutine.
Furthermore, if we always call the subroutine to set the value of
gameInProgress, we can be sure that the states of the buttons and text field will
always be set correctly to match the value of gameInProgress.

The changes that I've discussed so far are enough to complete the first part
of the exercise, enabling and disabling the buttons. We still have to implement
betting.

The JTextField for the user's input
is created with the command "betInput = new
JTextField("10",5);". The first parameter in the constructor specifies the
initial content of the text input box. This is meant as a reasonable value for
the bet, but the user can change it if he wants to. The second parameter is
important. It specifies the number of characters that the text field
is designed to hold. The preferred size of the JTextField is computed
based on this number of characters. If the text field were being used
in a context where it would be stretched to fit the available size, such as in
a GridLayout, the preferred size would not be so important. However, in
this program, the JTextField is used with a FlowLayout, and it
will appear at exactly its preferred size. If you leave out the second
parameter in the constructor, the JTextField will be sized to fit its
contents, "10", and it will look too small.

The CardPanel class contains two new instance variables for
managing the user's bets. One variable, usersMoney, records the amount
of money that the user has. The other, betAmount, records the amount
of the user's bet on the current game. The value of usersMoney is
initialized to 100 in the constructor. At the end of a game, if the user wins,
the betAmount is added to the user's money, and if the user loses, the
betAmount is subtracted from the user's money. We have to decide what
happens if the user runs out of money. One possibility would be to shut the
game down, but that seems drastic since it's only play money anyway. So, if the
value of usersMoney drops to zero, I give the user another $100 at the
start of the next game.

At the beginning of a game, the program has to look at the number in the text
field to determine how much money the user wants to bet on the game. Several things
can go wrong at this time. Since it's a little complicated, I wrote a method
to check the contents of betInput:

/**
 * This is called when the user wants to start a new game. It tries to
 * read the amount of the user's bet from the betInput text field. If an error
 * occurs, the message in the panel is changed to inform the user of the error.
 * @return true if the bet is read without error, or false if an error occurs
 */
private boolean checkBet() {
 int amount;
 try {
 amount = Integer.parseInt(betInput.getText());
 }
 catch (NumberFormatException e) {
 message = "The bet amount must be a legal positive integer.";
 repaint();
 return false;
 }
 if (amount <= 0) {
 message = "The bet amount must be a positive integer.";
 repaint();
 return false;
 }
 if (amount > usersMoney) {
 message = "You can't bet more money than you have!";
 repaint();
 return false;
 }
 betAmount = amount;
 return true;
}

The doNewGame() method starts by checking if usersMoney is
0; if so, it gives the user another $100 by setting usersMoney to 100.
Then it checks the user's bet by calling the checkBet() method.
If the return value is false, meaning that the value in the text field was not
a valid bet, then the doNewGame() method returns without starting
a new game. Otherwise, it starts the game as it did in the old program.

When the game ends for any reason, the user's money has to be adjusted. There are many points
in the source code where the game ends. In each of those places, I inserted a line
"usersMoney = usersMoney + betAmount" if the user won or
"usersMoney = usersMoney - betAmount" if the user lost. It might
have been a good idea to write another subroutine to handle this task.

I also added some code to the paintComponent() method to display
the user's current amount of money. To accommodate this, this version of the panel has to
be about 30 pixels taller than the previous version.

One of the tricky parts of this assignment is to arrange things so that a
game does not start as soon as the panel is created. It's no problem to take
the "doNewGame();" statement out of the constructor in the
CardPanel class. Some initialization has to be done there
instead:

usersMoney = 100;
message = "Welcome to Blackjack! You start with $100.";

However, when I did this, I ran into a NullPointerException in the
paintComponent() method because the
paintComponent() method assumed that two Hand objects,
dealerHand and playerHand, exist. These
objects are created in the doNewGame() method,
so removing the call to doNewGame() from the constructor meant that the
hands were null when paintComponent() was first called.
This just required a simple modification in the
paintComponent() method to deal with this possibility. I decided simply to
return from paintComponent() after drawing the messages,
if the hands don't exist. (An
alternative would be to have some fancy introductory screen.)

(I should also confess that I had problems with null pointer exceptions
when I tried to run the program without removing the call to
doNewGame() from the constructor. In this case, the problem was more
subtle: The CardPanel constructor was being called
before the button and text field objects had been created, so
doNewGame() was trying to enable/disable buttons that didn't
exist yet.)

The Solution

Here is the new version of the blackjack source code, with changes from
Exercise 6.10 shown in red italic:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * In this program, the user plays a game of Blackjack. The
 * computer acts as the dealer. The user plays by clicking
 * "Hit!" and "Stand!" buttons. The user can place bets.
 * At the beginning of the game, the user is given $100.
 *
 * This class defines a panel, but it also contains a main()
 * routine that makes it possible to run the program as a
 * stand-alone application.
 *
 * This program depends on the following classes: Card, Hand,
 * BlackjackHand, Deck.
 */
public class BlackjackGUI2 extends JPanel {

 /**
 * The main routine simply opens a window that shows a BlackjackGUI2.
 */
 public static void main(String[] args) {
 JFrame window = new JFrame("Blackjack");
 BlackjackGUI2 content = new BlackjackGUI2();
 window.setContentPane(content);
 window.pack(); // Set size of window to preferred size of its contents.
 window.setResizable(false); // User can't change the window's size.
 Dimension screensize = Toolkit.getDefaultToolkit().getScreenSize();
 window.setLocation((screensize.width - window.getWidth())/2,
 (screensize.height - window.getHeight())/2);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 window.setVisible(true);
 }

 private JButton hitButton; // The three buttons that control the game.
 private JButton standButton;
 private JButton newGameButton;
 private JTextField betInput; // Where the user inputs the amount of his bet.

 /**
 * The constructor lays out the panel. A CardPanel occupies the CENTER
 * position of the panel (where CardPanel is a subclass of JPanel that is
 * defined below). On the bottom is a panel that holds three buttons.
 * The CardPanel listens for ActionEvents from the buttons and does all
 * the real work of the program.
 */
 public BlackjackGUI2() {

 setBackground(new Color(130,50,40));

 setLayout(new BorderLayout(3,3));

 CardPanel board = new CardPanel();
 add(board, BorderLayout.CENTER);

 JPanel buttonPanel = new JPanel();
 buttonPanel.setBackground(new Color(220,200,180));
 add(buttonPanel, BorderLayout.SOUTH);

 // NOTE: Declarations of hitButton, standButton, newGameButton were moved
 // out of the constructor. Previously, they were local variables.

 hitButton = new JButton("Hit!");
 hitButton.setEnabled(false);
 hitButton.addActionListener(board);
 buttonPanel.add(hitButton);

 standButton = new JButton("Stand!");
 standButton.setEnabled(false);
 standButton.addActionListener(board);
 buttonPanel.add(standButton);

 newGameButton = new JButton("New Game");
 newGameButton.addActionListener(board);
 buttonPanel.add(newGameButton);

 buttonPanel.add(new JLabel(" Bet:", JLabel.RIGHT));

 betInput = new JTextField("10", 5);
 betInput.setMargin(new Insets(3,3,3,3));
 buttonPanel.add(betInput);

 setBorder(BorderFactory.createLineBorder(new Color(130,50,40), 3));

 } // end constructor

 /**
 * A nested class that displays the game and does all the work
 * of keeping track of the state and responding to user events.
 */
 private class CardPanel extends JPanel implements ActionListener {

 Deck deck; // A deck of cards to be used in the game.

 BlackjackHand dealerHand; // Hand containing the dealer's cards.
 BlackjackHand playerHand; // Hand containing the user's cards.

 String message; // A message drawn on the canvas, which changes
 // to reflect the state of the game.

 boolean gameInProgress; // Set to true when a game begins and to false
 // when the game ends.

 Font bigFont; // Font that will be used to display the message.
 Font smallFont; // Font that will be used to draw the cards.

 int usersMoney; // The amount of money that the user currently has.
 int betAmount; // The bet amount, read from betInput when game starts.

 /**
 * The constructor creates the fonts and starts the first game.
 * It also sets a preferred size of 460-by-330 for the panel.
 * The paintComponent() method assumes that this is in fact the
 * size of the panel (although it can be a little taller with
 * no bad effect).
 */
 CardPanel() {
 setPreferredSize(new Dimension(460,330));
 setBackground(new Color(0,120,0));
 smallFont = new Font("SansSerif", Font.PLAIN, 12);
 bigFont = new Font("Serif", Font.BOLD, 14);
 usersMoney = 100;
 message = "Welcome to Blackjack! You start with $100.";
 }

 /**
 * This method is called whenever the value of the gameInProgress
 * property has to be changed. In addition to setting the value
 * of the gameInProgress variable, it also enables and disables
 * the buttons and text input box to reflect the state of the
 * game.
 * @param inProgress The new value of gameInProgress.
 */
 private void setGameInProgress(boolean inProgress) {
 gameInProgress = inProgress;
 if (gameInProgress) {
 hitButton.setEnabled(true);
 standButton.setEnabled(true);
 newGameButton.setEnabled(false);
 betInput.setEditable(false);
 }
 else {
 hitButton.setEnabled(false);
 standButton.setEnabled(false);
 newGameButton.setEnabled(true);
 betInput.setEditable(true);
 }
 }

 /**
 * This is called when the user wants to start a new game. It tries to
 * read the amount of the user's bet from the betInput text field. If an error
 * occurs, the message in the panel is changed to inform the user of the error.
 * @return true if the bet is read without error, or false if an error occurs
 */
 private boolean checkBet() {
 int amount;
 try {
 amount = Integer.parseInt(betInput.getText());
 }
 catch (NumberFormatException e) {
 message = "The bet amount must be a legal positive integer.";
 repaint();
 return false;
 }
 if (amount <= 0) {
 message = "The bet amount must be a positive integer.";
 repaint();
 return false;
 }
 if (amount > usersMoney) {
 message = "You can't bet more money than you have!";
 repaint();
 return false;
 }
 betAmount = amount;
 return true;
 }

 /**
 * Respond when the user clicks on a button by calling the appropriate
 * method. Note that the buttons are created and listening is set
 * up in the constructor of the BlackjackPanel class.
 */
 public void actionPerformed(ActionEvent evt) {
 String command = evt.getActionCommand();
 if (command.equals("Hit!"))
 doHit();
 else if (command.equals("Stand!"))
 doStand();
 else if (command.equals("New Game"))
 doNewGame();
 }

 /**
 * This method is called when the user clicks the "Hit!" button. First
 * check that a game is actually in progress. If not, give an error
 * message and exit. Otherwise, give the user a card. The game can end
 * at this point if the user goes over 21 or if the user has taken 5 cards
 * without going over 21.
 */
 void doHit() {
 if (gameInProgress == false) { // Should not be possible!
 message = "Click \"New Game\" to start a new game.";
 repaint();
 return;
 }
 playerHand.addCard(deck.dealCard());
 if (playerHand.getBlackjackValue() > 21) {
 usersMoney = usersMoney - betAmount;
 message = "You've busted! Sorry, you lose.";
 setGameInProgress(false);
 }
 else if (playerHand.getCardCount() == 5) {
 usersMoney = usersMoney + betAmount;
 message = "You win by taking 5 cards without going over 21.";
 setGameInProgress(false);
 }
 else {
 message = "You have " + playerHand.getBlackjackValue() + ". Hit or Stand?";
 }
 repaint();
 }

 /**
 * This method is called when the user clicks the "Stand!" button.
 * Check whether a game is actually in progress. If it is, the game
 * ends. The dealer takes cards until either the dealer has 5 cards
 * or more than 16 points. Then the winner of the game is determined.
 */
 void doStand() {
 if (gameInProgress == false) { // Should not be possible!
 message = "Click \"New Game\" to start a new game.";
 repaint();
 return;
 }
 setGameInProgress(false);
 while (dealerHand.getBlackjackValue() <= 16 && dealerHand.getCardCount() < 5)
 dealerHand.addCard(deck.dealCard());
 if (dealerHand.getBlackjackValue() > 21) {
 usersMoney = usersMoney + betAmount;
 message = "You win! Dealer has busted with " + dealerHand.getBlackjackValue() + ".";
 }
 else if (dealerHand.getCardCount() == 5) {
 usersMoney = usersMoney - betAmount;
 message = "Sorry, you lose. Dealer took 5 cards without going over 21.";
 }
 else if (dealerHand.getBlackjackValue() > playerHand.getBlackjackValue()) {
 usersMoney = usersMoney - betAmount;
 message = "Sorry, you lose, " + dealerHand.getBlackjackValue()
 + " to " + playerHand.getBlackjackValue() + ".";
 }
 else if (dealerHand.getBlackjackValue() == playerHand.getBlackjackValue()) {
 usersMoney = usersMoney - betAmount;
 message = "Sorry, you lose. Dealer wins on a tie.";
 }
 else {
 usersMoney = usersMoney + betAmount;
 message = "You win, " + playerHand.getBlackjackValue()
 + " to " + dealerHand.getBlackjackValue() + "!";
 }
 repaint();
 }

 /**
 * Called by the constructor, and called by actionPerformed() if the
 * user clicks the "New Game" button. Start a new game. Deal two cards
 * to each player. The game might end right then if one of the players
 * had blackjack. Otherwise, gameInProgress is set to true and the game
 * begins.
 */
 void doNewGame() {
 if (gameInProgress) {
 // If the current game is not over, it is an error to try
 // to start a new game. This shouldn't be possible because
 // the new game button is disabled while a game is in progress,
 // but it doesn't hurt anything to check anyway.
 message = "You still have to finish this game!";
 repaint();
 return;
 }
 if (usersMoney == 0) {
 // The user has run out of money; give the user another $100.
 usersMoney = 100;
 }
 if (! checkBet()) {
 // The user's bet was not legal, so we can't start a game.
 // The checkBet method has already given an error message.
 return;
 }
 deck = new Deck(); // Create the deck and hands to use for this game.
 dealerHand = new BlackjackHand();
 playerHand = new BlackjackHand();
 deck.shuffle();
 dealerHand.addCard(deck.dealCard()); // Deal two cards to each player.
 dealerHand.addCard(deck.dealCard());
 playerHand.addCard(deck.dealCard());
 playerHand.addCard(deck.dealCard());
 if (dealerHand.getBlackjackValue() == 21) {
 message = "Sorry, you lose. Dealer has Blackjack.";
 usersMoney = usersMoney - betAmount;
 setGameInProgress(false);
 }
 else if (playerHand.getBlackjackValue() == 21) {
 message = "You win! You have Blackjack.";
 usersMoney = usersMoney + betAmount;
 setGameInProgress(false);
 }
 else {
 message = "You have " + playerHand.getBlackjackValue() + ". Hit or stand?";
 setGameInProgress(true);
 }
 repaint();
 } // end newGame();

 /**
 * The paint method shows the message at the bottom of the
 * canvas, and it draws all of the dealt cards spread out
 * across the canvas.
 */
 public void paintComponent(Graphics g) {

 super.paintComponent(g); // fill with background color.

 g.setFont(bigFont);
 g.setColor(Color.GREEN);
 g.drawString(message, 10, getHeight() - 10);

 // Draw a message telling how much money the user has.

 g.setColor(Color.YELLOW);
 if (usersMoney > 0)
 g.drawString("You have $" + usersMoney, 10, getHeight() - 35);
 else
 g.drawString("YOU ARE BROKE! (I will give you another $100.)",
 10, getHeight() - 32);

 if (dealerHand == null)
 return; // the first game has not yet started.

 // Draw labels for the two sets of cards.

 g.setColor(Color.GREEN);
 g.drawString("Dealer's Cards:", 10, 23);
 g.drawString("Your Cards:", 10, 153);

 // Draw dealer's cards. Draw first card face down if
 // the game is still in progress, It will be revealed
 // when the game ends.

 g.setFont(smallFont);
 if (gameInProgress)
 drawCard(g, null, 10, 30);
 else
 drawCard(g, dealerHand.getCard(0), 10, 30);
 for (int i = 1; i < dealerHand.getCardCount(); i++)
 drawCard(g, dealerHand.getCard(i), 10 + i * 90, 30);

 // Draw the user's cards.

 for (int i = 0; i < playerHand.getCardCount(); i++)
 drawCard(g, playerHand.getCard(i), 10 + i * 90, 160);

 } // end paintComponent();

 /**
 * Draws a card as a 80 by 100 rectangle with upper left corner at (x,y).
 * The card is drawn in the graphics context g. If card is null, then
 * a face-down card is drawn. (The cards are rather primitive!)
 */
 void drawCard(Graphics g, Card card, int x, int y) {
 if (card == null) {
 // Draw a face-down card
 g.setColor(Color.blue);
 g.fillRect(x,y,80,100);
 g.setColor(Color.white);
 g.drawRect(x+3,y+3,73,93);
 g.drawRect(x+4,y+4,71,91);
 }
 else {
 g.setColor(Color.white);
 g.fillRect(x,y,80,100);
 g.setColor(Color.gray);
 g.drawRect(x,y,79,99);
 g.drawRect(x+1,y+1,77,97);
 if (card.getSuit() == Card.DIAMONDS || card.getSuit() == Card.HEARTS)
 g.setColor(Color.red);
 else
 g.setColor(Color.black);
 g.drawString(card.getValueAsString(), x + 10, y + 30);
 g.drawString("of", x+ 10, y + 50);
 g.drawString(card.getSuitAsString(), x + 10, y + 70);
 }
 } // end drawCard()

 } // end nested class CardPanel

} // end class BlackjackGUI2

Solution for Programming Exercise 9.3

Exercise 9.3:

Suppose that linked lists
of integers are made from objects belonging to the class

class ListNode {
 int item; // An item in the list.
 ListNode next; // Pointer to the next node in the list.
}

Write a subroutine that will make a copy of a list, with the order of the
items of the list reversed. The subroutine should have a parameter of type
ListNode, and it should return a value of type ListNode. The
original list should not be modified.

You should also write a main() routine to test your subroutine.

Discussion

To make any linked list from scratch, you have to create nodes one-by-one
and link them together. In this case, we want to make nodes that contain copies
of the items from the original list. We can run through the original list, look
at each item, create a new node that contains a copy of that item, and link
that new node into the reversed list that we are constructing. We just have to
make sure that the nodes in the new list are in the desired order.

In fact this is pretty easy: As we run down the original list from start to
finish, we need to build the reversed list from back to front. The first item
in the original list should be at the back of the reversed list, the second
item from the original goes in front of that item, and so on. This is
equivalent to "pushing" the items onto the reversed list, using the same push
operation that is used for a stack. An algorithm for this is:

Let rev be an empty list
for each item in the original list:
 Push the item onto rev
 Move on to the next item

This can be coded into the subroutine we need as follows:

/**
 * Return a new list containing the same items as the list,
 * but in the reverse order.
 */
static ListNode reverse(ListNode list) {
 ListNode rev = null; // rev will be the reversed list.
 ListNode runner = list; // For running through the nodes of list.
 while (runner != null) {
 // "Push" the next node of list onto the front of rev.
 ListNode newNode = new ListNode();
 newNode.item = runner.item;
 newNode.next = rev;
 rev = newNode;
 // Move on to the next node in the list.
 runner = runner.next;
 }
 return rev;
} // end reverse()

The exercise lets you design your own routine for testing the subroutine. It
should be tested on several lists, including an empty list. It's important to
test it on the empty list since a null pointer often represents a
special case in an algorithm, and is therefore a common source of bugs. It's also a
good idea to test a list of length one, for similar reasons. In my
main() routine, I build up a random list one node at a time and test
the reverse() subroutine on the list at each step. The main()
routine was probably harder to write than the subroutine!

The Solution

/**
 * This program includes a subroutine that makes a reversed copy of a
 * list of ints. The main program simply tests that routine on a few lists.
 */
public class ReverseListDemo {

 /**
 * Objects of type ListNode are linked together into linked lists.
 */
 static class ListNode {
 int item; // An item in the list.
 ListNode next; // Pointer to the next node in the list.
 }

 /**
 * Return a new list containing the same items as the list,
 * but in the reverse order.
 */
 static ListNode reverse(ListNode list) {
 ListNode rev = null; // rev will be the reversed list.
 ListNode runner = list; // For running through the nodes of list.
 while (runner != null) {
 // "Push" the next node of list onto the front of rev.
 ListNode newNode = new ListNode();
 newNode.item = runner.item;
 newNode.next = rev;
 rev = newNode;
 // Move on to the next node in the list.
 runner = runner.next;
 }
 return rev;
 } // end reverse()

 /**
 * Prints the items in the list to which the parameter, start, points.
 * They are printed on one line, separated by spaces and enclosed in
 * parentheses.
 */
 static void printList(ListNode start) {
 ListNode runner; // For running along the list.
 runner = start;
 System.out.print("(");
 while (runner != null) {
 System.out.print(" " + runner.item);
 runner = runner.next;
 }
 System.out.print(")");
 } // end printList()

 public static void main(String[] args) {

 System.out.println("I will print out a list and its reverse, for");
 System.out.println("several different lists. The first list is empty.\n");

 ListNode list = null; // A list, initially empty.
 ListNode reversedList; // The reversed list.

 int ct = 0; // How many lists have we processed?

 while (true) {
 // Print the current list and its reverse. Then
 // add a new node onto the head of the list before
 // repeating.
 System.out.print("The list: ");
 printList(list);
 System.out.println();
 reversedList = reverse(list);
 System.out.print("The reversed list: ");
 printList(reversedList);
 System.out.println();
 System.out.println();
 ct++;
 if (ct == 6)
 break;
 ListNode head = new ListNode(); // A new node to add to the list.
 head.item = (int)(Math.random()*100); // A random item.
 head.next = list;
 list = head;
 }

 } // end main()

} // end class ReverseListDemo

Solution for Programming Exercise 9.1

Exercise 9.1:

In many textbooks, the first examples of recursion are
the mathematical functions factorial and fibonacci. These functions
are defined for non-negative integers using the following recursive formulas:

factorial(0) = 1
factorial(N) = N*factorial(N-1) for N > 0

fibonacci(0) = 1
fibonacci(1) = 1
fibonacci(N) = fibonacci(N-1) + fibonacci(N-2) for N > 1

Write recursive functions to compute factorial(N) and
fibonacci(N) for a given non-negative integer N,
and write a main() routine to test your functions. Consider
using the BigInteger class (see Exercise 8.2)

(In fact, factorial and fibonacci are really not very good
examples of recursion, since the most natural way to compute them is to use
simple for loops. Furthermore, fibonacci is a particularly
bad example, since the natural recursive approach to computing this function
is extremely inefficient.)

Discussion

The recursive definitions of the two functions can be translated
rather easily into Java code. Note that for factorial(N), the base
case is N=0, while fibonacci(N) has two base cases,
N=0 and N=1. The obvious recursive function for
computing fibonacci(N) is:

static int fibonacci(int N) {
 if (N == 0 || N == 1) {
 // Base cases; the answer is 1.
 return 1;
 }
 else {
 // Recursive case; the answer is obtained by applying the function
 // recursively to N-1 and to N-2, and adding the two answers.
 return fibonacci(N-1) + fibonacci(N-2);
 }
}

and for factorial(N) is

static int factorial(int N) {
 if (N == 0) {
 // Base case; the answer is 1.
 return 1;
 }
 else {
 // Recursive case; the answer is obtained by applying the function
 // recursively to N-1 and multiplying the answer by N.
 return factorial(N-1) * N;
 }
}

Adding a main() routine that calls these methods for several values
of N would be an acceptable solution to the exercise. However, when testing
the program, you will quickly notice some problems. First of all, the recursive algorithm
for fibonacci(N) is so inefficient that it takes an unreasonably long
time for it to run even for values of N as small as 40. (In fact, the
recursive evaluation of fibonacci(N) calls both fibonacci(N-1)
and fibonacci(N-2) and so takes almost twice as long as the evaluation
of fibonacci(N-1); with the computation time for fibonacci(N)
almost doubling every time N goes up by 1, the computation time
quickly becomes unreasonable.) Although I include
the recursive version of fibonacci in my solution, my program refuses to
use this function if N is greater than 40.

Another problem occurs because of the limited size of values of type int.
The value of factorial(N) grows very quickly as N increases -- so
quickly that by the time N reaches 13, the value of factorial(N)
is already too large to be expressed as a 32-bit integer! So, the factorial
function as defined above only gives the correct answer for numbers 0 through 12.
Although fibonacci(N) does not grow nearly so fast as factorial(N),
it is still true that by the time N reaches 46, fibonacci(N) is
outside the range of 32-bit integers.

The problem of the limited size of values of type int
was discussed in Subsection 8.1.3. One approach to dealing with
the problem was presented in Exercise 8.2: The class java.math.BigInteger
represents integer values that can be arbitrarily large (within the limits of the computer's
memory). In my solution to the exercise, I decided to use BigInteger
values to compute factorial(N) and to compute fibonacci(N) non-recursively.
This allows my program to work even for fairly large values of N, say up to
a few thousand.

You can read my solution below to see how I used the BigInteger class
and how I computed fibonacci(N) non-recursively.

The Solution

import java.math.BigInteger;

/**
 * Computes factorial(N) and fibonacci(N) for integers N entered by
 * the user, as a demonstration of recursion.
 */
public class FibonacciAndFactorial {

 /**
 * Main routine reads integers N from the user and prints the
 * values of factorial(N) and fibonacci(N), stopping when the
 * user inputs a zero.
 */
 public static void main(String[] args) {
 while (true) {
 System.out.print("\n\nEnter a postive integer, or 0 to end: ");
 int N = TextIO.getlnInt();
 if (N == 0)
 break;
 else if (N < 0) {
 System.out.println("Negative numbers are not allowed.");
 continue;
 }
 BigInteger NasBigInteger = BigInteger.valueOf(N);
 System.out.println("\n factorial(" + N + ") is " + factorial(NasBigInteger));
 if (N > 40) {
 System.out.println("\n N is too big to compute fibonacci(N) recursively");
 }
 else {
 System.out.println("\n fibonacci(" + N + ") is " +
 fibonacci(N) + " (recursively)");
 }
 System.out.println("\n fibonacci(" + N + ") is " +
 fibonacci_nonrecursive(N) + " (non-recursively)");
 }
 }

 /**
 * Compute fibonacci(N) using recursion. Because this is so inefficient,
 * even for fairly small values of N, N should be less than or equal to 40.
 * Also, N must be greater than or equal to zero, or an infinite recursion
 * will occur.
 */
 static int fibonacci(int N) {
 assert N >= 0 : "fibonacci(n) is only defined for non-negative n";
 assert N <= 40 : "n is to large to compute fibonacci(N) recursively";
 if (N == 0 || N == 1) {
 // Base cases; the answer is 1.
 return 1;
 }
 else {
 // Recursive case; the answer is obtained by applying the function
 // recursively to N-1 and to N-2, and adding the two answers.
 return fibonacci(N-1) + fibonacci(N-2);
 }
 }

 /**
 * Compute fibonacci(N) using a for loop. The answer is returned as
 * a BigInteger and can be very large even for fairly small values
 * of N. N must be greater than or equal to zero.
 */
 static BigInteger fibonacci_nonrecursive(int N) {
 assert N >= 0 : "fibonacci(n) is only defined for non-negative n";
 if (N == 0 || N == 1) {
 // fibonacci(0) = fibonacci(1) = 1;
 return BigInteger.ONE;
 }
 else {
 BigInteger f0 = BigInteger.ONE; // In the loop, this is fibonacci(i-2)
 BigInteger f1 = BigInteger.ONE; // In the loop, this is fibonacci(i-1)
 for (int i = 2; i <= N; i++) {
 BigInteger fi = f0.add(f1); // Computes fibonacci(i)
 f0 = f1; // Update to account for i++
 f1 = fi; // Update to account for i++
 }
 return f1; // Final value of f1 is fibonacci(N)
 }
 }

 /**
 * Compute factorial(N) using recursion. The computation is done using
 * BigIntegers and can be very large even for fairly small values of N.
 * N must be greater than or equal to zero.
 */
 static BigInteger factorial(BigInteger N) {
 assert N.signum() >= 0 : "factorial(n) is only defined for non-negative n";
 if (N.equals(BigInteger.ZERO)) {
 // Base case; the answer is 1.
 return BigInteger.ONE;
 }
 else {
 // Recursive case; the answer is obtained by applying the function
 // recursively to N-1 and multiplying the answer by N.
 BigInteger factorialOfNMinus1 = factorial(N.subtract(BigInteger.ONE));
 return N.multiply(factorialOfNMinus1);
 }
 }

}

Programming Exercises for Chapter 9

Exercise 9.1:

In many textbooks, the first examples of recursion are
the mathematical functions factorial and fibonacci. These functions
are defined for non-negative integers using the following recursive formulas:

factorial(0) = 1
factorial(N) = N*factorial(N-1) for N > 0

fibonacci(0) = 1
fibonacci(1) = 1
fibonacci(N) = fibonacci(N-1) + fibonacci(N-2) for N > 1

Write recursive functions to compute factorial(N) and
fibonacci(N) for a given non-negative integer N,
and write a main() routine to test your functions. Consider
using the BigInteger class (see Exercise 8.2)

(In fact, factorial and fibonacci are really not very good
examples of recursion, since the most natural way to compute them is to use
simple for loops. Furthermore, fibonacci is a particularly
bad example, since the natural recursive approach to computing this function
is extremely inefficient.)

See the Solution

Exercise 9.2:

Exercise 7.7 asked you to read a file, make an
alphabetical list of all the words that occur in the file, and write the list to another
file. In that exercise, you were asked to use an ArrayList<String> to
store the words. Write a new version of the same program that stores the words
in a binary sort tree instead of in an arraylist. You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in
Subsection 9.4.2.

See the Solution

Exercise 9.3:

Suppose that linked lists
of integers are made from objects belonging to the class

class ListNode {
 int item; // An item in the list.
 ListNode next; // Pointer to the next node in the list.
}

Write a subroutine that will make a copy of a list, with the order of the
items of the list reversed. The subroutine should have a parameter of type
ListNode, and it should return a value of type ListNode. The
original list should not be modified.

You should also write a main() routine to test your subroutine.

See the Solution

Exercise 9.4:

Subsection 9.4.1
explains how to use recursion to print out the items in a binary tree
in various orders. That section also notes that a non-recursive subroutine can
be used to print the items, provided that a stack or queue is used as an
auxiliary data structure. Assuming that a queue is used, here is an algorithm
for such a subroutine:

Add the root node to an empty queue
while the queue is not empty:
 Get a node from the queue
 Print the item in the node
 if node.left is not null:
 add it to the queue
 if node.right is not null:
 add it to the queue

Write a subroutine that implements this algorithm, and write a program to
test the subroutine. Note that you will need a queue of TreeNodes, so
you will need to write a class to represent such queues.

(Note that the order in which items are printed by this algorithm is different
from all three of the orders considered in Subsection 9.4.1.)

See the Solution

Exercise 9.5:

In Subsection 9.4.2, I say that "if the
[binary sort] tree is created by
inserting items in a random order, there is a high probability that the tree
is approximately balanced."
For this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the
length of the path from the root of the tree to that node. That is, the root
has depth 0, its children have depth 1, its grandchildren have depth 2, and so
on. In a balanced tree, all the leaves in the tree are about the same depth.
For example, in a perfectly balanced tree with 1023 nodes, all the leaves are
at depth 9. In an approximately balanced tree with 1023 nodes, the average
depth of all the leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might
be a few leaves that have much larger depth than the average, so we might also
want to look at the maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023
nodes. The items in the tree can be real numbers, and you can create the tree
by generating 1023 random real numbers and inserting them into the tree, using
the usual treeInsert() method for binary sort trees. Once you have the
tree, you should compute and output the average depth of all the leaves in the
tree and the maximum depth of all the leaves. To do this, you will need three
recursive subroutines: one to count the leaves, one to find the sum of the
depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that
tells how deep in the tree you've gone. When you call this routine from the main
program, the depth parameter is 0; when you call the routine recursively,
the parameter increases by 1.

See the Solution

Exercise 9.6:

 The parsing programs in
Section 9.5 work with expressions made up of numbers and operators. We can
make things a little more interesting by allowing the variable "x" to occur.
This would allow expression such as "3*(x-1)*(x+1)", for example. Make
a new version of the sample program SimpleParser3.java that can work with such
expressions. In your program, the main() routine can't simply print
the value of the expression, since the value of the expression now depends on
the value of x. Instead, it should print the value of the expression
for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways.
Currently, the program uses classes ConstNode, BinOpNode, and
UnaryMinusNode to represent nodes in an expression tree. Since
expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the
expression.

In the original program, each of the node classes has an instance method,
"double value()", which returns the value of the node. But in your
program, the value can depend on x, so you should replace this method
with one of the form "double value(double xValue)", where the
parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into
account the fact that expressions can contain x. There is just one
small change in the BNF rules for the expressions: A <factor> is
allowed to be the variable x:

<factor> ::= <number> | <x-variable> | "(" <expression> ")"

where <x-variable> can be either a lower case or an upper
case "X". This change in the BNF requires a change in the factorTree()
subroutine.

See the Solution

Exercise 9.7:

This exercise builds on
the previous exercise, Exercise 9.6. To
understand it, you should have some background in Calculus. The derivative of
an expression that involves the variable x can be defined by a few
recursive rules:

	The derivative of a constant is 0.

	The derivative of x is 1.

	If A is an expression, let dA be the derivative of
A. Then the derivative of -A is -dA.

	If A and B are expressions, let dA be the
derivative of A and let dB be the derivative of B.
Then the derivative of A+B is dA+dB.

	The derivative of A-B is dA-dB.

	The derivative of A*B is A*dB + B*dA.

	The derivative of A/B is (B*dA - A*dB) / (B*B).

For this exercise, you should modify your program from the previous exercise
so that it can compute the derivative of an expression. You can do this by
adding a derivative-computing method to each of the node classes. First, add
another abstract method to the ExpNode class:

abstract ExpNode derivative();

Then implement this method in each of the four subclasses of
ExpNode. All the information that you need is in the rules given
above. In your main program, instead of printing the stack operations for the original
expression, you should print out the stack operations that define the derivative.
Note that the formula that you get for the derivative can be much more
complicated than it needs to be. For example, the derivative of 3*x+1
will be computed as (3*1+0*x)+0. This is correct, even though it's
kind of ugly, and it would be nice for it to be simplified. However, simplifying
expressions is not easy.

As an alternative to printing out stack operations, you might want to print
the derivative as a fully parenthesized expression. You can do this by adding a
printInfix() routine to each node class. It would be nice to leave
out unnecessary parentheses, but again, the problem of deciding which
parentheses can be left out without altering the meaning of the expression is a
fairly difficult one, which I don't advise you to attempt.

(There is one curious thing that happens here: If you apply the rules, as
given, to an expression tree, the result is no longer a tree, since the same
subexpression can occur at multiple points in the derivative. For example, if
you build a node to represent B*B by saying "new
BinOpNode('*',B,B)", then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference
is harmless in this case since, like a tree, the structure that you get has no
loops in it. Loops, on the other hand, would be a disaster in most of the
recursive tree-processing subroutines that we have written, since it would
lead to infinite recursion. The type of structure that is built by the
derivative functions is technically referred to as a directed acyclic graph.)

See the Solution

Solution for Programming Exercise 9.2

Exercise 9.2:

Exercise 7.7 asked you to read a file, make an
alphabetical list of all the words that occur in the file, and write the list to another
file. In that exercise, you were asked to use an ArrayList<String> to
store the words. Write a new version of the same program that stores the words
in a binary sort tree instead of in an arraylist. You can use the binary sort tree
routines from SortTreeDemo.java, which was discussed in
Subsection 9.4.2.

Discussion

In my solution to Exercise 7.7, words are added to an
arraylist in the order in which they are encountered. After the file has been
completely read, the arraylist is sorted into alphabetical order before the list of
words is printed. Since a binary sort tree is
designed to store words in alphabetical order at all times, there is no need
for sorting. At the end of the program, an inorder traversal of the tree can
be used to output the words to the file. Using an inorder traversal guarantees
that the words will be output in increasing order.

For my solution to this exercise, I copied the routines treeInsert,
treeContains, and countNodes from SortTreeDemo.java.
I also copied the declaration of root as a static member variable, since
that's the variable that represents the tree itself. (It's unfortunate that root
has to be a global variable rather than a local variable in main(),
but it's used as a global variable in the treeInsert routine. A better solution
to the exercise would define a BinarySortTree class to
encapsulate the data and routines needed to represent the tree and to use a variable of type
BinarySortTree in the program.)

Only a few changes are needed in the main() routine of the original program. They are
shown in red italic in the solution shown below. All-in-all, the substitution of the binary tree
for the arraylist is very straightforward.

The Solution

/**
 * Makes an alphabetical list of all the words in a file selected
 * by the user. The list can be written to a file.
 * The words are stored in a binary sort tree.
 */
public class ListAllWordsFromFileWithTree {

 private static TreeNode root; // Pointer to the root node in a binary tree.
 // This tree is used in this program as a
 // binary sort tree. When the tree is empty,
 // root is null (as it is initially).

 public static void main(String[] args) {

 System.out.println("\n\nThis program will ask you to select an input file");
 System.out.println("It will read that file and make an alphabetical");
 System.out.println("list of all the words in the file. After reading");
 System.out.println("the file, the program asks you to select an output");
 System.out.println("file. If you select a file, the list of words will");
 System.out.println("be written to that file; if you cancel, the list");
 System.out.println("be written to standard output. All words are converted");
 System.out.println("lower case, and duplicates are eliminated from the list.\n\n");
 System.out.print("Press return to begin.");
 TextIO.getln(); // Wait for user to press return.

 try {
 if (TextIO.readUserSelectedFile() == false) {
 System.out.println("No input file selected. Exiting.");
 System.exit(1);
 }
 // ArrayList<String> wordList = new ArrayList<String>(); DELETED LINE
 String word = readNextWord();
 while (word != null) {
 word = word.toLowerCase(); // convert word to lower case
 if (treeContains(root,word) == false) {
 // This is a new word, so add it to the list
 treeInsert(word);
 }
 word = readNextWord();
 }
 int wordsInTree = countNodes(root);
 System.out.println("Number of different words found in file: "
 + wordsInTree);
 System.out.println();
 if (wordsInTree == 0) {
 System.out.println("No words found in file.");
 System.out.println("Exiting without saving data.");
 System.exit(0);
 }
 // selectionSort(wordList); DELETED LINE
 TextIO.writeUserSelectedFile(); // If user cancels, output automatically
 // goes to standard output.
 System.out.println(wordsInTree + " words found in file:\n");
 treeList(root);
 System.out.println("\n\nDone.\n\n");
 }
 catch (Exception e) {
 System.out.println("Sorry, an error has occurred.");
 System.out.println("Error Message: " + e.getMessage());
 }
 System.exit(0); // Might be necessary, because of use of file dialogs.
 }

 /**
 * Read the next word from TextIO, if there is one. First, skip past
 * and non-letters in the input. If an end-of-file is encountered before
 * a word is found, return null. Otherwise, read and return the word.
 * A word is defined as a sequence of letters. Also, a word can include
 * an apostrophe if the apostrophe is surrounded by letters on each side.
 * @return the next word from TextIO, or null if an end-of-file is encountered
 */
 private static String readNextWord() {
 char ch = TextIO.peek(); // Look at next character in input.
 while (ch != TextIO.EOF && !Character.isLetter(ch)) {
 TextIO.getAnyChar(); // Read the character.
 ch = TextIO.peek(); // Look at the next character.
 }
 if (ch == TextIO.EOF) // Encountered end-of-file
 return null;
 // At this point, we know that the next character, so read a word.
 String word = ""; // This will be the word that is read.
 while (true) {
 word += TextIO.getAnyChar(); // Append the letter onto word.
 ch = TextIO.peek(); // Look at next character.
 if (ch == '\'') {
 // The next character is an apostrophe. Read it, and
 // if the following character is a letter, add both the
 // apostrophe and the letter onto the word and continue
 // reading the word. If the character after the apostrophe
 // is not a letter, the word is done, so break out of the loop.
 TextIO.getAnyChar(); // Read the apostrophe.
 ch = TextIO.peek(); // Look at char that follows apostrophe.
 if (Character.isLetter(ch)) {
 word += "\'" + TextIO.getAnyChar();
 ch = TextIO.peek(); // Look at next char.
 }
 else
 break;
 }
 if (! Character.isLetter(ch)) {
 // If the next character is not a letter, the word is
 // finished, so bread out of the loop.
 break;
 }
 // If we haven't broken out of the loop, next char is a letter.
 }
 return word; // Return the word that has been read.
 }

 //------------- Binary Sort Tree data structures and methods ------------------
 //------------- (Copied from SortTreeDemo.java) -------------------------------

 /**
 * An object of type TreeNode represents one node in a binary tree of strings.
 */
 private static class TreeNode {
 String item; // The data in this node.
 TreeNode left; // Pointer to left subtree.
 TreeNode right; // Pointer to right subtree.
 TreeNode(String str) {
 // Constructor. Make a node containing the specified string.
 // Note that left and right pointers are initially null.
 item = str;
 }
 } // end nested class TreeNode

 /**
 * Add the item to the binary sort tree to which the global variable
 * "root" refers. (Note that root can't be passed as a parameter to
 * this routine because the value of root might change, and a change
 * in the value of a formal parameter does not change the actual parameter.)
 */
 private static void treeInsert(String newItem) {
 if (root == null) {
 // The tree is empty. Set root to point to a new node containing
 // the new item. This becomes the only node in the tree.
 root = new TreeNode(newItem);
 return;
 }
 TreeNode runner; // Runs down the tree to find a place for newItem.
 runner = root; // Start at the root.
 while (true) {
 if (newItem.compareTo(runner.item) < 0) {
 // Since the new item is less than the item in runner,
 // it belongs in the left subtree of runner. If there
 // is an open space at runner.left, add a new node there.
 // Otherwise, advance runner down one level to the left.
 if (runner.left == null) {
 runner.left = new TreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.left;
 }
 else {
 // Since the new item is greater than or equal to the item in
 // runner it belongs in the right subtree of runner. If there
 // is an open space at runner.right, add a new node there.
 // Otherwise, advance runner down one level to the right.
 if (runner.right == null) {
 runner.right = new TreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.right;
 }
 } // end while
 } // end treeInsert()

 /**
 * Return true if item is one of the items in the binary
 * sort tree to which root points. Return false if not.
 */
 static boolean treeContains(TreeNode root, String item) {
 if (root == null) {
 // Tree is empty, so it certainly doesn't contain item.
 return false;
 }
 else if (item.equals(root.item)) {
 // Yes, the item has been found in the root node.
 return true;
 }
 else if (item.compareTo(root.item) < 0) {
 // If the item occurs, it must be in the left subtree.
 return treeContains(root.left, item);
 }
 else {
 // If the item occurs, it must be in the right subtree.
 return treeContains(root.right, item);
 }
 } // end treeContains()

 /**
 * Print the items in the tree in inorder, one item to a line.
 * Since the tree is a sort tree, the output will be in increasing order.
 */
 private static void treeList(TreeNode node) {
 if (node != null) {
 treeList(node.left); // Print items in left subtree.
 System.out.println(" " + node.item); // Print item in the node.
 treeList(node.right); // Print items in the right subtree.
 }
 } // end treeList()

 /**
 * Count the nodes in the binary tree.
 * @param node A pointer to the root of the tree. A null value indicates
 * an empty tree
 * @return the number of nodes in the tree to which node points. For an
 * empty tree, the value is zero.
 */
 private static int countNodes(TreeNode node) {
 if (node == null) {
 // Tree is empty, so it contains no nodes.
 return 0;
 }
 else {
 // Add up the root node and the nodes in its two subtrees.
 int leftCount = countNodes(node.left);
 int rightCount = countNodes(node.right);
 return 1 + leftCount + rightCount;
 }
 } // end countNodes()

}

Section 9.5

A Simple Recursive Descent Parser

I have always been fascinated by language -- both
natural languages like English and the artificial languages that are used by
computers. There are many difficult questions about how languages can convey
information, how they are structured, and how they can be processed. Natural
and artificial languages are similar enough that the study of programming
languages, which are pretty well understood, can give some insight into the
much more complex and difficult natural languages. And programming languages
raise more than enough interesting issues to make them worth studying in their
own right. How can it be, after all, that computers can be made to "understand"
even the relatively simple languages that are used to write programs?
Computers can only directly use instructions expressed in very
simple machine language. Higher level languages must be translated into machine
language. But the translation is done by a compiler, which is just a program.
How could such a translation program be written?

9.5.1 Backus-Naur Form

Natural and artificial languages are similar in that they have a structure
known as grammar or syntax. Syntax can be expressed by a set of rules that
describe what it means to be a legal sentence or program. For programming
languages, syntax rules are often expressed in BNF
(Backus-Naur Form), a system that was developed by computer scientists John
Backus and Peter Naur in the late 1950s. Interestingly, an equivalent system
was developed independently at about the same time by linguist Noam Chomsky to
describe the grammar of natural language. BNF cannot express all possible
syntax rules. For example, it can't express the fact that a variable must be
defined before it is used. Furthermore, it says nothing about the meaning or
semantics of the language. The problem of specifying the semantics of a
language -- even of an artificial programming language -- is one that is still
far from being completely solved. However, BNF does express the basic structure
of the language, and it plays a central role in the design of compilers.

In English, terms such as "noun", "transitive verb," and "prepositional
phrase" are syntactic categories that describe
building blocks of sentences. Similarly, "statement", "number," and "while
loop" are syntactic categories that describe building blocks of Java programs.
In BNF, a syntactic category is written as a word enclosed between
"<" and ">". For example: <noun>,
<verb-phrase>, or <while-loop>. A
rule in BNF specifies the structure of an item in a given
syntactic category, in terms of other syntactic categories and/or basic symbols
of the language. For example, one BNF rule for the English language might
be

<sentence> ::= <noun-phrase> <verb-phrase>

The symbol "::=" is read "can be", so this rule says that a
<sentence> can be a <noun-phrase> followed by a
<verb-phrase>. (The term is "can be" rather than "is" because
there might be other rules that specify other possible forms for a sentence.)
This rule can be thought of as a recipe for a sentence: If you want to make a
sentence, make a noun-phrase and follow it by a verb-phrase. Noun-phrase and
verb-phrase must, in turn, be defined by other BNF rules.

In BNF, a choice between alternatives is represented by the symbol "|",
which is read "or". For example, the rule

<verb-phrase> ::= <intransitive-verb> |
 (<transitive-verb> <noun-phrase>)

says that a <verb-phrase> can be an
<intransitive-verb>, or a
<transitive-verb> followed by a <noun-phrase>.
Note also that parentheses can be used for grouping. To express the fact that
an item is optional, it can be enclosed between "[" and "]".
An optional item that can be repeated any number of times is enclosed between
"[" and "]...". And a symbol that is an actual part of the
language that is being described is enclosed in quotes. For example,

<noun-phrase> ::= <common-noun> ["that" <verb-phrase>] |
 <common-noun> [<prepositional-phrase>]...

says that a <noun-phrase> can be a
<common-noun>, optionally followed by the literal word
"that" and a <verb-phrase>, or it can be a
<common-noun> followed by zero or more
<prepositional-phrase>'s. Obviously, we can describe very
complex structures in this way. The real power comes from the fact that BNF
rules can be recursive. In fact, the two preceding rules, taken together, are
recursive. A <noun-phrase> is defined partly in terms of
<verb-phrase>, while <verb-phrase> is defined
partly in terms of <noun-phrase>. For example, a
<noun-phrase> might be "the rat that ate the cheese", since "ate
the cheese" is a <verb-phrase>. But then we can, recursively,
make the more complex <noun-phrase> "the cat that caught the rat
that ate the cheese" out of the <common-noun> "the cat", the word "that"
and the <verb-phrase> "caught the rat that ate the cheese".
Building from there, we can make the <noun-phrase> "the dog that
chased the cat that caught the rat that ate the cheese". The recursive
structure of language is one of the most fundamental properties of language,
and the ability of BNF to express this recursive structure is what makes it so
useful.

BNF can be used to describe the syntax of a programming language such as
Java in a formal and precise way. For example, a <while-loop>
can be defined as

<while-loop> ::= "while" "(" <condition> ")" <statement>

This says that a <while-loop> consists of the word "while",
followed by a left parenthesis, followed by a <condition>,
followed by a right parenthesis, followed by a <statement>. Of
course, it still remains to define what is meant by a condition and by a
statement. Since a statement can be, among other things, a while loop,
we can already see the recursive structure of the Java language. The exact
specification of an if statement, which is hard to express clearly in
words, can be given as

<if-statement> ::=
 "if" "(" <condition> ")" <statement>
 ["else" "if" "(" <condition> ")" <statement>]...
 ["else" <statement>]

This rule makes it clear that the "else" part is optional and that
there can be, optionally, one or more "else if" parts.

9.5.2 Recursive Descent Parsing

In the rest of this section, I will show how a BNF grammar for a language
can be used as a guide for constructing a parser. A parser is a program that
determines the grammatical structure of a phrase in the language. This is the
first step in determining the meaning of the phrase -- which for a programming
language means translating it into machine language. Although we will look at
only a simple example, I hope it will be enough to convince you that compilers
can in fact be written and understood by mortals and to give you some idea of
how that can be done.

The parsing method that we will use is called recursive descent parsing.
It is not the only possible parsing
method, or the most efficient, but it is the one most suited for writing
compilers by hand (rather than with the help of so called "parser generator"
programs). In a recursive descent parser, every rule of the BNF grammar is the
model for a subroutine. Not every BNF grammar is suitable for recursive descent
parsing. The grammar must satisfy a certain property. Essentially, while
parsing a phrase, it must be possible to tell what syntactic category is coming
up next just by looking at the next item in the input. Many grammars are
designed with this property in mind.

I should also mention that many variations of BNF are in use. The one that
I've described here is one that is well-suited for recursive descent
parsing.

When we try to parse a phrase that contains a syntax error, we need some way
to respond to the error. A convenient way of doing this is to throw an
exception. I'll use an exception class called ParseError, defined as
follows:

/**
 * An object of type ParseError represents a syntax error found in
 * the user's input.
 */
private static class ParseError extends Exception {
 ParseError(String message) {
 super(message);
 }
} // end nested class ParseError

Another general point is that our BNF rules don't say anything about spaces
between items, but in reality we want to be able to insert spaces between items
at will. To allow for this, I'll always call the routine TextIO.skipBlanks()
before trying to look ahead to see what's coming up next in input.
TextIO.skipBlanks() skips past any whitespace, such as spaces and tabs, in the input,
and stops when the next character in the input is either a non-blank character or the
end-of-line character.

Let's start with a very simple example. A "fully parenthesized expression"
can be specified in BNF by the rules

<expression> ::= <number> |
 "(" <expression> <operator> <expression> ")"

<operator> ::= "+" | "-" | "*" | "/"

where <number> refers to any non-negative real number. An example
of a fully parenthesized expression is "(((34-17)*8)+(2*7))". Since
every operator corresponds to a pair of parentheses, there is no ambiguity
about the order in which the operators are to be applied. Suppose we want a
program that will read and evaluate such expressions. We'll read the
expressions from standard input, using TextIO. To apply recursive
descent parsing, we need a subroutine for each rule in the grammar.
Corresponding to the rule for <operator>, we get a subroutine
that reads an operator. The operator can be a choice of any of four things. Any
other input will be an error.

/**
 * If the next character in input is one of the legal operators,
 * read it and return it. Otherwise, throw a ParseError.
 */
static char getOperator() throws ParseError {
 TextIO.skipBlanks();
 char op = TextIO.peek(); // look ahead at the next char, without reading it
 if (op == '+' || op == '-' || op == '*' || op == '/') {
 TextIO.getAnyChar(); // read the operator, to remove it from the input
 return op;
 }
 else if (op == '\n')
 throw new ParseError("Missing operator at end of line.");
 else
 throw new ParseError("Missing operator. Found \"" +
 op + "\" instead of +, -, *, or /.");
} // end getOperator()

I've tried to give a reasonable error message, depending on whether the next
character is an end-of-line or something else. I use TextIO.peek() to
look ahead at the next character before I read it, and I call
TextIO.skipBlanks() before testing TextIO.peek() in order to ignore
any blanks that separate items. I will follow this same pattern in every
case.

When we come to the subroutine for <expression>, things are a
little more interesting. The rule says that an expression can be either a
number or an expression enclosed in parentheses. We can tell which it is by
looking ahead at the next character. If the character is a digit, we have to
read a number. If the character is a "(", we have to read the "(", followed by
an expression, followed by an operator, followed by another expression,
followed by a ")". If the next character is anything else, there is an error.
Note that we need recursion to read the nested expressions. The routine doesn't
just read the expression. It also computes and returns its value. This requires
semantical information that is not specified in the BNF rule.

/**
 * Read an expression from the current line of input and return its value.
 * @throws ParseError if the input contains a syntax error
 */
private static double expressionValue() throws ParseError {
 TextIO.skipBlanks();
 if (Character.isDigit(TextIO.peek())) {
 // The next item in input is a number, so the expression
 // must consist of just that number. Read and return
 // the number.
 return TextIO.getDouble();
 }
 else if (TextIO.peek() == '(') {
 // The expression must be of the form
 // "(" <expression> <operator> <expression> ")"
 // Read all these items, perform the operation, and
 // return the result.
 TextIO.getAnyChar(); // Read the "("
 double leftVal = expressionValue(); // Read and evaluate first operand.
 char op = getOperator(); // Read the operator.
 double rightVal = expressionValue(); // Read and evaluate second operand.
 TextIO.skipBlanks();
 if (TextIO.peek() != ')') {
 // According to the rule, there must be a ")" here.
 // Since it's missing, throw a ParseError.
 throw new ParseError("Missing right parenthesis.");
 }
 TextIO.getAnyChar(); // Read the ")"
 switch (op) { // Apply the operator and return the result.
 case '+': return leftVal + rightVal;
 case '-': return leftVal - rightVal;
 case '*': return leftVal * rightVal;
 case '/': return leftVal / rightVal;
 default: return 0; // Can't occur since op is one of the above.
 // (But Java syntax requires a return value.)
 }
 }
 else { // No other character can legally start an expression.
 throw new ParseError("Encountered unexpected character, \"" +
 TextIO.peek() + "\" in input.");
 }
} // end expressionValue()

I hope that you can see how this routine corresponds to the BNF rule. Where
the rule uses "|" to give a choice between alternatives, there is an
if statement in the routine to determine which choice to take. Where
the rule contains a sequence of items, "(" <expression>
<operator> <expression> ")", there is a sequence
of statements in the subroutine to read each item in turn.

When expressionValue() is called to evaluate the expression
(((34-17)*8)+(2*7)), it sees the "(" at the beginning of the input, so
the else part of the if statement is executed. The "(" is
read. Then the first recursive call to expressionValue() reads and
evaluates the subexpression ((34-17)*8), the call to
getOperator() reads the "+" operator, and the second recursive call to
expressionValue() reads and evaluates the second subexpression
(2*7). Finally, the ")" at the end of the expression is read. Of
course, reading the first subexpression, ((34-17)*8), involves further
recursive calls to the expressionValue() routine, but it's better not
to think too deeply about that! Rely on the recursion to handle the
details.

You'll find a complete program that uses these routines in the file
SimpleParser1.java.

Fully parenthesized expressions aren't very natural for people to use. But
with ordinary expressions, we have to worry about the question of operator
precedence, which tells us, for example, that the "*" in the
expression "5+3*7" is applied before the "+". The complex expression
"3*6+8*(7+1)/4-24" should be seen as made up of three "terms",
3*6, 8*(7+1)/4, and 24, combined with "+" and "-"
operators. A term, on the other hand, can be made up of several factors
combined with "*" and "/" operators. For example,
8*(7+1)/4 contains the factors 8, (7+1) and
4. This example also shows that a factor can be either a number or an
expression in parentheses. To complicate things a bit more, we allow for
leading minus signs in expressions, as in "-(3+4)" or "-7".
(Since a <number> is a positive number, this is the only way we
can get negative numbers. It's done this way to avoid "3 * -7", for
example.) This structure can be expressed by the BNF rules

<expression> ::= ["-"] <term> [("+" | "-") <term>]...
<term> ::= <factor> [("*" | "/") <factor>]...
<factor> ::= <number> | "(" <expression> ")"

The first rule uses the "[]..." notation, which says that the
items that it encloses can occur zero, one, two, or more times. The rule means that
an <expression> can begin, optionally, with a "-". Then there
must be a <term> which can optionally be followed by one of the
operators "+" or "-" and another <term>, optionally followed by
another operator and <term>, and so on. In a subroutine that
reads and evaluates expressions, this repetition is handled by a while
loop. An if statement is used at the beginning of the loop to test
whether a leading minus sign is present:

/**
 * Read an expression from the current line of input and return its value.
 * @throws ParseError if the input contains a syntax error
 */
private static double expressionValue() throws ParseError {
 TextIO.skipBlanks();
 boolean negative; // True if there is a leading minus sign.
 negative = false;
 if (TextIO.peek() == '-') {
 TextIO.getAnyChar(); // Read the minus sign.
 negative = true;
 }
 double val; // Value of the expression.
 val = termValue();
 if (negative)
 val = -val;
 TextIO.skipBlanks();
 while (TextIO.peek() == '+' || TextIO.peek() == '-') {
 // Read the next term and add it to or subtract it from
 // the value of previous terms in the expression.
 char op = TextIO.getAnyChar(); // Read the operator.
 double nextVal = termValue();
 if (op == '+')
 val += nextVal;
 else
 val -= nextVal;
 TextIO.skipBlanks();
 }
 return val;
} // end expressionValue()

The subroutine for <term> is very similar to this, and the
subroutine for <factor> is similar to the example given above
for fully parenthesized expressions. A complete program that reads and
evaluates expressions based on the above BNF rules can be found in the file
SimpleParser2.java.

9.5.3 Building an Expression Tree

Now, so far, we've only evaluated expressions. What does that have to do
with translating programs into machine language? Well, instead of actually
evaluating the expression, it would be almost as easy to generate the machine
language instructions that are needed to evaluate the expression. If we are
working with a "stack machine," these instructions would be stack operations
such as "push a number" or "apply a + operation". The program
SimpleParser3.java can both evaluate the
expression and print a list of stack machine operations for evaluating the
expression.

It's quite a jump from this program to a recursive descent parser that can
read a program written in Java and generate the equivalent machine language
code -- but the conceptual leap is not huge.

The SimpleParser3 program doesn't actually generate the stack
operations directly as it parses an expression. Instead, it builds an
expression tree, as discussed in Subsection 9.4.3, to
represent the expression. The expression tree is then used to find the value
and to generate the stack operations. The tree is made up of nodes belonging to
classes ConstNode and BinOpNode that are similar to those
given in Subsection 9.4.3. Another class, UnaryMinusNode, has been
introduced to represent the unary minus operation. I've added a method,
printStackCommands(), to each class. This method is responsible for
printing out the stack operations that are necessary to evaluate an expression.
Here for example is the new BinOpNode class from SimpleParser3.java:

private static class BinOpNode extends ExpNode {
 char op; // The operator.
 ExpNode left; // The expression for its left operand.
 ExpNode right; // The expression for its right operand.
 BinOpNode(char op, ExpNode left, ExpNode right) {
 // Construct a BinOpNode containing the specified data.
 assert op == '+' || op == '-' || op == '*' || op == '/';
 assert left != null && right != null;
 this.op = op;
 this.left = left;
 this.right = right;
 }
 double value() {
 // The value is obtained by evaluating the left and right
 // operands and combining the values with the operator.
 double x = left.value();
 double y = right.value();
 switch (op) {
 case '+':
 return x + y;
 case '-':
 return x - y;
 case '*':
 return x * y;
 case '/':
 return x / y;
 default:
 return Double.NaN; // Bad operator! Should not be possible.
 }
 }
 void printStackCommands() {
 // To evaluate the expression on a stack machine, first do
 // whatever is necessary to evaluate the left operand, leaving
 // the answer on the stack. Then do the same thing for the
 // second operand. Then apply the operator (which means popping
 // the operands, applying the operator, and pushing the result).
 left.printStackCommands();
 right.printStackCommands();
 System.out.println(" Operator " + op);
 }
}

It's also interesting to look at the new parsing subroutines. Instead of
computing a value, each subroutine builds an expression tree. For example, the
subroutine corresponding to the rule for <expression>
becomes

 static ExpNode expressionTree() throws ParseError {
 // Read an expression from the current line of input and
 // return an expression tree representing the expression.
 TextIO.skipBlanks();
 boolean negative; // True if there is a leading minus sign.
 negative = false;
 if (TextIO.peek() == '-') {
 TextIO.getAnyChar();
 negative = true;
 }
 ExpNode exp; // The expression tree for the expression.
 exp = termTree(); // Start with a tree for first term.
 if (negative) {
 // Build the tree that corresponds to applying a
 // unary minus operator to the term we've
 // just read.
 exp = new UnaryMinusNode(exp);
 }
 TextIO.skipBlanks();
 while (TextIO.peek() == '+' || TextIO.peek() == '-') {
 // Read the next term and combine it with the
 // previous terms into a bigger expression tree.
 char op = TextIO.getAnyChar();
 ExpNode nextTerm = termTree();
 // Create a tree that applies the binary operator
 // to the previous tree and the term we just read.
 exp = new BinOpNode(op, exp, nextTerm);
 TextIO.skipBlanks();
 }
 return exp;
 } // end expressionTree()

In some real compilers, the parser creates a tree to represent the program
that is being parsed. This tree is called a parse tree.
Parse trees are somewhat different in form from expression trees,
but the purpose is the same. Once you have the tree, there are a number of
things you can do with it. For one thing, it can be used to generate machine
language code. But there are also techniques for examining the tree and
detecting certain types of programming errors, such as an attempt to reference
a local variable before it has been assigned a value. (The Java compiler, of
course, will reject the program if it contains such an error.) It's also
possible to manipulate the tree to optimize the
program. In optimization, the tree is transformed to make the program more
efficient before the code is generated.

And so we are back where we started in Chapter 1, looking at programming
languages, compilers, and machine language. But looking at them, I hope, with a
lot more understanding and a much wider perspective.

Solution for Programming Exercise 9.7

Exercise 9.7:

This exercise builds on
the previous exercise, Exercise 9.6. To
understand it, you should have some background in Calculus. The derivative of
an expression that involves the variable x can be defined by a few
recursive rules:

	The derivative of a constant is 0.

	The derivative of x is 1.

	If A is an expression, let dA be the derivative of
A. Then the derivative of -A is -dA.

	If A and B are expressions, let dA be the
derivative of A and let dB be the derivative of B.
Then the derivative of A+B is dA+dB.

	The derivative of A-B is dA-dB.

	The derivative of A*B is A*dB + B*dA.

	The derivative of A/B is (B*dA - A*dB) / (B*B).

For this exercise, you should modify your program from the previous exercise
so that it can compute the derivative of an expression. You can do this by
adding a derivative-computing method to each of the node classes. First, add
another abstract method to the ExpNode class:

abstract ExpNode derivative();

Then implement this method in each of the four subclasses of
ExpNode. All the information that you need is in the rules given
above. In your main program, instead of printing the stack operations for the original
expression, you should print out the stack operations that define the derivative.
Note that the formula that you get for the derivative can be much more
complicated than it needs to be. For example, the derivative of 3*x+1
will be computed as (3*1+0*x)+0. This is correct, even though it's
kind of ugly, and it would be nice for it to be simplified. However, simplifying
expressions is not easy.

As an alternative to printing out stack operations, you might want to print
the derivative as a fully parenthesized expression. You can do this by adding a
printInfix() routine to each node class. It would be nice to leave
out unnecessary parentheses, but again, the problem of deciding which
parentheses can be left out without altering the meaning of the expression is a
fairly difficult one, which I don't advise you to attempt.

(There is one curious thing that happens here: If you apply the rules, as
given, to an expression tree, the result is no longer a tree, since the same
subexpression can occur at multiple points in the derivative. For example, if
you build a node to represent B*B by saying "new
BinOpNode('*',B,B)", then the left and right children of the new node are
actually the same node! This is not allowed in a tree. However, the difference
is harmless in this case since, like a tree, the structure that you get has no
loops in it. Loops, on the other hand, would be a disaster in most of the
recursive tree-processing subroutines that we have written, since it would
lead to infinite recursion. The type of structure that is built by the
derivative functions is technically referred to as a directed acyclic graph.)

Discussion

The solution to Exercise 9.6 already
allows the variable x to occur in expressions. Since we are building on that
solution, no changes are needed in the parsing routines. There are a few easy
changes in the main() routine, since it must take the derivative of
the expression entered by the user and then work with that derivative. The
changes are shown in the solution that is given below.

Aside from that, we only need to add the "ExpNode derivative()"
method to each of the node classes. Since I want to print out the derivative in
fully parenthesized infix form, I also add another method, "void printInfix()".
Since this is not a required part of the exercise -- and
since it's fairly simple to do -- I won't discuss the printInfix()
method further.

All the information that is needed for writing the derivative()
methods is given in the derivative rules that are listed in the exercise. The
first three rules are pretty simple:

	Since the derivative of a constant is 0, the derivative() method
in the ConstNode class has to return an ExpNode that
represents the expression "0". That's easy. We just need a constant node that
contains the number 0. The definition of derivative() in the
ConstNode class is just: "return new ConstNode(0);".

	Similarly, the derivative of x is 1, so the definition of
derivative() in the VariableNode class is "return new
ConstNode(1);".

	The derivative of -A is -dA, that is, it consists of a
unary minus operator applied to the derivative of the operand A. So, in the
UnaryMinusNode class, we have to compute the derivative of the
operand and then create an ExpNode that applies a unary minus
to that derivative. The derivative of operand is
operand.derivative(), so we only need to "return new
UnaryMinusNode(operand.derivative());".

In the BinOpNode class, the derivative rule that we need to apply
depends on the value of the binary operator, +, -, *, or /.
The rules for A+B and A-B are easy to implement. Let's look
at the case of *, where the rule is that the derivative of
A*B is A*dB+B*dA. In the BinOpNode class, A
is the left operand and B is the right operand. We can
compute the derivatives dA and dB as
left.derivative() and right.derivative(). We then have to
build an expression tree to represent A*dB+B*dA. We need one node to
represent the + operation and two more nodes to represent the two *
operations. We can create the tree step-by-step:

ExpNode dA = left.derivative();
ExpNode dB = right.derivative();
ExpNode firstHalf = new BinOpNode('*', left, dB); // A*dB
ExpNode secondHalf = new BinOpNode('*', right, dA); // B*dA
ExpNode answer = new BinOpNode('+', firstHalf, secondHalf);
return answer; // This is the derivative we want!

In my solution, however, I did the same thing in one statement:

return new BinOpNode('+',
 new BinOpNode('*', left, right.derivative()),
 new BinOpNode('*', right, left.derivative()));

This uses the fact that a constructor call is an expression and can be used
as an actual parameter in a subroutine. This statement returns a node that
represents the sum of two things. The first thing is a node that represents the
product of left and right.derivative(), and the second is a
node that represents the product of right and
left.derivative(). This is exactly the same thing that is returned by
the previous sequence of six statements. There are reasonable arguments for
doing things either way.

The rule for A/B is even more complicated: (B*dA-A*dB)/(B*B).
Nevertheless, using left for A and right
for B, I can compute the value with a single statement:

return new BinOpNode('/',
 new BinOpNode('-',
 new BinOpNode('*', right, left.derivative()),
 new BinOpNode('*', left, right.derivative())),
 new BinOpNode('*', right, right));

As an exercise, you might try doing the same thing with a sequence of simple
statements.

The Solution

/*
 This program reads standard expressions typed in by the user.
 The program constructs an expression tree to represent the
 expression. It computes the derivative of the expression and
 prints out the derivative and the value of the derivative at
 several values of x. It also prints out a list of commands
 that could be used on a stack machine to evaluate the derivative.
 The expressions can use the variable "x", positive real numbers, and
 the binary operators +, -, *, and /. The unary minus operation
 is supported. The expressions are defined by the BNF rules:

 <expression> ::= ["-"] <term> [["+" | "-"] <term>]...

 <term> ::= <factor> [["*" | "/"] <factor>]...

 <factor> ::= <number> | <x-variable> | "(" <expression> ")"

 A number must begin with a digit (i.e., not a decimal point).
 A line of input must contain exactly one such expression. If extra
 data is found on a line after an expression has been read, it is
 considered an error.

 In addition to the main program class, SimpleParser5, this program
 defines a set of five nested classes for implementing expression trees.

 */

public class SimpleParser5 {

// -------------------- Nested classes for Expression Trees ------------------------------

 /**
 * An abstract class representing any node in an expression tree.
 * The four concrete node classes are concrete subclasses.
 * Two instance methods are specified, so that they can be used with
 * any ExpNode. The value() method returns the value of the
 * expression for a specified value of the variable, x.
 * The printStackCommands() method prints a list
 * of commands that could be used to evaluate the expression on
 * a stack machine (assuming that the value of the expression is
 * to be left on the stack).
 * The derivative() method returns an expression tree for the derivative
 * of the expression (with no attempt at simplification). Actually,
 * this might not be a tree, but it is a "directed acyclic graph",
 * with no loops, so it's OK for our purposes. The printInfix()
 * method prints the expression in fully parenthesized form.
 */
 abstract private static class ExpNode {
 abstract double value(double xValue);
 abstract void printStackCommands();
 abstract void printInfix();
 abstract ExpNode derivative();
 }

 /**
 * Represents an expression node that holds a number.
 */
 private static class ConstNode extends ExpNode {
 double number; // The number.
 ConstNode(double val) {
 // Construct a ConstNode containing the specified number.
 number = val;
 }
 double value(double xValue) {
 // The value of the node is the number that it contains.
 return number;
 }
 void printStackCommands() {
 // On a stack machine, just push the number onto the stack.
 System.out.println(" Push " + number);
 }
 void printInfix() {
 System.out.print(number);
 }
 ExpNode derivative() {
 // The derivative of a constant is zero.
 return new ConstNode(0);
 }
 }

 /**
 * An expression node representing a binary operator,
 */
 private static class BinOpNode extends ExpNode {
 char op; // The operator.
 ExpNode left; // The expression for its left operand.
 ExpNode right; // The expression for its right operand.
 BinOpNode(char op, ExpNode left, ExpNode right) {
 // Construct a BinOpNode containing the specified data.
 assert op == '+' || op == '-' || op == '*' || op == '/';
 assert left != null && right != null;
 this.op = op;
 this.left = left;
 this.right = right;
 }
 double value(double xValue) {
 // The value is obtained by evaluating the left and right
 // operands and combining the values with the operator.
 double x = left.value(xValue);
 double y = right.value(xValue);
 switch (op) {
 case '+': return x + y;
 case '-': return x - y;
 case '*': return x * y;
 case '/': return x / y;
 default: return Double.NaN; // Bad operator!
 }
 }
 void printStackCommands() {
 // To evaluate the expression on a stack machine, first do
 // whatever is necessary to evaluate the left operand, leaving
 // the answer on the stack. Then do the same thing for the
 // second operand. Then apply the operator (which means popping
 // the operands, applying the operator, and pushing the result).
 left.printStackCommands();
 right.printStackCommands();
 System.out.println(" Operator " + op);
 }
 void printInfix() {
 // Print the expression, in parentheses.
 System.out.print('(');
 left.printInfix();
 System.out.print(" " + op + " ");
 right.printInfix();
 System.out.print(')');
 }
 ExpNode derivative() {
 // Apply the derivative formulas.
 switch (op) {
 case '+':
 return new BinOpNode('+', left.derivative(), right.derivative());
 case '-':
 return new BinOpNode('-', left.derivative(), right.derivative());
 case '*':
 return new BinOpNode('+',
 new BinOpNode('*', left, right.derivative()),
 new BinOpNode('*', right, left.derivative()));
 case '/':
 return new BinOpNode('/',
 new BinOpNode('-',
 new BinOpNode('*', right, left.derivative()),
 new BinOpNode('*', left, right.derivative())),
 new BinOpNode('*', right, right));
 default:
 return null;
 }
 }
 }

 /**
 * An expression node to represent a unary minus operator.
 */
 private static class UnaryMinusNode extends ExpNode {
 ExpNode operand; // The operand to which the unary minus applies.
 UnaryMinusNode(ExpNode operand) {
 // Construct a UnaryMinusNode with the specified operand.
 assert operand != null;
 this.operand = operand;
 }
 double value(double xValue) {
 // The value is the negative of the value of the operand.
 double neg = operand.value(xValue);
 return -neg;
 }
 void printStackCommands() {
 // To evaluate this expression on a stack machine, first do
 // whatever is necessary to evaluate the operand, leaving the
 // operand on the stack. Then apply the unary minus (which means
 // popping the operand, negating it, and pushing the result).
 operand.printStackCommands();
 System.out.println(" Unary minus");
 }
 void printInfix() {
 // Print the expression, in parentheses.
 System.out.print("(-");
 operand.printInfix();
 System.out.print(')');
 }
 ExpNode derivative() {
 // The derivative of -A is -(derivative of A).
 return new UnaryMinusNode(operand.derivative());
 }
 }

 /**
 * An expression node that represents a reference to the variable, x.
 */
 private static class VariableNode extends ExpNode {
 VariableNode() {
 // Construct a VariableNode. (There is nothing to do!)
 }
 double value(double xValue) {
 // The value of the node is the value of x.
 return xValue;
 }
 void printStackCommands() {
 // On a stack machine, just push the value of X onto the stack.
 System.out.println(" Push X");
 }
 void printInfix() {
 System.out.print("x");
 }
 ExpNode derivative() {
 // The derivative of x is the constant 1.
 return new ConstNode(1);
 }
 }

 // ---

 /**
 * An object of type ParseError represents a syntax error found in
 * the user's input.
 */
 private static class ParseError extends Exception {
 ParseError(String message) {
 super(message);
 }
 } // end nested class ParseError

 public static void main(String[] args) {

 while (true) {
 System.out.println("\n\nEnter an expression, or press return to end.");
 System.out.print("\n? ");
 TextIO.skipBlanks();
 if (TextIO.peek() == '\n')
 break;
 try {
 ExpNode exp = expressionTree();
 TextIO.skipBlanks();
 if (TextIO.peek() != '\n')
 throw new ParseError("Extra data after end of expression.");
 TextIO.getln();
 ExpNode deriv = exp.derivative();
 System.out.println("\nA fully parenthesized expression for the derivative is:");
 System.out.print(" ");
 deriv.printInfix();
 System.out.println();
 System.out.println("\nValue of derivative at x = 0 is " + deriv.value(0));
 System.out.println("Value of derivative at x = 1 is " + deriv.value(1));
 System.out.println("Value of derivative at x = 2 is " + deriv.value(2));
 System.out.println("Value of derivative at x = 3 is " + deriv.value(3));
 System.out.println("\nOrder of postfix evaluation for derivative is:\n");
 deriv.printStackCommands();
 }
 catch (ParseError e) {
 System.out.println("\n*** Error in input: " + e.getMessage());
 System.out.println("*** Discarding input: " + TextIO.getln());
 }
 }

 System.out.println("\n\nDone.");

 } // end main()

 /**
 * Reads an expression from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */
 private static ExpNode expressionTree() throws ParseError {
 TextIO.skipBlanks();
 boolean negative; // True if there is a leading minus sign.
 negative = false;
 if (TextIO.peek() == '-') {
 TextIO.getAnyChar();
 negative = true;
 }
 ExpNode exp; // The expression tree for the expression.
 exp = termTree(); // Start with the first term.
 if (negative)
 exp = new UnaryMinusNode(exp);
 TextIO.skipBlanks();
 while (TextIO.peek() == '+' || TextIO.peek() == '-') {
 // Read the next term and combine it with the
 // previous terms into a bigger expression tree.
 char op = TextIO.getAnyChar();
 ExpNode nextTerm = termTree();
 exp = new BinOpNode(op, exp, nextTerm);
 TextIO.skipBlanks();
 }
 return exp;
 } // end expressionTree()

 /**
 * Reads a term from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */
 private static ExpNode termTree() throws ParseError {
 TextIO.skipBlanks();
 ExpNode term; // The expression tree representing the term.
 term = factorTree();
 TextIO.skipBlanks();
 while (TextIO.peek() == '*' || TextIO.peek() == '/') {
 // Read the next factor, and combine it with the
 // previous factors into a bigger expression tree.
 char op = TextIO.getAnyChar();
 ExpNode nextFactor = factorTree();
 term = new BinOpNode(op,term,nextFactor);
 TextIO.skipBlanks();
 }
 return term;
 } // end termValue()

 /**
 * Reads a factor from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */

 private static ExpNode factorTree() throws ParseError {
 TextIO.skipBlanks();
 char ch = TextIO.peek();
 if (Character.isDigit(ch)) {
 // The factor is a number. Return a ConstNode.
 double num = TextIO.getDouble();
 return new ConstNode(num);
 }
 else if (ch == 'x' || ch == 'X') {
 // The factor is the variable x.
 TextIO.getAnyChar(); // Read the X.
 return new VariableNode();
 }
 else if (ch == '(') {
 // The factor is an expression in parentheses.
 // Return a tree representing that expression.
 TextIO.getAnyChar(); // Read the "("
 ExpNode exp = expressionTree();
 TextIO.skipBlanks();
 if (TextIO.peek() != ')')
 throw new ParseError("Missing right parenthesis.");
 TextIO.getAnyChar(); // Read the ")"
 return exp;
 }
 else if (ch == '\n')
 throw new ParseError("End-of-line encountered in the middle of an expression.");
 else if (ch == ')')
 throw new ParseError("Extra right parenthesis.");
 else if (ch == '+' || ch == '-' || ch == '*' || ch == '/')
 throw new ParseError("Misplaced operator.");
 else
 throw new ParseError("Unexpected character \"" + ch + "\" encountered.");
 } // end factorTree()

} // end class SimpleParser5

Section 9.3

Stacks, Queues, and ADTs

A linked list is a particular type of data
structure, made up of objects linked together by pointers. In the
previous section, we used a linked list to store an ordered list
of Strings, and we implemented insert, delete, and
find operations on that list. However, we could easily have stored the
list of Strings in an array or ArrayList, instead of in a
linked list. We could still have implemented the same operations on the list.
The implementations of these
operations would have been different, but their interfaces and logical behavior
would still be the same.

The term abstract data type, or ADT,
refers to a set of possible values and a set of
operations on those values, without any specification of how the values are to
be represented or how the operations are to be implemented. An "ordered list of
strings" can be defined as an abstract data type. Any sequence of
Strings that is arranged in increasing order is a possible value of
this data type. The operations on the data type include inserting a new string,
deleting a string, and finding a string in the list. There are often several
different ways to implement the same abstract data type. For example, the
"ordered list of strings" ADT can be implemented as a linked list or as an
array. A program that only depends on the abstract definition of the ADT can
use either implementation, interchangeably. In particular, the implementation
of the ADT can be changed without affecting the program as a whole. This can
make the program easier to debug and maintain, so ADTs are an important tool
in software engineering.

In this section, we'll look at two common abstract data types,
stacks and queues. Both stacks
and queues are often implemented as linked lists, but that is not the only
possible implementation. You should think of the rest of this section partly as
a discussion of stacks and queues and partly as a case study in ADTs.

9.3.1 Stacks

A stack consists of a sequence of items, which should be thought of as piled
one on top of the other like a physical stack of boxes or cafeteria trays. Only
the top item on the stack is accessible at any given time. It can be removed
from the stack with an operation called pop. An
item lower down on the stack can only be removed after all the items on top of
it have been popped off the stack. A new item can be added to the top of the
stack with an operation called push. We can make a
stack of any type of items. If, for example, the items are values of type
int, then the push and pop operations can be implemented as instance
methods

	
void push (int newItem) -- Add newItem to top of stack.

	
int pop() -- Remove the top int from the stack and return it.

It is an error to try to pop an item from an empty stack, so it is important
to be able to tell whether a stack is empty. We need another stack operation to
do the test, implemented as an instance method

	
boolean isEmpty() -- Returns true if the stack is empty.

This defines a "stack of ints" as an abstract data type. This ADT can be
implemented in several ways, but however it is implemented, its behavior must
correspond to the abstract mental image of a stack.

[image: A stack, showing result of push and pop]

In the linked list implementation of a stack, the top of the stack is
actually the node at the head of the list. It is easy to add and remove nodes
at the front of a linked list -- much easier than inserting and deleting nodes
in the middle of the list. Here is a class that implements the "stack of ints"
ADT using a linked list. (It uses a static nested class to represent the nodes
of the linked list, but that is part of the private implementation of the ADT.)

public class StackOfInts {

 /**
 * An object of type Node holds one of the items in the linked list
 * that represents the stack.
 */
 private static class Node {
 int item;
 Node next;
 }

 private Node top; // Pointer to the Node that is at the top of
 // of the stack. If top == null, then the
 // stack is empty.

 /**
 * Add N to the top of the stack.
 */
 public void push(int N) {
 Node newTop; // A Node to hold the new item.
 newTop = new Node();
 newTop.item = N; // Store N in the new Node.
 newTop.next = top; // The new Node points to the old top.
 top = newTop; // The new item is now on top.
 }

 /**
 * Remove the top item from the stack, and return it.
 * Throws an IllegalStateException if the stack is empty when
 * this method is called.
 */
 public int pop() {
 if (top == null)
 throw new IllegalStateException("Can't pop from an empty stack.");
 int topItem = top.item; // The item that is being popped.
 top = top.next; // The previous second item is now on top.
 return topItem;
 }

 /**
 * Returns true if the stack is empty. Returns false
 * if there are one or more items on the stack.
 */
 public boolean isEmpty() {
 return (top == null);
 }

} // end class StackOfInts

You should make sure that you understand how the push and
pop operations operate on the linked list. Drawing some pictures might
help. Note that the linked list is part of the private implementation
of the StackOfInts class. A program that uses this class doesn't even
need to know that a linked list is being used.

Now, it's pretty easy to implement a stack as an array instead of as a
linked list. Since the number of items on the stack varies with time, a counter
is needed to keep track of how many spaces in the array are actually in use. If
this counter is called top, then the items on the stack are stored in
positions 0, 1, ..., top-1 in the array. The item in
position 0 is on the bottom of the stack, and the item in position
top-1 is on the top of the stack. Pushing an item onto the stack is
easy: Put the item in position top and add 1 to the value of
top. If we don't want to put a limit on the number of items that the
stack can hold, we can use the dynamic array techniques from Subsection 7.2.4.
Note that the typical picture of the array
would show the stack "upside down," with the bottom of the stack at the top of
the array. This doesn't matter. The array is just an implementation of the
abstract idea of a stack, and as long as the stack operations work the way they
are supposed to, we are OK. Here is a second implementation of the
StackOfInts class, using a dynamic array:

public class StackOfInts { // (alternate version, using an array)

 private int[] items = new int[10]; // Holds the items on the stack.

 private int top = 0; // The number of items currently on the stack.

 /**
 * Add N to the top of the stack.
 */
 public void push(int N) {
 if (top == items.length) {
 // The array is full, so make a new, larger array and
 // copy the current stack items into it. (Note that
 // java.util.Arrays must be imported.)
 items = Arrays.copyOf(items, 2*items.length);
 }
 items[top] = N; // Put N in next available spot.
 top++; // Number of items goes up by one.
 }

 /**
 * Remove the top item from the stack, and return it.
 * Throws an IllegalStateException if the stack is empty when
 * this method is called.
 */
 public int pop() {
 if (top == 0)
 throw new IllegalStateException("Can't pop from an empty stack.");
 int topItem = items[top - 1]; // Top item in the stack.
 top--; // Number of items on the stack goes down by one.
 return topItem;
 }

 /**
 * Returns true if the stack is empty. Returns false
 * if there are one or more items on the stack.
 */
 public boolean isEmpty() {
 return (top == 0);
 }

} // end class StackOfInts

Once again, the implementation of the stack (as an array) is private to the
class. The two versions of the StackOfInts class can be used
interchangeably, since their public interfaces are identical.

It's interesting to look at the run time analysis of stack operations.
(See Section 8.5). We can measure the size of the problem
by the number of items that are on the stack.
For the linked list implementation of a stack, the worst case run
time both for the push and for the pop operation is
Θ(1). This just means that the run time is less than some constant, independent
of the number of items on the stack. This is easy to see if you look at the code.
The operations are implemented with a few simple assignment statements, and the
number of items on the stack has no effect.

For the array implementation, on the other hand, a special case occurs in the
push operation when the array is full. In that case, a new array
is created and all the stack items are copied into the new array. This takes
an amount of time that is proportional to the number of items on the stack.
So, although the run time for push is usually Θ(1),
the worst case run time is Θ(n), where n is the number of items on the stack.
(However, the worst case occurs only rarely, and there is a natural sense in which the
average case run time for the array implementation is still Θ(1).)

9.3.2 Queues

Queues are similar to stacks in that a queue consists of a sequence of
items, and there are restrictions about how items can be added to and removed
from the list. However, a queue has two ends, called the front and the back of
the queue. Items are always added to the queue at the back and removed from the
queue at the front. The operations of adding and removing items are called
enqueue and dequeue.
An item that is added to the back of the queue will remain on the queue until
all the items in front of it have been removed. This should sound familiar. A
queue is like a "line" or "queue" of customers waiting for service. Customers
are serviced in the order in which they arrive on the queue.

[image: A queue showing result of enqueue and dequeue]

A queue can hold items of any type. For a queue of ints, the
enqueue and dequeue operations can be implemented as instance methods in a
"QueueOfInts" class. We also need an instance method for checking
whether the queue is empty:

	
void enqueue(int N) -- Add N to the back of the queue.

	
int dequeue() -- Remove the item at the front and return it.

	
boolean isEmpty() -- Return true if the queue is empty.

A queue can be implemented as a linked list or as an array. An efficient
array implementation is trickier than the array implementation of a
stack, so I won't give it here. In the linked list implementation, the first
item of the list is at the front of the queue. Dequeueing an item from the front
of the queue is just like popping an item off a stack. The back of the queue is
at the end of the list. Enqueueing an item involves setting a pointer in the
last node of the current list to point to a new node that contains the item. To
do this, we'll need a command like "tail.next = newNode;", where
tail is a pointer to the last node in the list. If head is a
pointer to the first node of the list, it would always be possible to get a
pointer to the last node of the list by saying:

Node tail; // This will point to the last node in the list.
tail = head; // Start at the first node.
while (tail.next != null) {
 tail = tail.next; // Move to next node.
}
// At this point, tail.next is null, so tail points to
// the last node in the list.

However, it would be very inefficient to do this over and over every time an
item is enqueued. For the sake of efficiency, we'll keep a pointer to the last
node in an instance variable. This complicates the class somewhat;
we have to be careful to update the value of
this variable whenever a new node is added to the end of the list. Given all
this, writing the QueueOfInts class is not all that difficult:

public class QueueOfInts {

 /**
 * An object of type Node holds one of the items
 * in the linked list that represents the queue.
 */
 private static class Node {
 int item;
 Node next;
 }

 private Node head = null; // Points to first Node in the queue.
 // The queue is empty when head is null.

 private Node tail = null; // Points to last Node in the queue.

 /**
 * Add N to the back of the queue.
 */
 public void enqueue(int N) {
 Node newTail = new Node(); // A Node to hold the new item.
 newTail.item = N;
 if (head == null) {
 // The queue was empty. The new Node becomes
 // the only node in the list. Since it is both
 // the first and last node, both head and tail
 // point to it.
 head = newTail;
 tail = newTail;
 }
 else {
 // The new node becomes the new tail of the list.
 // (The head of the list is unaffected.)
 tail.next = newTail;
 tail = newTail;
 }
 }

 /**
 * Remove and return the front item in the queue.
 * Throws an IllegalStateException if the queue is empty.
 */
 public int dequeue() {
 if (head == null)
 throw new IllegalStateException("Can't dequeue from an empty queue.");
 int firstItem = head.item;
 head = head.next; // The previous second item is now first.
 // If we have just removed the last item,
 // then head is null.
 if (head == null) {
 // The queue has become empty. The Node that was
 // deleted was the tail as well as the head of the
 // list, so now there is no tail. (Actually, the
 // class would work fine without this step.)
 tail = null;
 }
 return firstItem;
 }

 /**
 * Return true if the queue is empty.
 */
 boolean isEmpty() {
 return (head == null);
 }

} // end class QueueOfInts

Queues are typically used in a computer (as in real life) when only one item
can be processed at a time, but several items can be waiting for processing.
For example:

	In a Java program that has multiple threads, the threads that want
processing time on the CPU are kept in a queue. When a new thread is started,
it is added to the back of the queue. A thread is removed from the front of the
queue, given some processing time, and then -- if it has not terminated -- is
sent to the back of the queue to wait for another turn.

	Events such as keystrokes and mouse clicks are stored in a queue called the
"event queue". A program removes events from the event queue and processes
them. It's possible for several more events to occur while one event is being
processed, but since the events are stored in a queue, they will always be
processed in the order in which they occurred.

	A web server is a program that receives requests from web browsers for "pages."
It is easy for new requests to arrive while the web server is still fulfilling
a previous request. Requests that arrive while the web server is busy are placed
into a queue to await processing. Using a queue ensures that requests will be
processed in the order in which they were received.

Queues are said to implement a FIFO policy:
First In, First Out. Or, as it is more commonly expressed, first come, first
served. Stacks, on the other hand implement a LIFO
policy: Last In, First Out. The item that comes out of the stack is the last
one that was put in. Just like queues, stacks can be used to hold items that
are waiting for processing (although in applications where queues are typically
used, a stack would be considered "unfair").

To get a better handle on the difference between stacks and queues, consider
the sample program DepthBreadth.java.
I suggest that you try out the program.
The program shows a grid of squares. Initially, all the squares are white.
When you click on a white square, the
program will gradually mark all the squares in the grid, starting from the one
where you click. To understand how the program does this, think of yourself in
the place of the program. When the user clicks a square, you are handed an index
card. The location of the square -- its row and column -- is written on the
card. You put the card in a pile, which then contains just that one card. Then,
you repeat the following: If the pile is empty, you are done. Otherwise, remove
an index card from the pile. The index card specifies a square. Look at each
horizontal and vertical neighbor of that square. If the neighbor has not
already been encountered, write its location on a new index card and put the card
in the pile. You are done when there are no more index cards waiting in
the pile to be processed.

In the program, while a square is in the pile, waiting to be processed, it is colored red;
that is, red squares have been encountered but not yet processed.
When a square is taken from the pile and processed, its color changes to gray.
Once a square has been colored gray, its color won't change again.
Eventually, all the squares have been processed, and the procedure ends.
At that time, every square is gray. In the
index card analogy, the pile of cards has been emptied.

The program can use your choice of three methods: Stack, Queue, and Random.
In each case, the same general procedure is used. The only difference is how
the "pile of index cards" is managed. For a stack, cards are added and removed
at the top of the pile. For a queue, cards are added to the bottom of the pile
and removed from the top. In the random case, the card to be processed is
picked at random from among all the cards in the pile. The order of processing is
very different in these three cases. Here are three pictures from the program,
using the three different processing methods. In each case, the process was
started by selecting a square near the middle of the grid. A stack is used
for the picture on the left, a queue for the picture in the middle, and
random selection for the picture on the right:

[image: three screenshots from DepthBreadth]

The patterns that are produced are very different. When using a stack, the program explores
out as far as possible before it starts backtracking to look at previously encountered squares.
With a queue, squares are processed roughly in the order of their distance from the starting
point. When random selection is used, the result is an irregular blob, but it is
a connected blob since a square can only be encountered if it is next to a previously
encountered square.

You should experiment with the program to see how it all works. Try to
understand how stacks and queues are being used. Try starting from one of the
corner squares. While the process is going on, you can click on other white
squares, and they will be added to the list of encountered squares. When you do this with a stack, you
should notice that the square you click is processed immediately, and all the
red squares that were already waiting for processing have to wait. On the other
hand, if you do this with a queue, the square that you click will wait its
turn until all the squares that were already in the pile have been processed.
Again, the source code for the program is DepthBreadth.java.

Queues seem very natural because they occur so often in real life, but there
are times when stacks are appropriate and even essential. For example, consider
what happens when a routine calls a subroutine. The first routine is suspended
while the subroutine is executed, and it will continue only when the subroutine
returns. Now, suppose that the subroutine calls a second subroutine, and the
second subroutine calls a third, and so on. Each subroutine is suspended while
the subsequent subroutines are executed. The computer has to keep track of all
the subroutines that are suspended. It does this with a stack.

When a subroutine is called, an activation record
is created for that subroutine. The activation record contains
information relevant to the execution of the subroutine, such as its local
variables and parameters. The activation record for the subroutine is placed on
a stack. It will be removed from the stack and destroyed when the subroutine
returns. If the subroutine calls another subroutine, the activation record of
the second subroutine is pushed onto the stack, on top of the activation record
of the first subroutine. The stack can continue to grow as more subroutines are
called, and it shrinks as those subroutines return.

9.3.3 Postfix Expressions

As another example, stacks can be used to evaluate
postfix expressions. An ordinary mathematical expression such
as 2+(15-12)*17 is called an infix expression.
In an infix expression, an operator comes in between its two
operands, as in "2 + 2". In a postfix expression, an operator comes
after its two operands, as in "2 2 +". The infix expression
"2+(15-12)*17" would be written in postfix form as
"2 15 12 - 17 * +".
The "-" operator in this expression applies to the two operands that
precede it, namely "15" and "12". The "*" operator
applies to the two operands that precede it, namely "15 12 -" and
"17". And the "+" operator applies to "2" and
"15 12 - 17 *".
These are the same computations that are done in the original infix
expression.

Now, suppose that we want to process the expression "2 15 12 - 17 * +",
from left to right and find its value. The first item we encounter is
the 2, but what can we do with it? At this point, we don't know what
operator, if any, will be applied to the 2 or what the other operand
might be. We have to remember the 2 for later processing. We do this
by pushing it onto a stack. Moving on to the next item, we see a 15,
which is pushed onto the stack on top of the 2. Then the 12
is added to the stack. Now, we come to the operator, "-". This operation
applies to the two operands that preceded it in the expression. We have saved
those two operands on the stack. So, to process the "-" operator, we pop two
numbers from the stack, 12 and 15, and compute 15 - 12
to get the answer 3. This 3 must be remembered to be used in later
processing, so we push it onto the stack, on top of the 2 that is
still waiting there. The next item in the expression is a 17, which is
processed by pushing it onto the stack, on top of the 3. To process
the next item, "*", we pop two numbers from the stack. The numbers are
17 and the 3 that represents the value of "15 12 -".
These numbers are multiplied, and the result, 51 is pushed onto the
stack. The next item in the expression is a "+" operator, which is processed by
popping 51 and 2 from the stack, adding them, and pushing the
result, 53, onto the stack. Finally, we've come to the end of the
expression. The number on the stack is the value of the entire expression, so
all we have to do is pop the answer from the stack, and we are done! The value
of the expression is 53.

Although it's easier for people to work with infix expressions, postfix
expressions have some advantages. For one thing, postfix expressions don't
require parentheses or precedence rules. The order in which operators are
applied is determined entirely by the order in which they occur in the
expression. This allows the algorithm for evaluating postfix expressions to be
fairly straightforward:

Start with an empty stack
for each item in the expression:
 if the item is a number:
 Push the number onto the stack
 else if the item is an operator:
 Pop the operands from the stack // Can generate an error
 Apply the operator to the operands
 Push the result onto the stack
 else
 There is an error in the expression
Pop a number from the stack // Can generate an error
if the stack is not empty:
 There is an error in the expression
else:
 The last number that was popped is the value of the expression

Errors in an expression can be detected easily. For example, in the
expression "2 3 + *", there are not enough operands for the
"*" operation. This will be detected in the algorithm when an attempt
is made to pop the second operand for "*" from the stack, since the
stack will be empty. The opposite problem occurs in "2 3 4 +". There
are not enough operators for all the numbers. This will be detected when the
2 is left still sitting in the stack at the end of the algorithm.

This algorithm is demonstrated in the sample program PostfixEval.java.
This program lets you type in
postfix expressions made up of non-negative real numbers and the operators "+",
"-", "*", "/", and "^".
The "^" represents
exponentiation. That is, "2 3 ^" is evaluated as
2
3. The program prints out a message as it processes each
item in the expression. The stack class that is used in the program is defined in the
file StackOfDouble.java. The
StackOfDouble class is identical to the first StackOfInts
class, given above, except that it has been modified to store values of type
double instead of values of type int.

The only interesting aspect of this program is the method that implements
the postfix evaluation algorithm. It is a direct implementation of the
pseudocode algorithm given above:

/**
 * Read one line of input and process it as a postfix expression.
 * If the input is not a legal postfix expression, then an error
 * message is displayed. Otherwise, the value of the expression
 * is displayed. It is assumed that the first character on
 * the input line is a non-blank.
 */
private static void readAndEvaluate() {

 StackOfDouble stack; // For evaluating the expression.

 stack = new StackOfDouble(); // Make a new, empty stack.

 System.out.println();

 while (TextIO.peek() != '\n') {

 if (Character.isDigit(TextIO.peek())) {
 // The next item in input is a number. Read it and
 // save it on the stack.
 double num = TextIO.getDouble();
 stack.push(num);
 System.out.println(" Pushed constant " + num);
 }
 else {
 // Since the next item is not a number, the only thing
 // it can legally be is an operator. Get the operator
 // and perform the operation.
 char op; // The operator, which must be +, -, *, /, or ^.
 double x,y; // The operands, from the stack, for the operation.
 double answer; // The result, to be pushed onto the stack.
 op = TextIO.getChar();
 if (op != '+' && op != '-' && op != '*' && op != '/' && op != '^') {
 // The character is not one of the acceptable operations.
 System.out.println("\nIllegal operator found in input: " + op);
 return;
 }
 if (stack.isEmpty()) {
 System.out.println(" Stack is empty while trying to evaluate " + op);
 System.out.println("\nNot enough numbers in expression!");
 return;
 }
 y = stack.pop();
 if (stack.isEmpty()) {
 System.out.println(" Stack is empty while trying to evaluate " + op);
 System.out.println("\nNot enough numbers in expression!");
 return;
 }
 x = stack.pop();
 switch (op) {
 case '+':
 answer = x + y;
 break;
 case '-':
 answer = x - y;
 break;
 case '*':
 answer = x * y;
 break;
 case '/':
 answer = x / y;
 break;
 default:
 answer = Math.pow(x,y); // (op must be '^'.)
 }
 stack.push(answer);
 System.out.println(" Evaluated " + op + " and pushed " + answer);
 }

 TextIO.skipBlanks();

 } // end while

 // If we get to this point, the input has been read successfully.
 // If the expression was legal, then the value of the expression is
 // on the stack, and it is the only thing on the stack.

 if (stack.isEmpty()) { // Impossible if the input is really non-empty.
 System.out.println("No expression provided.");
 return;
 }

 double value = stack.pop(); // Value of the expression.
 System.out.println(" Popped " + value + " at end of expression.");

 if (stack.isEmpty() == false) {
 System.out.println(" Stack is not empty.");
 System.out.println("\nNot enough operators for all the numbers!");
 return;
 }

 System.out.println("\nValue = " + value);

} // end readAndEvaluate()

Postfix expressions are often used internally by computers. In fact, the
Java virtual machine is a "stack machine" which uses the stack-based approach
to expression evaluation that we have been discussing. The algorithm can easily
be extended to handle variables, as well as constants. When a variable is
encountered in the expression, the value of the variable is pushed onto the
stack. It also works for operators with more or fewer than two operands. As
many operands as are needed are popped from the stack and the result is pushed
back onto the stack. For example, the unary minus
operator, which is used in the expression "-x", has a single operand.
We will continue to look at expressions and expression evaluation in the next
two sections.

Solution for Programming Exercise 9.4

Exercise 9.4:

Subsection 9.4.1
explains how to use recursion to print out the items in a binary tree
in various orders. That section also notes that a non-recursive subroutine can
be used to print the items, provided that a stack or queue is used as an
auxiliary data structure. Assuming that a queue is used, here is an algorithm
for such a subroutine:

Add the root node to an empty queue
while the queue is not empty:
 Get a node from the queue
 Print the item in the node
 if node.left is not null:
 add it to the queue
 if node.right is not null:
 add it to the queue

Write a subroutine that implements this algorithm, and write a program to
test the subroutine. Note that you will need a queue of TreeNodes, so
you will need to write a class to represent such queues.

(Note that the order in which items are printed by this algorithm is different
from all three of the orders considered in Subsection 9.4.1.)

Discussion

There's really not a lot to think about here, since such a complete
algorithm is given. However, we do have to assemble the pieces. I use the
standard binary tree node from Section 9.4 (except that
I changed the name of the tree node class to StrTreeNode). The
algorithm needs a queue of tree nodes. To implement this, I copied the
QueueOfInts class from Subsection 9.3.2 and changed
the type of the items in the queue to StrTreeNode. I also changed the
name to TreeQueue. I did this literally by copying the class from a
Web browser window and pasting it into my source code file. With these classes
in hand, the algorithm given in the exercise can be coded as:

/**
 * Use a queue to print all the strings in the tree to which
 * root points. (The nodes will be listed in "level order",
 * that is: first the root, then children of the root, then
 * grandchildren of the root, and so on.)
 */
static void levelOrderPrint(StrTreeNode root) {
 if (root == null)
 return; // There is nothing to print in an empty tree.
 TreeQueue queue; // The queue.
 queue = new TreeQueue();
 queue.enqueue(root);
 while (queue.isEmpty() == false) {
 StrTreeNode node = queue.dequeue();
 System.out.println(node.item);
 if (node.left != null)
 queue.enqueue(node.left);
 if (node.right != null)
 queue.enqueue(node.right);
 }
} // end levelOrderPrint()

The name of this routine comes from the order in which it prints out the
nodes of the tree. Think of the root of the tree as being on the top "level" of
the tree, the children of the root on the second level, the children of the
children of the root on the third level, and so on. Then the subroutine prints
the items in level order. That is, all the nodes
on one level are printed before any of the nodes on the next level. This is a
consequence of the way the algorithm processes the items. As items from one
level are removed from the queue and printed, their children (which are the
nodes on the next level) are added to the back of the queue. Just after
all the items from one level have been processed, the queue contains all the
children of those items, ready to be processed, and those children are
exactly the nodes on the next level of the tree. Level-order tree
traversals can't be done by recursion, and they are a standard application of
queues.

To test my subroutine, I wanted a reasonably large tree whose structure I
knew, so I could check whether the nodes are printed in the correct order.
(Since you didn't know about level-order traversals until now, on the other
hand, you should have been mainly concerned with checking that all the nodes in
the tree are printed, period.) I decided to create the binary sort tree shown
in Subsection 9.4.2. To do this, I copied the
treeInsert()subroutine from that section and used it to add names to
the tree in an order that would produce the tree I wanted. Finally, I called
levelOrderPrint() to output the names from the tree. (It worked!)

By the way, you might notice that the levelOrderPrint() routine is
very similar to the technique used in the grid-marking algorithm in the sample program
DepthBreadth.java from
Subsection 9.3.2. In fact they are just variations on the same idea.
One difference is that in DepthBreadth.java, the squares of the grid had to be
marked as "visited" as they were processed to avoid going into an infinite
loop. The levelOrderPrint() subroutine doesn't have to do the same
type of marking because it is working on a tree. One of the defining properties
of a tree is that it cannot contain a loop of nodes. That is, it is not
possible for a node to be its own descendant. This restriction guarantees that
levelOrderPrint() will not go into an infinite loop. The same property
guarantees that all of our recursive tree-processing methods will not suffer
from infinite recursion when they are applied to a tree. You should note,
however, that it is possible to connect tree nodes into data structures that
contain loops and are therefore not trees at all.
While these data structures are not trees, they might have other
uses. Many of the subroutines we've looked will fail if applied to these loopy
structures.

The Solution

/**
 * This program includes a non-recursive subroutine that prints the
 * nodes of a binary tree, using a queue. The main program simply
 * tests that routine. (The nodes are printed in what is called
 * "level order".)
 *
 * This file defines the queue and tree classes as nested classes.
 * Since they are general-purpose classes, it would really be better
 * to put them in separate files.
 */

public class TreePrintNonRecursive {

 //--------------------------------- NESTED CLASSES -----------------------

 /**
 * An object in this class is a node in a binary tree
 * in which the nodes contain items of type String.
 */
 static class StrTreeNode {
 String item; // The item
 StrTreeNode left; // Pointer to left subtree.
 StrTreeNode right; // Pointer to right subtree.
 StrTreeNode(String str) {
 // Constructor. Make a node to contain str.
 item = str;
 }
 } // end class StrTreeNode

 /**
 * An object of this type represents a queue of StrTreeNodes,
 * with the usual operations: dequeue, enqueue, isEmpty.
 */
 static class TreeQueue {

 /**
 * An object of type Node holds one of the items
 * in the linked list that represents the queue.
 */
 private static class Node {
 StrTreeNode item;
 Node next;
 }

 private Node head = null; // Points to first Node in the queue.
 // The queue is empty when head is null.

 private Node tail = null; // Points to last Node in the queue.

 /**
 * Add N to the back of the queue.
 */
 void enqueue(StrTreeNode tree) {
 Node newTail = new Node(); // A Node to hold the new item.
 newTail.item = tree;
 if (head == null) {
 // The queue was empty. The new Node becomes
 // the only node in the list. Since it is both
 // the first and last node, both head and tail
 // point to it.
 head = newTail;
 tail = newTail;
 }
 else {
 // The new node becomes the new tail of the list.
 // (The head of the list is unaffected.)
 tail.next = newTail;
 tail = newTail;
 }
 }

 /**
 * Remove and return the front item in the queue.
 * Throws an IllegalStateException if the queue is empty.
 */
 StrTreeNode dequeue() {
 if (head == null)
 throw new IllegalStateException("Can't dequeue from an empty queue.");
 StrTreeNode firstItem = head.item;
 head = head.next; // The previous second item is now first.
 if (head == null) {
 // The queue has become empty. The Node that was
 // deleted was the tail as well as the head of the
 // list, so now there is no tail. (Actually, the
 // class would work fine without this step.)
 tail = null;
 }
 return firstItem;
 }

 /**
 * Return true if the queue is empty, false if contains one
 * or more items
 */
 boolean isEmpty() {
 return (head == null);
 }

 } // end class TreeQueue

 //-------------------- END OF NESTED CLASSES ---------------------------

 static StrTreeNode root; // A pointer to the root of the binary tree.

 /**
 * Use a queue to print all the strings in the tree to which
 * root points. (The nodes will be listed in "level order",
 * that is: first the root, then children of the root, then
 * grandchildren of the root, and so on.)
 */
 static void levelOrderPrint(StrTreeNode root) {
 if (root == null)
 return; // There is nothing to print in an empty tree.
 TreeQueue queue; // The queue, which will only hold non-null nodes.
 queue = new TreeQueue();
 queue.enqueue(root);
 while (queue.isEmpty() == false) {
 StrTreeNode node = queue.dequeue();
 System.out.println(node.item);
 if (node.left != null)
 queue.enqueue(node.left);
 if (node.right != null)
 queue.enqueue(node.right);
 }
 } // end levelOrderPrint()

 /**
 * Add the word to the binary sort tree to which the
 * global variable "root" refers. I will use this
 * routine only to create the sample tree on which
 * I will test levelOrderPrint().
 */
 static void treeInsert(String newItem) {
 if (root == null) {
 // The tree is empty. Set root to point to a new node
 // containing the new item.
 root = new StrTreeNode(newItem);
 return;
 }
 StrTreeNode runner; // Runs down the tree to find a place for newItem.
 runner = root; // Start at the root.
 while (true) {
 if (newItem.compareTo(runner.item) < 0) {
 // Since the new item is less than the item in runner,
 // it belongs in the left subtree of runner. If there
 // is an open space at runner.left, add a node there.
 // Otherwise, advance runner down one level to the left.
 if (runner.left == null) {
 runner.left = new StrTreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.left;
 }
 else {
 // Since the new item is greater than or equal to the
 // item in runner, it belongs in the right subtree of
 // runner. If there is an open space at runner.right,
 // add a new node there. Otherwise, advance runner
 // down one level to the right.
 if (runner.right == null) {
 runner.right = new StrTreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.right;
 }
 } // end while
 } // end treeInsert()

 /**
 * Make a tree with a known form, then call levelOrderPrint()
 * for that tree. (I want to check that all the items from
 * the tree are printed, and I want to see the order in which
 * they are printed. The expected order of output is
 * judy bill mary alice fred tom dave jane joe. The
 * tree that is built here is from an illustration in
 * Section 9.4.)
 */
 public static void main(String[] args) {
 treeInsert("judy");
 treeInsert("bill");
 treeInsert("fred");
 treeInsert("mary");
 treeInsert("dave");
 treeInsert("jane");
 treeInsert("alice");
 treeInsert("joe");
 treeInsert("tom");
 levelOrderPrint(root);
 } // end main()

} // end class TreePrintNonRecursive

Quiz on Chapter 9

Question 1:

Explain what is meant by a recursive subroutine.

Question 2:

Consider the following subroutine:

static void printStuff(int level) {
 if (level == 0) {
 System.out.print("*");
 }
 else {
 System.out.print("[");
 printStuff(level - 1);
 System.out.print(",");
 printStuff(level - 1);
 System.out.print("]");
 }
}

Show the output that would be produced by the subroutine calls
printStuff(0), printStuff(1), printStuff(2), and
printStuff(3).

Question 3:

Suppose that a linked list
is formed from objects that belong to the class

class ListNode {
 int item; // An item in the list.
 ListNode next; // Pointer to next item in the list.
}

Write a subroutine that will count the number of zeros that occur in a given
linked list of ints. The subroutine should have a parameter of type ListNode
and should return a value of type int.

Question 4:

What are the three operations on a stack?

Question 5:

What is the basic difference
between a stack and a queue?

Question 6:

What is an activation
record? What role does a stack of activation records play in a
computer?

Question 7:

Suppose that a binary tree of integers
is formed from objects belonging to the class

class TreeNode {
 int item; // One item in the tree.
 TreeNode left; // Pointer to the left subtree.
 TreeNode right; // Pointer to the right subtree.
}

Write a recursive subroutine that will find the sum of all the nodes in the
tree. Your subroutine should have a parameter of type TreeNode, and it
should return a value of type int.

Question 8:

What is a postorder traversal of a binary tree?

Question 9:

Suppose that a <multilist> is defined by the BNF rule

<multilist> ::= <word> | "(" [<multilist>]... ")"

where a <word> can be any sequence of letters. Give five
different <multilist>'s that can be generated by this rule.
(This rule, by the way, is almost the entire syntax of the programming language
LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)

Question 10:

Explain what is meant by parsing a computer program.

See the Answers

Section 9.4

Binary Trees

We have seen in the two previous sections how
objects can be linked into lists. When an object contains two pointers to
objects of the same type, structures can be created that are much more
complicated than linked lists. In this section, we'll look at one of the most
basic and useful structures of this type: binary trees.
Each of the objects in a binary tree contains two pointers,
typically called left and right. In addition to these
pointers, of course, the nodes can contain other types of data. For example, a
binary tree of integers would be made up of objects of the following type:

class TreeNode {
 int item; // The data in this node.
 TreeNode left; // Pointer to the left subtree.
 TreeNode right; // Pointer to the right subtree.
}

The left and
right pointers in a TreeNode can be null or can
point to other objects of type TreeNode. A node that points to another
node is said to be the parent of that node, and
the node it points to is called a child. In the
picture below, for example, node 3 is the parent of node 6, and nodes 4
and 5 are children of node 2. Not every linked structure made up of tree nodes
is a binary tree. A binary tree must have the following properties: There is
exactly one node in the tree which has no parent. This node is called the
root of the tree. Every other node in the tree has
exactly one parent. Finally, there can be no loops in a binary tree. That is,
it is not possible to follow a chain of pointers starting at some node and
arriving back at the same node.

[image: TreeNodes linked to make a tree]

A node that has no children is called a leaf. A
leaf node can be recognized by the fact that both the left and right pointers
in the node are null. In the standard picture of a binary tree, the
root node is shown at the top and the leaf nodes at the bottom -- which doesn't
show much respect for the analogy to real trees. But at least you can see the
branching, tree-like structure that gives a binary tree its name.

9.4.1 Tree Traversal

Consider any node in a binary tree. Look at that node together with all its
descendants (that is, its children, the children of its children, and so on).
This set of nodes forms a binary tree, which is called a
subtree of the original tree. For example, in the picture,
nodes 2, 4, and 5 form a subtree. This subtree is called the
left subtree of the root. Similarly, nodes 3 and 6 make up the
right subtree of the root. We can consider any
non-empty binary tree to be made up of a root node, a left subtree, and a right
subtree. Either or both of the subtrees can be empty. This is a recursive
definition, matching the recursive definition of the TreeNode class.
So it should not be a surprise that recursive subroutines are often used to
process trees.

Consider the problem of counting the nodes in a binary tree. As an exercise,
you might try to come up with a non-recursive algorithm to do the counting,
but you shouldn't expect to find one easily. The
heart of the problem is keeping track of which nodes remain to be counted. It's not
so easy to do this, and in fact it's not even possible without an auxiliary
data structure such as a stack or queue. With recursion, however, the algorithm
is almost trivial. Either the tree is empty or it consists of a root and two
subtrees. If the tree is empty, the number of nodes is zero. (This is the base
case of the recursion.) Otherwise, use recursion to count the nodes in each
subtree. Add the results from the subtrees together, and add one to count the
root. This gives the total number of nodes in the tree. Written out in
Java:

/**
 * Count the nodes in the binary tree to which root points, and
 * return the answer. If root is null, the answer is zero.
 */
static int countNodes(TreeNode root) {
 if (root == null)
 return 0; // The tree is empty. It contains no nodes.
 else {
 int count = 1; // Start by counting the root.
 count += countNodes(root.left); // Add the number of nodes
 // in the left subtree.
 count += countNodes(root.right); // Add the number of nodes
 // in the right subtree.
 return count; // Return the total.
 }
} // end countNodes()

Or, consider the problem of printing the items in a binary tree. If the tree
is empty, there is nothing to do. If the tree is non-empty, then it consists of
a root and two subtrees. Print the item in the root and use recursion to print
the items in the subtrees. Here is a subroutine that prints all the items on
one line of output:

/**
 * Print all the items in the tree to which root points.
 * The item in the root is printed first, followed by the
 * items in the left subtree and then the items in the
 * right subtree.
 */
static void preorderPrint(TreeNode root) {
 if (root != null) { // (Otherwise, there's nothing to print.)
 System.out.print(root.item + " "); // Print the root item.
 preorderPrint(root.left); // Print items in left subtree.
 preorderPrint(root.right); // Print items in right subtree.
 }
} // end preorderPrint()

This routine is called "preorderPrint" because it uses a
preorder traversal of the tree. In a preorder traversal, the
root node of the tree is processed first, then the left subtree is traversed,
then the right subtree. In a postorder traversal,
the left subtree is traversed, then the right subtree, and then the root node
is processed. And in an inorder traversal, the
left subtree is traversed first, then the root node is processed, then the
right subtree is traversed. Printing subroutines that use postorder and inorder
traversal differ from preorderPrint only in the placement of the
statement that outputs the root item:

/**
 * Print all the items in the tree to which root points.
 * The item in the left subtree is printed first, followed
 * by the items in the right subtree and then the item
 * in the root node.
 */
static void postorderPrint(TreeNode root) {
 if (root != null) { // (Otherwise, there's nothing to print.)
 postorderPrint(root.left); // Print items in left subtree.
 postorderPrint(root.right); // Print items in right subtree.
 System.out.print(root.item + " "); // Print the root item.
 }
} // end postorderPrint()

/**
 * Print all the items in the tree to which root points.
 * The item in the left subtree is printed first, followed
 * by the item in the root node and then the items
 * in the right subtree.
 */
static void inorderPrint(TreeNode root) {
 if (root != null) { // (Otherwise, there's nothing to print.)
 inorderPrint(root.left); // Print items in left subtree.
 System.out.print(root.item + " "); // Print the root item.
 inorderPrint(root.right); // Print items in right subtree.
 }
} // end inorderPrint()

Each of these subroutines can be applied to the binary tree shown in the
illustration at the beginning of this section. The order in which the items are
printed differs in each case:

preorderPrint outputs: 1 2 4 5 3 6

postorderPrint outputs: 4 5 2 6 3 1

inorderPrint outputs: 4 2 5 1 3 6

In preorderPrint, for example, the item at the root of the tree,
1, is output before anything else. But the preorder printing also
applies to each of the subtrees of the root. The root item of the left subtree,
2, is printed before the other items in that subtree, 4 and
5. As for the right subtree of the root, 3 is output before
6. A preorder traversal applies at all levels in the tree. The other
two traversal orders can be analyzed similarly.

9.4.2 Binary Sort Trees

One of the examples in Section 9.2 was a linked list of
strings, in which the strings were kept in increasing order. While a linked
list works well for a small number of strings, it becomes inefficient for a
large number of items. When inserting an item into the list, searching for that
item's position requires looking at, on average, half the items in the list.
Finding an item in the list requires a similar amount of time. If the strings
are stored in a sorted array instead of in a linked list, then searching
becomes more efficient because binary search can be used.
However, inserting a new item into the array
is still inefficient since it means moving, on average, half of the items in
the array to make a space for the new item. A binary tree can be used to store
an ordered list of strings, or other items, in a way that makes both searching
and insertion efficient. A binary tree used in this way is called a
binary sort tree.

A binary sort tree is a binary tree with the following property: For every
node in the tree, the item in that node is greater than or equal to every item in the left
subtree of that node, and it is less than or equal to all the items in the
right subtree of that node. Here for example is a binary sort tree containing
items of type String. (In this picture, I haven't bothered to draw all
the pointer variables. Non-null pointers are shown as arrows.)

[image: A binary sort tree]

Binary sort trees have this useful property: An inorder traversal of the
tree will process the items in increasing order. In fact, this is really just
another way of expressing the definition. For example, if an inorder traversal
is used to print the items in the tree shown above, then the items will be in
alphabetical order. The definition of an inorder traversal guarantees that all
the items in the left subtree of "judy" are printed before "judy", and all the
items in the right subtree of "judy" are printed after "judy". But the binary
sort tree property guarantees that the items in the left subtree of "judy" are
precisely those that precede "judy" in alphabetical order, and all the items in
the right subtree follow "judy" in alphabetical order. So, we know that "judy"
is output in its proper alphabetical position. But the same argument applies to
the subtrees. "Bill" will be output after "alice" and before "fred" and its
descendents. "Fred" will be output after "dave" and before "jane" and "joe".
And so on.

Suppose that we want to search for a given item in a binary search tree.
Compare that item to the root item of the tree. If they are equal, we're done.
If the item we are looking for is less than the root item, then we need to
search the left subtree of the root -- the right subtree can be eliminated
because it only contains items that are greater than or equal to the root.
Similarly, if the item we are looking for is greater than the item in the root,
then we only need to look in the right subtree. In either case, the same
procedure can then be applied to search the subtree. Inserting a new item is
similar: Start by searching the tree for the position where the new item
belongs. When that position is found, create a new node and attach it to the
tree at that position.

Searching and inserting are efficient operations on a binary search tree,
provided that the tree is close to being balanced.
A binary tree is balanced if for each node, the left subtree of that node
contains approximately the same number of nodes as the right subtree. In a
perfectly balanced tree, the two numbers differ by at most one. Not all binary
trees are balanced, but if the tree is created by inserting items in a random
order, there is a high
probability that the tree is approximately balanced. (If the order of insertion
is not random, however, it's quite possible for the tree to be very unbalanced.)
During a search of any
binary sort tree, every comparison eliminates one of two subtrees from further
consideration. If the tree is balanced, that means cutting the number of items
still under consideration in half. This is exactly the same as the binary
search algorithm, and the result is a similarly efficient algorithm.

In terms of asymptotic analysis (Section 8.5), searching, inserting,
and deleting in a binary search tree have average case run time Θ(log(n)).
The problem size, n, is the number of items in the tree, and the average is
taken over all the different orders in which the items could have been inserted into the tree.
As long as the actual insertion order is random, the actual run time can be expected
to be close to the average. However, the worst case run time for binary
search tree operations is Θ(n), which is much worse than Θ(log(n)).
The worst case occurs for particular insertion orders. For example,
if the items are inserted into the tree in order of increasing size, then every
item that is inserted moves always to the right as it moves down the tree.
The result is a "tree" that looks more like a linked list, since it consists
of a linear string of nodes strung together by their right child
pointers. Operations on such a tree have the same performance as operations
on a linked list. Now, there are data structures that are similar to simple binary
sort trees, except that insertion and deletion of nodes are implemented in
a way that will always keep the tree balanced, or almost balanced. For
these data structures, searching, inserting, and deleting have both average case
and worst case run times that are Θ(log(n)). Here, however, we will
look at only the simple versions of inserting and searching.

The sample program SortTreeDemo.java is a demonstration of
binary sort trees. The program includes subroutines that implement inorder
traversal, searching, and insertion. We'll look at the latter two subroutines
below. The main() routine tests the subroutines by letting you type in
strings to be inserted into the tree.

In SortTreeDemo, nodes in the binary tree are represented using the
following static nested class, including a simple constructor that makes creating nodes
easier:

/**
 * An object of type TreeNode represents one node in a binary tree of strings.
 */
private static class TreeNode {
 String item; // The data in this node.
 TreeNode left; // Pointer to left subtree.
 TreeNode right; // Pointer to right subtree.
 TreeNode(String str) {
 // Constructor. Make a node containing str.
 // Note that left and right pointers are null.
 item = str;
 }
} // end class TreeNode

A static member variable of type TreeNode points to the binary sort
tree that is used by the program:

private static TreeNode root; // Pointer to the root node in the tree.
 // When the tree is empty, root is null.

A recursive subroutine named treeContains is used to search for a
given item in the tree. This routine implements the search algorithm for binary
trees that was outlined above:

/**
 * Return true if item is one of the items in the binary
 * sort tree to which root points. Return false if not.
 */
static boolean treeContains(TreeNode root, String item) {
 if (root == null) {
 // Tree is empty, so it certainly doesn't contain item.
 return false;
 }
 else if (item.equals(root.item)) {
 // Yes, the item has been found in the root node.
 return true;
 }
 else if (item.compareTo(root.item) < 0) {
 // If the item occurs, it must be in the left subtree.
 return treeContains(root.left, item);
 }
 else {
 // If the item occurs, it must be in the right subtree.
 return treeContains(root.right, item);
 }
} // end treeContains()

When this routine is called in the main() routine, the first
parameter is the static member variable root, which points to the root
of the entire binary sort tree.

It's worth noting that recursion is not really essential in this case. A
simple, non-recursive algorithm for searching a binary sort tree follows
the rule: Start at the root and move down the tree until you find the item or reach a null pointer.
Since the search follows a single path down the tree, it can be implemented as
a while loop. Here is a non-recursive version of the search routine:

private static boolean treeContainsNR(TreeNode root, String item) {
 TreeNode runner; // For "running" down the tree.
 runner = root; // Start at the root node.
 while (true) {
 if (runner == null) {
 // We've fallen off the tree without finding item.
 return false;
 }
 else if (item.equals(runner.item)) {
 // We've found the item.
 return true;
 }
 else if (item.compareTo(runner.item) < 0) {
 // If the item occurs, it must be in the left subtree,
 // So, advance the runner down one level to the left.
 runner = runner.left;
 }
 else {
 // If the item occurs, it must be in the right subtree.
 // So, advance the runner down one level to the right.
 runner = runner.right;
 }
 } // end while
} // end treeContainsNR();

The subroutine for inserting a new item into the tree turns out to be more
similar to the non-recursive search routine than to the recursive. The
insertion routine has to handle the case where the tree is empty. In that case,
the value of root must be changed to point to a node that contains the
new item:

root = new TreeNode(newItem);

But this means, effectively, that the root can't be passed as a parameter to
the subroutine, because it is impossible for a subroutine to change the value
stored in an actual parameter. (I should note that this is something that
is possible in other languages.) Recursion uses parameters in an
essential way. There are ways to work around the problem, but the easiest thing
is just to use a non-recursive insertion routine that accesses the static
member variable root directly. One difference between inserting an
item and searching for an item is that we have to be careful not to fall off
the tree. That is, we have to stop searching just before runner
becomes null. When we get to an empty spot in the tree, that's where
we have to insert the new node:

/**
 * Add the item to the binary sort tree to which the global variable
 * "root" refers. (Note that root can't be passed as a parameter to
 * this routine because the value of root might change, and a change
 * in the value of a formal parameter does not change the actual parameter.)
 */
private static void treeInsert(String newItem) {
 if (root == null) {
 // The tree is empty. Set root to point to a new node containing
 // the new item. This becomes the only node in the tree.
 root = new TreeNode(newItem);
 return;
 }
 TreeNode runner; // Runs down the tree to find a place for newItem.
 runner = root; // Start at the root.
 while (true) {
 if (newItem.compareTo(runner.item) < 0) {
 // Since the new item is less than the item in runner,
 // it belongs in the left subtree of runner. If there
 // is an open space at runner.left, add a new node there.
 // Otherwise, advance runner down one level to the left.
 if (runner.left == null) {
 runner.left = new TreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.left;
 }
 else {
 // Since the new item is greater than or equal to the item in
 // runner, it belongs in the right subtree of runner. If there
 // is an open space at runner.right, add a new node there.
 // Otherwise, advance runner down one level to the right.
 if (runner.right == null) {
 runner.right = new TreeNode(newItem);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.right;
 }
 } // end while
} // end treeInsert()

9.4.3 Expression Trees

Another application of trees is to store mathematical expressions such as
15*(x+y) or sqrt(42)+7 in a convenient form. Let's stick for
the moment to expressions made up of numbers and the operators +, -,
*, and /. Consider the expression
3*((7+1)/4)+(17-5). This expression is made up of two subexpressions,
3*((7+1)/4) and (17-5), combined with the operator "+". When
the expression is represented as a binary tree, the root node holds the
operator +, while the subtrees of the root node represent the subexpressions
3*((7+1)/4) and (17-5). Every node in the tree holds either a
number or an operator. A node that holds a number is a leaf node of the tree. A
node that holds an operator has two subtrees representing the operands to which
the operator applies. The tree is shown in the illustration below. I will refer
to a tree of this type as an expression tree.

Given an expression tree, it's easy to find the value of the expression that
it represents. Each node in the tree has an associated value. If the node is a
leaf node, then its value is simply the number that the node contains. If the
node contains an operator, then the associated value is computed by first
finding the values of its child nodes and then applying the operator to those
values. The process is shown by the upward-directed arrows in the illustration. The value
computed for the root node is the value of the expression as a whole. There are
other uses for expression trees. For example, a postorder traversal of the tree
will output the postfix form of the expression.

[image: An expression tree]

An expression tree contains two types of nodes: nodes that contain numbers
and nodes that contain operators. Furthermore, we might want to add other types
of nodes to make the trees more useful, such as nodes that contain variables.
If we want to work with expression trees in Java, how can we deal with this
variety of nodes? One way -- which will be frowned upon by object-oriented
purists -- is to include an instance variable in each node object to record
which type of node it is:

enum NodeType { NUMBER, OPERATOR } // Possible kinds of node.

class ExpNode { // A node in an expression tree.

 NodeType kind; // Which type of node is this?
 double number; // The value in a node of type NUMBER.
 char op; // The operator in a node of type OPERATOR.
 ExpNode left; // Pointers to subtrees,
 ExpNode right; // in a node of type OPERATOR.

 ExpNode(double val) {
 // Constructor for making a node of type NUMBER.
 kind = NodeType.NUMBER;
 number = val;
 }

 ExpNode(char op, ExpNode left, ExpNode right) {
 // Constructor for making a node of type OPERATOR.
 kind = NodeType.OPERATOR;
 this.op = op;
 this.left = left;
 this.right = right;
 }

 } // end class ExpNode

Given this definition, the following recursive subroutine will find the
value of an expression tree:

static double getValue(ExpNode node) {
 // Return the value of the expression represented by
 // the tree to which node refers. Node must be non-null.
 if (node.kind == NodeType.NUMBER) {
 // The value of a NUMBER node is the number it holds.
 return node.number;
 }
 else { // The kind must be OPERATOR.
 // Get the values of the operands and combine them
 // using the operator.
 double leftVal = getValue(node.left);
 double rightVal = getValue(node.right);
 switch (node.op) {
 case '+': return leftVal + rightVal;
 case '-': return leftVal - rightVal;
 case '*': return leftVal * rightVal;
 case '/': return leftVal / rightVal;
 default: return Double.NaN; // Bad operator.
 }
 }
 } // end getValue()

Although this approach works, a more object-oriented approach is to note
that since there are two types of nodes, there should be two classes to
represent them, ConstNode and BinOpNode. To represent the
general idea of a node in an expression tree, we need another class,
ExpNode. Both ConstNode and BinOpNode will be
subclasses of ExpNode. Since any actual node will be either a
ConstNode or a BinOpNode, ExpNode should be an
abstract class. (See Subsection 5.5.5.) Since one of the
things we want to do with nodes is find their values, each class should have an
instance method for finding the value:

abstract class ExpNode {
 // Represents a node of any type in an expression tree.

 abstract double value(); // Return the value of this node.

} // end class ExpNode

class ConstNode extends ExpNode {
 // Represents a node that holds a number.

 double number; // The number in the node.

 ConstNode(double val) {
 // Constructor. Create a node to hold val.
 number = val;
 }

 double value() {
 // The value is just the number that the node holds.
 return number;
 }

 } // end class ConstNode

 class BinOpNode extends ExpNode {
 // Represents a node that holds an operator.

 char op; // The operator.
 ExpNode left; // The left operand.
 ExpNode right; // The right operand.

 BinOpNode(char op, ExpNode left, ExpNode right) {
 // Constructor. Create a node to hold the given data.
 this.op = op;
 this.left = left;
 this.right = right;
 }

 double value() {
 // To get the value, compute the value of the left and
 // right operands, and combine them with the operator.
 double leftVal = left.value();
 double rightVal = right.value();
 switch (op) {
 case '+': return leftVal + rightVal;
 case '-': return leftVal - rightVal;
 case '*': return leftVal * rightVal;
 case '/': return leftVal / rightVal;
 default: return Double.NaN; // Bad operator.
 }
 }

 } // end class BinOpNode

Note that the left and right operands of a BinOpNode are of type
ExpNode, not BinOpNode. This allows the operand to be either
a ConstNode or another BinOpNode -- or any other type of
ExpNode that we might eventually create. Since every ExpNode
has a value() method, we can call left.value() to compute the
value of the left operand. If left is in fact a ConstNode,
this will call the value() method in the ConstNode class. If
it is in fact a BinOpNode, then left.value() will call the
value() method in the BinOpNode class. Each node knows how to
compute its own value.

Although it might seem more complicated at first, the object-oriented
approach has some real advantages. For one thing, it doesn't waste memory. In the
original ExpNode class, only some of the instance variables in each
node were actually used, and we needed an extra instance variable to keep track
of the type of node. More important, though, is the fact that new types of
nodes can be added more cleanly, since it can be done by creating a new
subclass of ExpNode rather than by modifying an existing class.

We'll return to the topic of expression trees in the next section, where
we'll see how to create an expression tree to represent a given expression.

Answers for Quiz on Chapter 9

Question 1:

Explain what is meant by a recursive subroutine.

Answer:

A recursive subroutine is simply
one that calls itself either directly or through a chain of calls involving
other subroutines.

Question 2:

Consider the following subroutine:

static void printStuff(int level) {
 if (level == 0) {
 System.out.print("*");
 }
 else {
 System.out.print("[");
 printStuff(level - 1);
 System.out.print(",");
 printStuff(level - 1);
 System.out.print("]");
 }
}

Show the output that would be produced by the subroutine calls
printStuff(0), printStuff(1), printStuff(2), and
printStuff(3).

Answer:

The outputs are:

printStuff(0) outputs: *
printStuff(1) outputs: [*,*]
printStuff(2) outputs: [[*,*],[*,*]]
printStuff(3) outputs: [[[*,*],[*,*]],[[*,*],[*,*]]]

(Explanation: For printStuff(0), the value of the parameter is 0,
so the first clause of the if is executed, and the output is just *.
For printStuff(1), the else clause is executed. This else clause
contains two recursive calls to printStuff(level-1). Since
level is 1, level-1 is 0, so each call to printStuff
outputs a *. The overall output from printStuff(1) is [*,*]. In a
similar way, printStuff(2) includes two recursive calls to
printStuff(1). Each call to printStuff(1) outputs [*,*]. And
printStuff(2) just takes two copies of this and puts them between [
and] separated by a comma: [[*,*],[*,*]]. Finally, the output from
printStuff(3) outputs two copies of [[*,*],[*,*]] separated by a comma
and enclosed between brackets. Once you recognize the pattern, you can do
printStuff(N) for any N without trying to follow the
execution of the subroutine in detail.)

Question 3:

Suppose that a linked list
is formed from objects that belong to the class

class ListNode {
 int item; // An item in the list.
 ListNode next; // Pointer to next item in the list.
}

Write a subroutine that will count the number of zeros that occur in a given
linked list of ints. The subroutine should have a parameter of type ListNode
and should return a value of type int.

Answer:

I'll give both a non-recursive
solution and a recursive solution. For a linked list, the recursion is not
really necessary, but it does nicely reflect the recursive definition of
ListNode

static int countZeros(ListNode head) {
 int count; // The number of zeros in the list.
 ListNode runner; // For running along the list.
 count = 0;
 runner = head; // Start at the beginning of the list.
 while (runner != null) {
 if (runner.item == 0)
 count++; // Count the zero found in the current node.
 runner = runner.next; // Advance to the next node.
 }
 return count;
}

static int countZerosRecursively(ListNode head) {
 if (head == null) {
 // An empty list does not contain any zeros.
 return 0;
 }
 else {
 int count = countZerosRecursively(head.next); // Count zeros in tail.
 if (head.item == 0)
 count++; // Add 1 to account for the zero in the head node.
 return count;
 }
}

Question 4:

What are the three operations on a stack?

Answer:

The three stack operations are
push, pop, and isEmpty. The definitions of these operations are:
push(item) adds the specified item to the top of the stack;
pop() removes the top item of the stack and returns it; and
isEmpty() is a boolean-valued function that returns true if there are
no items on the stack.

Question 5:

What is the basic difference
between a stack and a queue?

Answer:

In a stack, items are added to
the stack and removed from the stack on the same end (called the "top" of the
stack). In a queue, items are added at one end (the "back") and removed at the
other end (the "front"). Because of this difference, a queue is a FIFO
structure (items are removed in the same order in which they were added), and a
stack is a LIFO structure (the item that is popped from a stack is the one that
was added most recently).

Question 6:

What is an activation
record? What role does a stack of activation records play in a
computer?

Answer:

When a subroutine is called, an
activation record is created to hold the information that is needed for the
execution of the subroutine, such as the values of the parameters and local
variables. This activation record is stored on a stack of activation records. A
stack is used since one subroutine can call another, which can then call a
third, and so on. Because of this, many activation records can be in use at the
same time. The data structure is a stack because an activation record has to
continue to exist while all the subroutines that are called by the subroutine
are executed. While they are being executed, the stack of activation records
can grow and shrink as subroutines are called and return.

Question 7:

Suppose that a binary tree of integers
is formed from objects belonging to the class

class TreeNode {
 int item; // One item in the tree.
 TreeNode left; // Pointer to the left subtree.
 TreeNode right; // Pointer to the right subtree.
}

Write a recursive subroutine that will find the sum of all the nodes in the
tree. Your subroutine should have a parameter of type TreeNode, and it
should return a value of type int.

Answer:

static int treeSum(TreeNode root) {
 // Find the sum of all the nodes in the tree to which root points.
 if (root == null) {
 // The sum of the nodes in an empty tree is zero.
 return 0;
 }
 else {
 // Add the item in the root to the sum of the
 // items in the left subtree and the sum of the
 // items in the right subtree.
 int total = root.item;
 total += treeSum(root.left);
 total += treeSum(root.right);
 return total;
 }
 }

Question 8:

What is a postorder traversal of a binary tree?

Answer:

In a traversal of a binary tree,
all the nodes are processed in some way. (For example, they might be printed.)
In a postorder traversal, the order of processing is defined by the rule: For
each node, the nodes in the left subtree of that node are processed first. Then
the nodes in the right subtree are processed. Finally, the node itself is
processed. This rule is applied at all levels of the tree.

Question 9:

Suppose that a <multilist> is defined by the BNF rule

<multilist> ::= <word> | "(" [<multilist>]... ")"

where a <word> can be any sequence of letters. Give five
different <multilist>'s that can be generated by this rule.
(This rule, by the way, is almost the entire syntax of the programming language
LISP! LISP is known for its simple syntax and its elegant and
powerful semantics.)

Answer:

Here are five possibilities (out
of an infinite number of possibilities), with some explanation:

fred -- A <multilist> can just be a word, such as "fred".

() -- The []... around <multilist> means that there can be
 any number of nested <multilist>'s, including zero. If
 there are zero, then all that's left is the empty
 parentheses.

(fred mary chicago) -- A <multilist> consisting of three
 <multilist>'s -- "fred", "mary", and
 "chicago" -- inside parentheses

((able) (baker charlie)) -- A <multilist> containing two
 <multilist>'s.

((a (b)) (c (d e) g)) -- Even more nesting.

Question 10:

Explain what is meant by parsing a computer program.

Answer:

To parse a computer program
means to determine its syntactic structure, that is, to figure out how it can
be constructed using the rules of a grammar (such as a BNF grammar).

Solution for Programming Exercise 9.5

Exercise 9.5:

In Subsection 9.4.2, I say that "if the
[binary sort] tree is created by
inserting items in a random order, there is a high probability that the tree
is approximately balanced."
For this exercise, you will do an experiment to test whether that is true.

The depth of a node in a binary tree is the
length of the path from the root of the tree to that node. That is, the root
has depth 0, its children have depth 1, its grandchildren have depth 2, and so
on. In a balanced tree, all the leaves in the tree are about the same depth.
For example, in a perfectly balanced tree with 1023 nodes, all the leaves are
at depth 9. In an approximately balanced tree with 1023 nodes, the average
depth of all the leaves should be not too much bigger than 9.

On the other hand, even if the tree is approximately balanced, there might
be a few leaves that have much larger depth than the average, so we might also
want to look at the maximum depth among all the leaves in a tree.

For this exercise, you should create a random binary sort tree with 1023
nodes. The items in the tree can be real numbers, and you can create the tree
by generating 1023 random real numbers and inserting them into the tree, using
the usual treeInsert() method for binary sort trees. Once you have the
tree, you should compute and output the average depth of all the leaves in the
tree and the maximum depth of all the leaves. To do this, you will need three
recursive subroutines: one to count the leaves, one to find the sum of the
depths of all the leaves, and one to find the maximum depth. The latter two
subroutines should have an int-valued parameter, depth, that
tells how deep in the tree you've gone. When you call this routine from the main
program, the depth parameter is 0; when you call the routine recursively,
the parameter increases by 1.

Discussion

To create the tree, I copied the TreeNode class and the
insertTree() subroutine from Subsection 9.4.2, and I
changed the type of the items in the tree from String to
double. The main program uses a for loop to add 1023 random
real numbers to the tree:

for (int i = 0; i < 1023; i++)
 treeInsert(Math.random());

After that, it's just a matter of writing the routines described in the
exercise and calling them to get the desired statistics.

A routine for counting the leaves in the tree is similar to the
countNodes() routine from Subsection 9.4.2. That
routine, however, counts every node in the tree and now we only want to count
the leaves. A leaf is defined to be a node in which both the left and
right pointers are null. In the recursion, one of the base
cases is when we come to a tree that consists of nothing but a leaf. In that
case, the number of leaves is 1. If the node is not a leaf, then we have to
count the number of leaves in each of its subtrees and add the results:

/**
 * Return the number of leaves in the tree to which node points.
 */
static int countLeaves(TreeNode node) {
 if (node == null)
 return 0; // An empty tree has no leaves.
 else if (node.left == null && node.right == null)
 return 1; // Node is a leaf.
 else
 return countLeaves(node.left) + countLeaves(node.right);
} // end countNodes()

In general structure, the other two routines are similar. That is, there are
two base cases: an empty tree and a tree consisting just of a leaf. In the
remaining case -- a node that has one or both subtrees non-empty -- the routine
has to be applied recursively to the subtrees of the node. Look, for example,
at the routine for finding the sum of the depths of all the leaves in the
tree:

/**
 * When called as sumOfLeafDepths(root,0), this will compute the
 * sum of the depths of all the leaves in the tree to which root
 * points. When called recursively, the depth parameter gives
 * the depth of the node, and the routine returns the sum of the
 * depths of the leaves in the subtree to which node points.
 * In each recursive call to this routine, depth goes up by one.
 */
static int sumOfLeafDepths(TreeNode node, int depth) {
 if (node == null) {
 // Since the tree is empty and there are no leaves,
 // the sum is zero.
 return 0;
 }
 else if (node.left == null && node.right == null) {
 // The node is a leaf, and there are no subtrees of node, so
 // the sum of the leaf depths is just the depth of this node.
 return depth;
 }
 else {
 // The node is not a leaf. Return the sum of the
 // the depths of the leaves in the subtrees.
 return sumOfLeafDepths(node.left, depth + 1)
 + sumOfLeafDepths(node.right, depth + 1);
 }
} // end sumOfLeafDepth()

The most interesting aspect of this routine is the way it uses its
depth parameter, which is used to keep track of the depth of the
node in the complete tree (not just the subtree to which node
points). For the root, the depth is 0. Each time the subroutine is
called recursively, the node is one level deeper in the tree, and the
depth parameter is correspondingly increased by 1. When we get down to
a leaf node, where node.left and node.right are
null, the value of depth is the depth of that node in the
original tree, and the sum of the depths of the leaves in the subtree, which
consists of just this one leaf node, is depth. When node is
not a leaf, the sums for the two subtrees of node are computed
recursively and are added together to give the sum for all the leaves in the
whole subtree to which node refers. (If you have trouble believing
that this works, remember that recursion works if it works for the base cases
and if it correctly breaks down big problems into smaller problems. You don't
have to follow the details.)

The routine for computing the maximum depth is similar.

When I ran my program several times, I found that the average depth of the
leaves in the tree tended to be about 12 -- higher than I expected but still
only 1/3 more than the average depth in a perfectly balanced tree. The height
of the tree tended to be about 20. (The height of a
tree is defined to be the maximum depth of any node in the tree.)

The Solution

/**
 * This program makes a random binary sort tree containing 1023 random
 * real numbers. It then computes the height of the tree and the
 * average depth of the leaves of the tree. Hopefully, the average
 * depth will tend to be close to 9, which is what it would be
 * if the tree were perfectly balanced. The height of the tree,
 * which is the same as the maximum depth of any leaf, can be
 * significantly larger.
 */
public class RandomSortTree {

 static TreeNode root; // Pointer to the binary sort tree.

 /**
 * An object of type TreeNode represents one node in a binary tree of real numbers.
 */
 static class TreeNode {
 double item; // The data in this node.
 TreeNode left; // Pointer to left subtree.
 TreeNode right; // Pointer to right subtree.
 TreeNode(double x) {
 // Constructor. Make a node containing x.
 item = x;
 }
 } // end class TreeNode

 /**
 * Add x to the binary sort tree to which the global variable "root" refers.
 */
 static void treeInsert(double x) {
 if (root == null) {
 // The tree is empty. Set root to point to a new node
 // containing the new item.
 root = new TreeNode(x);
 return;
 }
 TreeNode runner; // Runs down the tree to find a place for newItem.
 runner = root; // Start at the root.
 while (true) {
 if (x < runner.item) {
 // Since the new item is less than the item in runner,
 // it belongs in the left subtree of runner. If there
 // is an open space at runner.left, add a node there.
 // Otherwise, advance runner down one level to the left.
 if (runner.left == null) {
 runner.left = new TreeNode(x);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.left;
 }
 else {
 // Since the new item is greater than or equal to the
 // item in runner, it belongs in the right subtree of
 // runner. If there is an open space at runner.right,
 // add a new node there. Otherwise, advance runner
 // down one level to the right.
 if (runner.right == null) {
 runner.right = new TreeNode(x);
 return; // New item has been added to the tree.
 }
 else
 runner = runner.right;
 }
 } // end while
 } // end treeInsert()

 /**
 * Return the number of leaves in the tree to which node points.
 */
 static int countLeaves(TreeNode node) {
 if (node == null)
 return 0;
 else if (node.left == null && node.right == null)
 return 1; // Node is a leaf.
 else
 return countLeaves(node.left) + countLeaves(node.right);
 } // end countNodes()

 /**
 * When called as sumOfLeafDepths(root,0), this will compute the
 * sum of the depths of all the leaves in the tree to which root
 * points. When called recursively, the depth parameter gives
 * the depth of the node, and the routine returns the sum of the
 * depths of the leaves in the subtree to which node points.
 * In each recursive call to this routine, depth goes up by one.
 */
 static int sumOfLeafDepths(TreeNode node, int depth) {
 if (node == null) {
 // Since the tree is empty and there are no leaves,
 // the sum is zero.
 return 0;
 }
 else if (node.left == null && node.right == null) {
 // The node is a leaf, and there are no subtrees of node, so
 // the sum of the leaf depth is just the depths of this node.
 return depth;
 }
 else {
 // The node is not a leaf. Return the sum of the
 // the depths of the leaves in the subtrees.
 return sumOfLeafDepths(node.left, depth + 1)
 + sumOfLeafDepths(node.right, depth + 1);
 }
 } // end sumOfLeafDepths()

 /**
 * When called as maximumLeafDepth(root,0), this will compute the
 * max of the depths of all the leaves in the tree to which root
 * points. When called recursively, the depth parameter gives
 * the depth of the node, and the routine returns the max of the
 * depths of the leaves in the subtree to which node points.
 * In each recursive call to this routine, depth goes up by one.
 */
 static int maximumLeafDepth(TreeNode node, int depth) {
 if (node == null) {
 // The tree is empty. Return 0.
 return 0;
 }
 else if (node.left == null && node.right == null) {
 // The node is a leaf, so the maximum depth in this
 // subtree is the depth of this node (the only leaf
 // that it contains).
 return depth;
 }
 else {
 // Get the maximum depths for the two subtrees of this
 // node. Return the larger of the two values, which
 // represents the maximum in the tree overall.
 int leftMax = maximumLeafDepth(node.left, depth + 1);
 int rightMax = maximumLeafDepth(node.right, depth + 1);
 if (leftMax > rightMax)
 return leftMax;
 else
 return rightMax;
 }
 } // end maximumLeafDepth()

 /**
 * The main routine makes the random tree and prints the statistics.
 */
 public static void main(String[] args) {

 root = null; // Start with an empty tree. Root is a global
 // variable, defined at the top of the class.

 // Insert 1023 random items.

 for (int i = 0; i < 1023; i++)
 treeInsert(Math.random());

 // Get the statistics.

 int leafCount = countLeaves(root);
 int depthSum = sumOfLeafDepths(root,0);
 int depthMax = maximumLeafDepth(root,0);
 double averageDepth = ((double)depthSum) / leafCount;

 // Display the results.

 System.out.println("Number of leaves: " + leafCount);
 System.out.println("Average depth of leaves: " + averageDepth);
 System.out.println("Maximum depth of leaves: " + depthMax);

 } // end main()

} // end class RandomSortTree

Chapter 9

Linked Data Structures and Recursion

In this chapter, we look at two advanced
programming techniques, recursion and linked data structures, and some of their
applications. Both of these techniques are related to the seemingly paradoxical
idea of defining something in terms of itself. This turns out to be a
remarkably powerful idea.

A subroutine is said to be recursive if it calls itself, either directly or
indirectly. What this means is that the subroutine is used in its own definition. Recursion
can often be used to solve complex problems by reducing them to simpler
problems of the same type.

A reference to one object can be stored in an instance variable of another
object. The objects are then said to be "linked." Complex data structures can
be built by linking objects together. An especially interesting case occurs
when an object contains a link to another object that belongs to the same
class. In that case, the class is used in its own definition. Several important
types of data structures are built using classes of this kind.

Contents of Chapter 9:

	Section 1: Recursion

	Section 2: Linked Data Structures

	Section 3: Stacks, Queues, and ADTs

	Section 4: Binary Trees

	Section 5: A Simple Recursive Descent Parser

	
Programming Exercises

	
Quiz on This Chapter

Solution for Programming Exercise 9.6

Exercise 9.6:

 The parsing programs in
Section 9.5 work with expressions made up of numbers and operators. We can
make things a little more interesting by allowing the variable "x" to occur.
This would allow expression such as "3*(x-1)*(x+1)", for example. Make
a new version of the sample program SimpleParser3.java that can work with such
expressions. In your program, the main() routine can't simply print
the value of the expression, since the value of the expression now depends on
the value of x. Instead, it should print the value of the expression
for x=0, x=1, x=2, and x=3.

The original program will have to be modified in several other ways.
Currently, the program uses classes ConstNode, BinOpNode, and
UnaryMinusNode to represent nodes in an expression tree. Since
expressions can now include x, you will need a new class,
VariableNode, to represent an occurrence of x in the
expression.

In the original program, each of the node classes has an instance method,
"double value()", which returns the value of the node. But in your
program, the value can depend on x, so you should replace this method
with one of the form "double value(double xValue)", where the
parameter xValue is the value of x.

Finally, the parsing subroutines in your program will have to take into
account the fact that expressions can contain x. There is just one
small change in the BNF rules for the expressions: A <factor> is
allowed to be the variable x:

<factor> ::= <number> | <x-variable> | "(" <expression> ")"

where <x-variable> can be either a lower case or an upper
case "X". This change in the BNF requires a change in the factorTree()
subroutine.

Discussion

Like the other expression node classes, the VariableNode class is a
subclass of ExpNode, and it must implement the value(x) and
printStackCommands() methods that it inherits from that class. The
value(x) method has been modified to have a parameter of type
double, which gives the value of the variable x. Since a
VariableNode represents an occurrence of the variable x, the value of
the node is simply the value of x. As for the stack commands to evaluate the
node: When we encounter an x in an expression, we need to push the value of x
onto the stack, just as we would push a constant value onto the stack. I
represent this with a stack operation "Push X". Note that x can have different
values at different times, so we can't say what value will be pushed. We are
generating instructions for a stack machine. At the time when the stack machine
evaluates the expression, it has to know the value of x. The "Push X"
command tells it to push a copy of that value onto the stack. The
VariableNode class is defined as:

/**
 * An expression node that represents a reference to the variable, x.
 */
private static class VariableNode extends ExpNode {
 VariableNode() {
 // Construct a VariableNode. (There is nothing to do!)
 }
 double value(double xValue) {
 // The value of the node is the value of x.
 return xValue;
 }
 void printStackCommands() {
 // On a stack machine, just push the value of X onto the stack.
 System.out.println(" Push X");
 }
}

One curious thing about this class is that it doesn't have any instance
variables. A VariableNode represents an occurrence of x. There is no
other information to record. It's not like a ConstNode where we need
an instance variable to tell us which numerical constant has been found.
There is only one "x". Of course, if we expanded our definition of expression
to allow other variables such as y and z, we might add an instance variable to
VariableNode to say which of the possible variables is
represented.

The factorTree() subroutine from SimpleParser3.java has to be
modified to check for an x. If it finds one, it has to return a new
VariableNode. This change and the others you have to make are fairly
straightforward. They are shown in red italic in the solution that follows.

The Solution

/*
 This program reads standard expressions typed in by the user.
 The program constructs an expression tree to represent the
 expression. It then prints the value of the tree. It also uses
 the tree to print out a list of commands that could be used
 on a stack machine to evaluate the expression.
 The expressions can use the variable "x", positive real numbers, and
 the binary operators +, -, *, and /. The unary minus operation
 is supported. The expressions are defined by the BNF rules:

 <expression> ::= ["-"] <term> [["+" | "-"] <term>]...

 <term> ::= <factor> [["*" | "/"] <factor>]...

 <factor> ::= <number> | <x-variable> | "(" <expression> ")"

 A number must begin with a digit (i.e., not a decimal point).
 A line of input must contain exactly one such expression. If extra
 data is found on a line after an expression has been read, it is
 considered an error.

 In addition to the main program class, SimpleParser4, this program
 defines a set of five nested classes for implementing expression trees.

 */

public class SimpleParser4 {

// -------------------- Nested classes for Expression Trees ------------------------------

 /**
 * An abstract class representing any node in an expression tree.
 * The four concrete node classes are concrete subclasses.
 * Two instance methods are specified, so that they can be used with
 * any ExpNode. The value() method returns the value of the
 * expression for a specified value of the variable, x.
 * The printStackCommands() method prints a list
 * of commands that could be used to evaluate the expression on
 * a stack machine (assuming that the value of the expression is
 * to be left on the stack).
 */
 abstract private static class ExpNode {
 abstract double value(double xValue);
 abstract void printStackCommands();
 }

 /**
 * Represents an expression node that holds a number.
 */
 private static class ConstNode extends ExpNode {
 double number; // The number.
 ConstNode(double val) {
 // Construct a ConstNode containing the specified number.
 number = val;
 }
 double value(double xValue) {
 // The value of the node is the number that it contains.
 return number;
 }
 void printStackCommands() {
 // On a stack machine, just push the number onto the stack.
 System.out.println(" Push " + number);
 }
 }

 /**
 * An expression node representing a binary operator,
 */
 private static class BinOpNode extends ExpNode {
 char op; // The operator.
 ExpNode left; // The expression for its left operand.
 ExpNode right; // The expression for its right operand.
 BinOpNode(char op, ExpNode left, ExpNode right) {
 // Construct a BinOpNode containing the specified data.
 assert op == '+' || op == '-' || op == '*' || op == '/';
 assert left != null && right != null;
 this.op = op;
 this.left = left;
 this.right = right;
 }
 double value(double xValue) {
 // The value is obtained by evaluating the left and right
 // operands and combining the values with the operator.
 double x = left.value(xValue);
 double y = right.value(xValue);
 switch (op) {
 case '+': return x + y;
 case '-': return x - y;
 case '*': return x * y;
 case '/': return x / y;
 default: return Double.NaN; // Bad operator!
 }
 }
 void printStackCommands() {
 // To evaluate the expression on a stack machine, first do
 // whatever is necessary to evaluate the left operand, leaving
 // the answer on the stack. Then do the same thing for the
 // second operand. Then apply the operator (which means popping
 // the operands, applying the operator, and pushing the result).
 left.printStackCommands();
 right.printStackCommands();
 System.out.println(" Operator " + op);
 }
 }

 /**
 * An expression node to represent a unary minus operator.
 */
 private static class UnaryMinusNode extends ExpNode {
 ExpNode operand; // The operand to which the unary minus applies.
 UnaryMinusNode(ExpNode operand) {
 // Construct a UnaryMinusNode with the specified operand.
 assert operand != null;
 this.operand = operand;
 }
 double value(double xValue) {
 // The value is the negative of the value of the operand.
 double neg = operand.value(xValue);
 return -neg;
 }
 void printStackCommands() {
 // To evaluate this expression on a stack machine, first do
 // whatever is necessary to evaluate the operand, leaving the
 // operand on the stack. Then apply the unary minus (which means
 // popping the operand, negating it, and pushing the result).
 operand.printStackCommands();
 System.out.println(" Unary minus");
 }
 }

 /**
 * An expression node that represents a reference to the variable, x.
 */
 private static class VariableNode extends ExpNode {
 VariableNode() {
 // Construct a VariableNode. (There is nothing to do!)
 }
 double value(double xValue) {
 // The value of the node is the value of x.
 return xValue;
 }
 void printStackCommands() {
 // On a stack machine, just push the value of X onto the stack.
 System.out.println(" Push X");
 }
 }

// ---

 /**
 * An object of type ParseError represents a syntax error found in
 * the user's input.
 */
 private static class ParseError extends Exception {
 ParseError(String message) {
 super(message);
 }
 } // end nested class ParseError

 public static void main(String[] args) {

 while (true) {
 System.out.println("\n\nEnter an expression, or press return to end.");
 System.out.print("\n? ");
 TextIO.skipBlanks();
 if (TextIO.peek() == '\n')
 break;
 try {
 ExpNode exp = expressionTree();
 TextIO.skipBlanks();
 if (TextIO.peek() != '\n')
 throw new ParseError("Extra data after end of expression.");
 TextIO.getln();
 System.out.println("\nValue at x = 0 is " + exp.value(0));
 System.out.println("Value at x = 1 is " + exp.value(1));
 System.out.println("Value at x = 2 is " + exp.value(2));
 System.out.println("Value at x = 3 is " + exp.value(3));
 System.out.println("\nOrder of postfix evaluation is:\n");
 exp.printStackCommands();
 }
 catch (ParseError e) {
 System.out.println("\n*** Error in input: " + e.getMessage());
 System.out.println("*** Discarding input: " + TextIO.getln());
 }
 }

 System.out.println("\n\nDone.");

 } // end main()

 /**
 * Reads an expression from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */
 private static ExpNode expressionTree() throws ParseError {
 TextIO.skipBlanks();
 boolean negative; // True if there is a leading minus sign.
 negative = false;
 if (TextIO.peek() == '-') {
 TextIO.getAnyChar();
 negative = true;
 }
 ExpNode exp; // The expression tree for the expression.
 exp = termTree(); // Start with the first term.
 if (negative)
 exp = new UnaryMinusNode(exp);
 TextIO.skipBlanks();
 while (TextIO.peek() == '+' || TextIO.peek() == '-') {
 // Read the next term and combine it with the
 // previous terms into a bigger expression tree.
 char op = TextIO.getAnyChar();
 ExpNode nextTerm = termTree();
 exp = new BinOpNode(op, exp, nextTerm);
 TextIO.skipBlanks();
 }
 return exp;
 } // end expressionTree()

 /**
 * Reads a term from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */
 private static ExpNode termTree() throws ParseError {
 TextIO.skipBlanks();
 ExpNode term; // The expression tree representing the term.
 term = factorTree();
 TextIO.skipBlanks();
 while (TextIO.peek() == '*' || TextIO.peek() == '/') {
 // Read the next factor, and combine it with the
 // previous factors into a bigger expression tree.
 char op = TextIO.getAnyChar();
 ExpNode nextFactor = factorTree();
 term = new BinOpNode(op,term,nextFactor);
 TextIO.skipBlanks();
 }
 return term;
 } // end termValue()

 /**
 * Reads a factor from the current line of input and builds
 * an expression tree that represents the expression.
 * @return an ExpNode which is a pointer to the root node of the
 * expression tree
 * @throws ParseError if a syntax error is found in the input
 */

 private static ExpNode factorTree() throws ParseError {
 TextIO.skipBlanks();
 char ch = TextIO.peek();
 if (Character.isDigit(ch)) {
 // The factor is a number. Return a ConstNode.
 double num = TextIO.getDouble();
 return new ConstNode(num);
 }
 else if (ch == 'x' || ch == 'X') {
 // The factor is the variable x.
 TextIO.getAnyChar(); // Read the X.
 return new VariableNode();
 }
 else if (ch == '(') {
 // The factor is an expression in parentheses.
 // Return a tree representing that expression.
 TextIO.getAnyChar(); // Read the "("
 ExpNode exp = expressionTree();
 TextIO.skipBlanks();
 if (TextIO.peek() != ')')
 throw new ParseError("Missing right parenthesis.");
 TextIO.getAnyChar(); // Read the ")"
 return exp;
 }
 else if (ch == '\n')
 throw new ParseError("End-of-line encountered in the middle of an expression.");
 else if (ch == ')')
 throw new ParseError("Extra right parenthesis.");
 else if (ch == '+' || ch == '-' || ch == '*' || ch == '/')
 throw new ParseError("Misplaced operator.");
 else
 throw new ParseError("Unexpected character \"" + ch + "\" encountered.");
 } // end factorTree()

} // end class SimpleParser4

Section 9.2

Linked Data Structures

Every useful object contains instance variables.
When the type of an instance variable is given by a class or interface name,
the variable can hold a reference to another object. Such a reference is also
called a pointer, and we say that the variable points to
the object. (Of course, any variable that can contain a reference to
an object can also contain the special value null, which points to
nowhere.) When one object contains an instance variable that points to another
object, we think of the objects as being "linked" by the pointer. Data
structures of great complexity can be constructed by linking objects
together.

9.2.1 Recursive Linking

Something interesting happens when an object contains an instance variable
that can refer to another object of the same type. In that case, the definition
of the object's class is recursive. Such recursion arises naturally in many
cases. For example, consider a class designed to represent employees at a
company. Suppose that every employee except the boss has a supervisor, who is
another employee of the company. Then the Employee class would
naturally contain an instance variable of type Employee that points to
the employee's supervisor:

/**
 * An object of type Employee holds data about one employee.
 */
public class Employee {

 String name; // Name of the employee.

 Employee supervisor; // The employee's supervisor.

 .
 . // (Other instance variables and methods.)
 .

} // end class Employee

If emp is a variable of type Employee, then
emp.supervisor is another variable of type Employee. If
emp refers to the boss, then the value of emp.supervisor
should be null to indicate the fact that the boss has no supervisor.
If we wanted to print out the name of the employee's supervisor, for example,
we could use the following Java statement:

if (emp.supervisor == null) {
 System.out.println(emp.name + " is the boss and has no supervisor!");
}
else {
 System.out.print("The supervisor of " + emp.name + " is ");
 System.out.println(emp.supervisor.name);
}

Now, suppose that we want to know how many levels of supervisors there are
between a given employee and the boss. We just have to follow the chain of
command through a series of supervisor links, and count how many steps
it takes to get to the boss:

if (emp.supervisor == null) {
 System.out.println(emp.name + " is the boss!");
}
else {
 Employee runner; // For "running" up the chain of command.
 runner = emp.supervisor;
 if (runner.supervisor == null) {
 System.out.println(emp.name + " reports directly to the boss.");
 }
 else {
 int count = 0;
 while (runner.supervisor != null) {
 count++; // Count the supervisor on this level.
 runner = runner.supervisor; // Move up to the next level.
 }
 System.out.println("There are " + count
 + " supervisors between " + emp.name
 + " and the boss.");
 }
}

As the while loop is executed, runner points in turn to
the original employee (emp), then to emp's supervisor, then to
the supervisor of emp's supervisor, and so on. The count
variable is incremented each time runner "visits" a new employee. The
loop ends when runner.supervisor is null, which indicates
that runner has reached the boss. At that point, count has
counted the number of steps between emp and the boss.

In this example, the supervisor variable is quite natural and
useful. In fact, data structures that are built by linking objects together are
so useful that they are a major topic of study in computer science. We'll be
looking at a few typical examples. In this section and the
next, we'll be looking at linked lists.
A linked list consists of a chain of objects of the same type,
linked together by pointers from one object to the next. This is much like the
chain of supervisors between emp and the boss in the above example.
It's also possible to have more complex situations, in which one object can contain
links to several other objects. We'll look at an example of this in Section 9.4.

[image: Some linked data structures]

9.2.2 Linked Lists

For most of the examples in the rest of this section, linked lists will be constructed out of
objects belonging to the class Node which is defined as follows:

class Node {
 String item;
 Node next;
}

The term node is often used to refer to one of
the objects in a linked data structure. Objects of type Node can be
chained together as shown in the top part of the above illustration. Each node holds
a String and a pointer to the next node in the list (if any).
The last node in such a list can always be identified by the fact that the instance variable
next in the last node holds the value null instead of a
pointer to another node. The purpose of the chain of nodes is to represent a list
of strings. The first string in the list is stored in the first node, the second
string is stored in the second node, and so on. The pointers and the node objects
are used to build the structure, but the data that we want to represent
is the list of strings. Of course, we could just as easily represent a list of integers or
a list of JButtons or a list of any other type of data
by changing the type of the item that is stored in each node.

Although the Nodes in this example are very simple, we can use them
to illustrate the common operations on linked lists. Typical operations include
deleting nodes from the list, inserting new nodes into the list, and searching
for a specified String among the items in the list. We will
look at subroutines to perform all of these operations, among others.

For a linked list to be used in a program, that program needs a variable
that refers to the first node in the list. It only needs a pointer to the first
node since all the other nodes in the list can be accessed by starting at the
first node and following links along the list from one node to the next.
In my examples, I will always use a variable named head, of
type Node, that points to the first node in the linked list. When the
list is empty, the value of head is null.

[image: A variable pointing to the first node of a list]

9.2.3 Basic Linked List Processing

It is very common to want to process all the items in a linked list in some way. The common
pattern is to start at the head of the list, then move from each node to the next
by following the pointer in the node, stopping when the null that marks
the end of the list is reached. If head is a variable of
type Node that points to the first node in the list, then
the general form of the code for processing all the items in a linked list is:

Node runner; // A pointer that will be used to traverse the list.
runner = head; // Start with runner pointing to the head of the list.
while (runner != null) { // Continue until null is encountered.
 process(runner.item); // Do something with the item in the current node.
 runner = runner.next; // Move on to the next node in the list.
}

Our only access to the list is
through the variable head, so we start by getting a copy of the value
in head with the assignment statement runner = head.
We need a copy of head because we are going to change the value
of runner.
We can't change the value of head, or we would lose our only access to
the list! The variable runner will point to each node of the list in
turn. When runner points to one of the nodes in the list,
runner.next is a pointer to the next node in the list, so the assignment
statement runner = runner.next moves the pointer along the list
from each node to the next. We know that we've reached the end of the list when
runner becomes equal to null.
Note that our list-processing code works even for an empty list, since for an empty list the value
of head is null and the body of the while loop is not executed
at all. As an example, we can print all the strings in a list of Strings
by saying:

Node runner = head;
while (runner != null) {
 System.out.println(runner.item);
 runner = runner.next;
}

The while loop can, by the way, be rewritten as a for loop.
Remember that even though the loop control variable in a for loop is often
numerical, that is not a requirement. Here is a for loop that is equivalent
to the above while loop:

for (Node runner = head; runner != null; runner = runner.next) {
 System.out.println(runner.item);
}

Similarly, we can traverse a list of integers to add up all the numbers in the list.
A linked list of integers can be constructed using the class

public class IntNode {
 int item; // One of the integers in the list.
 IntNode next; // Pointer to the next node in the list.
}

If head is a variable of type IntNode that points
to a linked list of integers, we can find the sum of the integers in the list using:

int sum = 0;
IntNode runner = head;
while (runner != null) {
 sum = sum + runner.item; // Add current item to the sum.
 runner = runner.next;
}
System.out.println("The sum of the list of items is " + sum);

It is also possible to use recursion to process a linked list. Recursion is
rarely the natural way to process a list, since it's so easy to use a loop to
traverse the list. However, understanding how to apply recursion to lists can
help with understanding the recursive processing of more complex data structures.
A non-empty linked list can be thought of as consisting of two parts: the
head of the list, which is just the first node in the list,
and the tail of the list, which consists of the remainder
of the list after the head. Note that the tail is itself a linked list
and that it is shorter than the original list (by one node). This is a natural
setup for recursion, where the problem of processing a list can be divided into
processing the head and recursively processing the tail. The base case occurs
in the case of an empty list (or sometimes in the case of a list of length one).
For example, here is a recursive algorithm for adding up the numbers in a linked list of
integers:

if the list is empty then
 return 0 (since there are no numbers to be added up)
otherwise
 let listsum = the number in the head node
 let tailsum be the sum of the numbers in the tail list (recursively)
 add tailsum to listsum
 return listsum

One remaining question is, how do we get the tail of a non-empty linked list? If
head is a variable that points to the head node of the list,
then head.next is a variable that points to the second node
of the list -- and that node is in fact the first node of the tail. So, we
can view head.next as a pointer to the tail of the list.
One special case is when the original list consists of a single node.
In that case, the tail of the list is empty, and head.next is
null. Since an empty list is represented by a null pointer,
head.next represents the tail of the list even in this special
case. This allows us to write a recursive list-summing function in Java
as

/**
 * Compute the sum of all the integers in a linked list of integers.
 * @param head a pointer to the first node in the linked list
 */
public static int addItemsInList(IntNode head) {
 if (head == null) {
 // Base case: The list is empty, so the sum is zero.
 return 0;
 }
 else {
 // Recursive case: The list is non-empty. Find the sum of
 // the tail list, and add that to the item in the head node.
 // (Note that this case could be written simply as
 // return head.item + addItemsInList(head.next);)
 int listsum = head.item;
 int tailsum = addItemsInList(head.next);
 listsum = listsum + tailsum;
 return listsum;
 }
}

I will finish by presenting a list-processing problem that is easy to solve with recursion,
but quite tricky to solve without it. The problem is to print out all the strings in a
linked list of strings in the reverse of the order in which they occur in the
list. Note that when we do this, the item in the head of a list is printed out after
all the items in the tail of the list. This leads to the following recursive routine.
You should convince yourself that it works, and you should think about trying to do the
same thing without using recursion:

public static void printReversed(Node head) {
 if (head == null) {
 // Base case: The list is empty, and there is nothing to print.
 return;
 }
 else {
 // Recursive case: The list is non-empty.
 printReversed(head.next); // Print strings from tail, in reverse order.
 System.out.println(head.item); // Then print string from head node.
 }
}

In the rest of this section, we'll look at a few more advanced operations on
a linked list of strings. The subroutines that we consider are instance methods
in a class that I wrote named StringList. An object of type StringList
represents a linked list of
strings. The class has a private instance
variable named head of type Node that points
to the first node in the list, or is null if the list is empty. Instance
methods in class StringList access head
as a global variable. The source code for StringList is in
the file StringList.java, and it is used in a
sample program named ListDemo.java, so you can
take a look at the code in context if you want.

One of the methods in the StringList class searches the list,
looking for a specified string. If the string that we are looking for is searchItem,
then we have to compare searchItem to each
item in the list. This is an example of basic list traversal and
processing. However, in this case, we can stop processing if we find the
item that we are looking for.

/**
 * Searches the list for a specified item.
 * @param searchItem the item that is to be searched for
 * @return true if searchItem is one of the items in the list or false if
 * searchItem does not occur in the list.
 */
public boolean find(String searchItem) {

 Node runner; // A pointer for traversing the list.

 runner = head; // Start by looking at the head of the list.
 // (head is an instance variable!)

 while (runner != null) {
 // Go through the list looking at the string in each
 // node. If the string is the one we are looking for,
 // return true, since the string has been found in the list.
 if (runner.item.equals(searchItem))
 return true;
 runner = runner.next; // Move on to the next node.
 }

 // At this point, we have looked at all the items in the list
 // without finding searchItem. Return false to indicate that
 // the item does not exist in the list.

 return false;

} // end find()

It is possible that the list is empty, that is, that the value of
head is null. We should be careful that this case is handled
properly. In the above code, if head is null, then the body
of the while loop is never executed at all, so no nodes are processed
and the return value is false. This is exactly what we want when the
list is empty, since the searchItem can't occur in an empty list.

9.2.4 Inserting into a Linked List

The problem of inserting a new item into a linked list is more difficult, at least
in the case where the item is inserted into the middle of the list. (In
fact, it's probably the most difficult operation on linked data structures that
you'll encounter in this chapter.) In the StringList class, the
items in the nodes of the linked list are kept in increasing order.
When a new item is inserted into the list, it must be inserted at the correct
position according to this ordering. This means that, usually, we will have to
insert the new item somewhere in the middle of the list, between two existing
nodes. To do this, it's convenient to have two variables of type Node,
which refer to the existing nodes that will lie on either side of the new node.
In the following illustration, these variables are previous and
runner. Another variable, newNode, refers to the new node. In
order to do the insertion, the link from previous to runner
must be "broken," and new links from previous to newNode and
from newNode to runner must be added:

[image: inserting a node]

Once we have previous and runner pointing to the right nodes,
the command "previous.next = newNode;" can be used to make
previous.next point to the new node.
And the command "newNode.next = runner" will set
newNode.next to point to the correct place. However, before we can use
these commands, we need to set up runner and previous as
shown in the illustration. The idea is to start at the first node of the list,
and then move along the list past all the items that are less than the new
item. While doing this, we have to be aware of the danger of "falling off the
end of the list." That is, we can't continue if runner reaches the end
of the list and becomes null. If insertItem is the item that
is to be inserted, and if we assume that it does, in fact, belong somewhere in
the middle of the list, then the following code would correctly position
previous and runner:

Node runner, previous;
previous = head; // Start at the beginning of the list.
runner = head.next;
while (runner != null && runner.item.compareTo(insertItem) < 0) {
 previous = runner; // "previous = previous.next" would also work
 runner = runner.next;
}

(This uses the compareTo() instance method from the String
class to test whether the item in the node is less than the item that is being
inserted. See Subsection 2.3.3.)

This is fine, except that the assumption that the new node is inserted into
the middle of the list is not always valid. It might be that
insertItem is less than the first item of the list. In that case, the
new node must be inserted at the head of the list. This can be done with the
instructions

newNode.next = head; // Make newNode.next point to the old head.
head = newNode; // Make newNode the new head of the list.

It is also possible that the list is empty. In that case, newNode
will become the first and only node in the list. This can be accomplished
simply by setting head = newNode. The following insert()
method from the StringList class covers all of these
possibilities:

/**
 * Insert a specified item into the list, keeping the list in order.
 * @param insertItem the item that is to be inserted.
 */
public void insert(String insertItem) {

 Node newNode; // A Node to contain the new item.
 newNode = new Node();
 newNode.item = insertItem; // (N.B. newNode.next is null.)

 if (head == null) {
 // The new item is the first (and only) one in the list.
 // Set head to point to it.
 head = newNode;
 }
 else if (head.item.compareTo(insertItem) >= 0) {
 // The new item is less than the first item in the list,
 // so it has to be inserted at the head of the list.
 newNode.next = head;
 head = newNode;
 }
 else {
 // The new item belongs somewhere after the first item
 // in the list. Search for its proper position and insert it.
 Node runner; // A node for traversing the list.
 Node previous; // Always points to the node preceding runner.
 runner = head.next; // Start by looking at the SECOND position.
 previous = head;
 while (runner != null && runner.item.compareTo(insertItem) < 0) {
 // Move previous and runner along the list until runner
 // falls off the end or hits a list element that is
 // greater than or equal to insertItem. When this
 // loop ends, previous indicates the position where
 // insertItem must be inserted.
 previous = runner;
 runner = runner.next;
 }
 newNode.next = runner; // Insert newNode after previous.
 previous.next = newNode;
 }

} // end insert()

If you were paying close attention to the above discussion, you might have
noticed that there is one special case which is not mentioned. What happens if
the new node has to be inserted at the end of the list? This will happen if all
the items in the list are less than the new item. In fact, this case is already
handled correctly by the subroutine, in the last part of the if
statement. If insertItem is greater than all the items in the list, then
the while loop will end when runner has traversed the entire
list and become null. However, when that happens, previous
will be left pointing to the last node in the list. Setting previous.next = newNode
adds newNode onto the end of the list. Since
runner is null, the command newNode.next = runner
sets newNode.next to null, which is exactly what is
needed to mark the end of the list.

9.2.5 Deleting from a Linked List

The delete operation is similar to insert, although a little simpler. There
are still special cases to consider. When the first node in the list is to be
deleted, then the value of head has to be changed to point to what was
previously the second node in the list. Since head.next refers to the
second node in the list, this can be done by setting head = head.next.
(Once again, you should check that this works when head.next is
null, that is, when there is no second node in the list. In that case,
the list becomes empty.)

If the node that is being deleted is in the middle of the list, then we can
set up previous and runner with runner pointing to
the node that is to be deleted and with previous pointing to the node
that precedes that node in the list. Once that is done, the command
"previous.next = runner.next;" will delete the node. The deleted node
will be garbage collected. I encourage you to draw a picture for yourself to illustrate
this operation. Here is the complete code for the delete() method:

/**
 * Delete a specified item from the list, if that item is present.
 * If multiple copies of the item are present in the list, only
 * the one that comes first in the list is deleted.
 * @param deleteItem the item to be deleted
 * @return true if the item was found and deleted, or false if the item
 * was not in the list.
 */
public boolean delete(String deleteItem) {

 if (head == null) {
 // The list is empty, so it certainly doesn't contain deleteString.
 return false;
 }
 else if (head.item.equals(deleteItem)) {
 // The string is the first item of the list. Remove it.
 head = head.next;
 return true;
 }
 else {
 // The string, if it occurs at all, is somewhere beyond the
 // first element of the list. Search the list.
 Node runner; // A node for traversing the list.
 Node previous; // Always points to the node preceding runner.
 runner = head.next; // Start by looking at the SECOND list node.
 previous = head;
 while (runner != null && runner.item.compareTo(deleteItem) < 0) {
 // Move previous and runner along the list until runner
 // falls off the end or hits a list element that is
 // greater than or equal to deleteItem. When this
 // loop ends, runner indicates the position where
 // deleteItem must be, if it is in the list.
 previous = runner;
 runner = runner.next;
 }
 if (runner != null && runner.item.equals(deleteItem)) {
 // Runner points to the node that is to be deleted.
 // Remove it by changing the pointer in the previous node.
 previous.next = runner.next;
 return true;
 }
 else {
 // The item does not exist in the list.
 return false;
 }
 }

} // end delete()

Section 9.1

Recursion

At one time or another, you've probably been told
that you can't define something in terms of itself. Nevertheless, if it's done
right, defining something at least partially in terms of itself can be a very
powerful technique. A recursive definition is one
that uses the concept or thing that is being defined as part of the definition.
For example: An "ancestor" is either a parent or an ancestor of a parent. A
"sentence" can be, among other things, two sentences joined by a conjunction
such as "and." A "directory" is a part of a disk drive that can hold files and
directories. In mathematics, a "set" is a collection of elements, which can themselves be
sets. A "statement" in Java can be a while statement, which is
made up of the word "while", a boolean-valued condition, and a statement.

Recursive definitions can describe very complex situations with just a few
words. A definition of the term "ancestor" without using recursion might go
something like "a parent, or a grandparent, or a great-grandparent, or a
great-great-grandparent, and so on." But saying "and so on" is not very
rigorous. (I've often thought that recursion is really just a rigorous way of
saying "and so on.") You run into the same problem if you try to define a
"directory" as "a file that is a list of files, where some of the files can be
lists of files, where some of those files can be lists of files, and so
on." Trying to describe what a Java statement can look like, without using
recursion in the definition, would be difficult and probably pretty comical.

Recursion can be used as a programming technique. A
recursive subroutine (or recursive method)
is one that calls itself, either directly
or indirectly. To say that a subroutine calls itself directly means that its
definition contains a subroutine call statement that calls the subroutine that
is being defined. To say that a subroutine calls itself indirectly means that
it calls a second subroutine which in turn calls the first subroutine (either
directly or indirectly). A recursive subroutine can define a complex task in
just a few lines of code. In the rest of this section, we'll look at a variety
of examples, and we'll see other examples in the rest of the book.

9.1.1 Recursive Binary Search

Let's start with an example that you've seen before: the binary search
algorithm from Subsection 7.4.1. Binary search is used
to find a specified value in a sorted list of items (or, if it does not occur
in the list, to determine that fact). The idea is to test the element in the
middle of the list. If that element is equal to the specified value, you are
done. If the specified value is less than the middle element of the list, then
you should search for the value in the first half of the list. Otherwise, you
should search for the value in the second half of the list. The method used to
search for the value in the first or second half of the list is binary search.
That is, you look at the middle element in the half of the list that is still
under consideration, and either you've found the value you are looking for, or
you have to apply binary search to one half of the remaining elements. And so
on! This is a recursive description, and we can write a recursive subroutine to
implement it.

Before we can do that, though, there are two considerations that we need to
take into account. Each of these illustrates an important general fact about
recursive subroutines. First of all, the binary search algorithm begins by
looking at the "middle element of the list." But what if the list is empty? If
there are no elements in the list, then it is impossible to look at the middle
element. In the terminology of Subsection 8.2.1, having
a non-empty list is a "precondition" for looking at the middle element, and
this is a clue that we have to modify the algorithm to take this precondition
into account. What should we do if we find ourselves searching for a specified
value in an empty list? The answer is easy: If the list is empty, we can be sure that the
value does not occur in the list, so we can give the answer without any further work.
An empty list is a base case
for the binary search algorithm. A base case for a recursive
algorithm is a case that is handled directly, rather than by applying the
algorithm recursively. The binary search algorithm actually has another type of
base case: If we find the element we are looking for in the middle of the list,
we are done. There is no need for further recursion.

The second consideration has to do with the parameters to the subroutine.
The problem is phrased in terms of searching for a value in a list. In the
original, non-recursive binary search subroutine, the list was given as an
array. However, in the recursive approach, we have to be able to apply the
subroutine recursively to just a part of the original list. Where the
original subroutine was designed to search an entire array, the recursive
subroutine must be able to search part of an array. The parameters to the
subroutine must tell it what part of the array to search. This illustrates a
general fact that in order to solve a problem recursively, it is often
necessary to generalize the problem slightly.

Here is a recursive binary search algorithm that searches for a given value
in part of an array of integers:

/**
 * Search in the array A in positions numbered loIndex to hiIndex,
 * inclusive, for the specified value. If the value is found, return
 * the index in the array where it occurs. If the value is not found,
 * return -1. Precondition: The array must be sorted into increasing
 * order.
 */
static int binarySearch(int[] A, int loIndex, int hiIndex, int value) {

 if (loIndex > hiIndex) {
 // The starting position comes after the final index,
 // so there are actually no elements in the specified
 // range. The value does not occur in this empty list!
 return -1;
 }

 else {
 // Look at the middle position in the list. If the
 // value occurs at that position, return that position.
 // Otherwise, search recursively in either the first
 // half or the second half of the list.
 int middle = (loIndex + hiIndex) / 2;
 if (value == A[middle])
 return middle;
 else if (value < A[middle])
 return binarySearch(A, loIndex, middle - 1, value);
 else // value must be > A[middle]
 return binarySearch(A, middle + 1, hiIndex, value);
 }

} // end binarySearch()

In this routine, the parameters loIndex and hiIndex
specify the part of the array that is to be searched. To search an entire
array, it is only necessary to call binarySearch(A, 0, A.length - 1,
value). In the two base cases -- when there are no elements in the
specified range of indices and when the value is found in the middle of the
range -- the subroutine can return an answer immediately, without using
recursion. In the other cases, it uses a recursive call to compute the answer
and returns that answer.

Most people find it difficult at first to convince themselves that recursion
actually works. The key is to note two things that must be true for recursion
to work properly: There must be one or more base cases, which can be handled
without using recursion. And when recursion is applied during the solution of a
problem, it must be applied to a problem that is in some sense smaller -- that
is, closer to the base cases -- than the original problem. The idea is that if
you can solve small problems and if you can reduce big problems to smaller
problems, then you can solve problems of any size. Ultimately, of course, the
big problems have to be reduced, possibly in many, many steps, to the very
smallest problems (the base cases). Doing so might involve an immense amount of
detailed bookkeeping. But the computer does that bookkeeping, not you! As a
programmer, you lay out the big picture: the base cases and the reduction of
big problems to smaller problems. The computer takes care of the details
involved in reducing a big problem, in many steps, all the way down to base
cases. Trying to think through this reduction in detail is likely to drive you
crazy, and will probably make you think that recursion is hard. Whereas in
fact, recursion is an elegant and powerful method that is often the simplest
approach to solving a complex problem.

A common error in writing recursive subroutines is to violate one of the two
rules: There must be one or more base cases, and when the subroutine is applied
recursively, it must be applied to a problem that is smaller than the original
problem. If these rules are violated, the result can be an
infinite recursion, where the subroutine keeps calling itself
over and over, without ever reaching a base case. Infinite recursion is similar
to an infinite loop. However, since each recursive call to the subroutine uses
up some of the computer's memory, a program that is stuck in an infinite
recursion will run out of memory and crash before long. In Java, the program
will crash with an exception of type StackOverflowError.

9.1.2 Towers of Hanoi

We have been studying an algorithm, binary search, that
can easily be implemented with a while loop, instead of with
recursion. Next, we
turn to a problem that is easy to solve with recursion but difficult to solve
without it. This is a standard example known as "The Towers of Hanoi." The
problem involves a stack of various-sized disks, piled up on a base in order of
decreasing size. The object is to move the stack from one base to another,
subject to two rules: Only one disk can be moved at a time, and no disk can
ever be placed on top of a smaller disk. There is a third base that can be used
as a "spare." The starting situation for a stack of ten disks is shown in the top half
of the following picture. The situation after a number of moves have been made
is shown in the bottom half of the picture. (These illustrations are from a sample
program from Chapter 12,
TowersOfHanoiGUI.java, which displays an
animation of the step-by-step solution of the problem; however, that
program uses some techniques that you haven't learned yet.)

[image: illustration of the Towers of Hanoi problem]

The problem is to move ten disks from Stack 0 to Stack 1, subject to the rules
given above. Stack 2 can be used as a spare location. Can we reduce this to smaller
problems of the same type, possibly generalizing the problem a bit to make this
possible? It seems natural to consider the size of the problem to be the number
of disks to be moved. If there are N disks in Stack 0, we know that we
will eventually have to move the bottom disk from Stack 0 to Stack 1. But
before we can do that, according to the rules, the first N-1 disks
must be on Stack 2. Once we've moved the N-th disk to Stack 1, we must
move the other N-1 disks from Stack 2 to Stack 1 to complete the
solution. But moving N-1 disks is the same type of problem as moving
N disks, except that it's a smaller version of the problem. This is
exactly what we need to do recursion! The problem has to be generalized a bit,
because the smaller problems involve moving disks from Stack 0 to Stack 2 or
from Stack 2 to Stack 1, instead of from Stack 0 to Stack 1. In the recursive
subroutine that solves the problem, the stacks that serve as the source and
destination of the disks have to be specified. It's also convenient to specify
the stack that is to be used as a spare, even though we could figure that out
from the other two parameters. The base case is when there is only one disk to
be moved. The solution in this case is trivial: Just move the disk in one step.
Here is a version of the subroutine that will print out step-by-step
instructions for solving the problem:

/**
 * Solve the problem of moving the number of disks specified
 * by the first parameter from the stack specified by the
 * second parameter to the stack specified by the third
 * parameter. The stack specified by the fourth parameter
 * is available for use as a spare. Stacks are specified by
 * number: 0, 1, or 2.
 */
static void towersOfHanoi(int disks, int from, int to, int spare) {
 if (disks == 1) {
 // There is only one disk to be moved. Just move it.
 System.out.printf("Move disk 1 from stack %d to stack %d%n",
 from, to);
 }
 else {
 // Move all but one disk to the spare stack, then
 // move the bottom disk, then put all the other
 // disks on top of it.
 towersOfHanoi(disks-1, from, spare, to);
 System.out.printf("Move disk %d from stack %d to stack %d%n",
 disks, from, to);
 towersOfHanoi(disks-1, spare, to, from);
 }
}

This subroutine just expresses the natural recursive solution. The recursion
works because each recursive call involves a smaller number of disks, and the
problem is trivial to solve in the base case, when there is only one disk. To
solve the "top level" problem of moving N disks from Stack 0 to Stack
1, it should be called with the command TowersOfHanoi(N,0,1,2). The
subroutine is demonstrated by the sample program TowersOfHanoi.java.

 Here, for example, is the output from the program when it is run
with the number of disks set equal to 4:

Move disk 1 from stack 0 to stack 2
Move disk 2 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1
Move disk 3 from stack 0 to stack 2
Move disk 1 from stack 1 to stack 0
Move disk 2 from stack 1 to stack 2
Move disk 1 from stack 0 to stack 2
Move disk 4 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1
Move disk 2 from stack 2 to stack 0
Move disk 1 from stack 1 to stack 0
Move disk 3 from stack 2 to stack 1
Move disk 1 from stack 0 to stack 2
Move disk 2 from stack 0 to stack 1
Move disk 1 from stack 2 to stack 1

The output of this program shows you a mass of detail that you don't really want to
think about! The difficulty of following the details contrasts sharply with the
simplicity and elegance of the recursive solution. Of course, you really want
to leave the details to the computer.
(You might think about what happens when the
precondition that the number of disks is positive is violated. The result is
an example of infinite recursion.)

There is, by the way, a story that explains the name of this problem.
According to this story, on the first day of creation, a group of monks in an
isolated tower near Hanoi were given a stack of 64 disks and were assigned the
task of moving one disk every day, according to the rules of the Towers of
Hanoi problem. On the day that they complete their task of moving all the disks
from one stack to another, the universe will come to an end. But don't worry.
The number of steps required to solve the problem for N disks is
2N - 1, and 264 - 1 days is over 50,000,000,000,000
years. We have a long way to go.

(In the terminology of Section 8.5, the Towers of Hanoi
algorithm has a run time that is Θ(2n), where n is the number
of disks that have to be moved.
Since the exponential function 2n grows
so quickly, the Towers of Hanoi problem can be solved in practice only for a small
number of disks.)

By the way, in addition to the graphical Towers of Hanoi program, mentioned above,
there are two more demo programs that you might want to look at. Each program
provides a visual demonstration of a recursive algorithm. In
Maze.java, recursion is used to solve a maze.
In LittlePentominos.java, it is used to solve
a well-known kind of puzzle. (LittlePentominos.java also requires
the file MosaicPanel.java.) It would be useful
to run the programs and watch them for a while, but the source code
uses some techniques that won't be covered until Chapter 12.

The Maze program first creates a random maze. It then tries to solve the maze
by finding a path through the maze from the upper left corner to the lower
right corner. This problem is actually very similar to a "blob-counting"
problem that is considered later in this section.
The recursive maze-solving routine starts from a given square, and it
visits each neighboring square and calls itself recursively from there. The
recursion ends if the routine finds itself at the lower right corner of the
maze. When it can't find a solution from a square, it "backs up" out of
that square and tries somewhere else. This common technique is referred to as
recursive backtracking.

The LittlePentominos program is an implementation of a classic puzzle. A pentomino
is a connected figure made up of five equal-sized squares. There are exactly
twelve figures that can be made in this way, not counting all the possible
rotations and reflections of the basic figures. The problem is to place the
twelve pentominos on an 8-by-8 board in which four of the squares have already
been marked as filled. The recursive solution looks at a board that has already
been partially filled with pentominos. The subroutine looks at each remaining
piece in turn. It tries to place that piece in the next available place on the
board. If the piece fits, it calls itself recursively to try to fill in the
rest of the solution. If that fails, then the subroutine goes on to the next
piece -- another example of recursive backtracking.
A generalized version of the pentominos program with many more features
can be found at
http://math.hws.edu/xJava/PentominosSolver/.

9.1.3 A Recursive Sorting Algorithm

Turning next to an application that is perhaps more practical, we'll look at
a recursive algorithm for sorting an array. The selection sort and insertion
sort algorithms, which were covered in Section 7.4,
are fairly simple, but they are rather slow
when applied to large arrays. Faster sorting algorithms are available. One of
these is Quicksort, a recursive algorithm which turns out to be the fastest
sorting algorithm in most situations.

The Quicksort algorithm is based on a simple but clever idea: Given a list
of items, select any item from the list. This item is called the
pivot. (In practice, I'll just use the first item in the
list.) Move all the items that are smaller than the pivot to the beginning of
the list, and move all the items that are larger than the pivot to the end of
the list. Now, put the pivot between the two groups of items. This puts the
pivot in the position that it will occupy in the final, completely sorted
array. It will not have to be moved again. We'll refer to this procedure as
QuicksortStep.

[image: Illustration of QuicksortStep]

QuicksortStep is not recursive. It is used as a subroutine by Quicksort. The
speed of Quicksort depends on having a fast implementation of QuicksortStep.
Since it's not the main point of this discussion, I present one without much
comment.

/**
 * Apply QuicksortStep to the list of items in locations lo through hi
 * in the array A. The value returned by this routine is the final
 * position of the pivot item in the array.
 */
 static int quicksortStep(int[] A, int lo, int hi) {

 int pivot = A[lo]; // Get the pivot value.

 // The numbers hi and lo mark the endpoints of a range
 // of numbers that have not yet been tested. Decrease hi
 // and increase lo until they become equal, moving numbers
 // bigger than pivot so that they lie above hi and moving
 // numbers less than the pivot so that they lie below lo.
 // When we begin, A[lo] is an available space, since its
 // value has been moved into the local variable, pivot.

 while (hi > lo) {

 while (hi > lo && A[hi] >= pivot) {
 // Move hi down past numbers greater than pivot.
 // These numbers do not have to be moved.
 hi--;
 }

 if (hi == lo)
 break;

 // The number A[hi] is less than pivot. Move it into
 // the available space at A[lo], leaving an available
 // space at A[hi].

 A[lo] = A[hi];
 lo++;

 while (hi > lo && A[lo] <= pivot) {
 // Move lo up past numbers less than pivot.
 // These numbers do not have to be moved.
 lo++;
 }

 if (hi == lo)
 break;

 // The number A[lo] is greater than pivot. Move it into
 // the available space at A[hi], leaving an available
 // space at A[lo].

 A[hi] = A[lo];
 hi--;

 } // end while

 // At this point, lo has become equal to hi, and there is
 // an available space at that position. This position lies
 // between numbers less than pivot and numbers greater than
 // pivot. Put pivot in this space and return its location.

 A[lo] = pivot;
 return lo;

 } // end QuicksortStep

With this subroutine in hand, Quicksort is easy. The Quicksort algorithm for
sorting a list consists of applying QuicksortStep to the list, then applying
Quicksort recursively to the items that lie to the left of the new position of the
pivot and to the
items that lie to the right of that position. Of course, we need base cases. If the
list has only one item, or no items, then the list is already as sorted as it
can ever be, so Quicksort doesn't have to do anything in these cases.

/**
 * Apply quicksort to put the array elements between
 * position lo and position hi into increasing order.
 */
static void quicksort(int[] A, int lo, int hi) {
 if (hi <= lo) {
 // The list has length one or zero. Nothing needs
 // to be done, so just return from the subroutine.
 return;
 }
 else {
 // Apply quicksortStep and get the new pivot position.
 // Then apply quicksort to sort the items that
 // precede the pivot and the items that follow it.
 int pivotPosition = quicksortStep(A, lo, hi);
 quicksort(A, lo, pivotPosition - 1);
 quicksort(A, pivotPosition + 1, hi);
 }
}

As usual, we had to generalize the problem. The original problem was to sort
an array, but the recursive algorithm is set up to sort a specified part of an
array. To sort an entire array, A, using the quickSort()
subroutine, you would call quicksort(A, 0, A.length - 1).

Quicksort is an interesting example from the point of view of the analysis
of algorithms (Section 8.5), because its average case
run time differs greatly from its worst case run time. Here is a very informal
analysis, starting with the average case: Note that an application of
quicksortStep divides a problem into two sub-problems. On
the average, the subproblems will be of approximately the same size. A
problem of size n is divided into two problems that are roughly of size
n/2; these are then divided into four problems that are roughly of size
n/4; and so on. Since the problem size is divided by 2 on each level,
there will be approximately log(n) levels of subdivision.
The amount of processing on each level is proportional to n. (On the
top level, each element in the array is looked at and possibly moved.
On the second level, where there are two subproblems, every element but
one in the array is part of one of those two subproblems and must be
looked at and possibly moved, so there is a total of about n steps
in both subproblems combined. Similarly, on
the third level, there are four subproblems and a total of
about n steps in the four subproblems on that level....)
With a total of n steps on each level and approximately log(n) levels
in the average case, the average case run time for Quicksort is
Θ(n*log(n)). This analysis assumes that quicksortStep divides
a problem into two approximately equal parts. However, in the worst case,
each application of quicksortStep divides a problem of size n into
a problem of size 0 and a problem of size n-1. This happens when the
pivot element ends up at the beginning or end of the array. In this
worst case, there are n levels of subproblems, and the worst-case run
time is Θ(n2). The worst case is very rare -- it
depends on the items in the array being arranged in a very special way,
so the average performance of Quicksort can be very good even though
it is not so good in certain rare cases. There are sorting algorithms
that have both an average case and a worst case run time of Θ(n*log(n)).
One example is MergeSort, which you can look up if you are interested.

9.1.4 Blob Counting

Next, we will look at counting the number of squares in a group of
connected squares. I call a group of squares a "blob," and the sample program
that we will consider is Blobs.java.
The program displays a grid of small white
and gray squares. Here is a screenshot from the program, showing the
grid of squares along with some controls:

[image: screenshot from Blobs.java]

The gray squares are considered to be
"filled" and the white squares are "empty." For the purposes of this example, we
define a "blob" to consist of a filled square and all the filled squares that
can be reached from it by moving up, down, left, and right through other filled
squares. If the user clicks on any filled square in the program, the computer will
count the squares in the blob that contains the clicked square, and it will change the color of
those squares to red. The program has several controls. There is a
"New Blobs" button; clicking this button will create a new random
pattern in the grid. A pop-up menu specifies the approximate percentage of
squares that will be filled in the new pattern. The more filled squares, the
larger the blobs. And a button labeled "Count the Blobs" will tell you how many
different blobs there are in the pattern.

Recursion is used in this program to count the number of squares in a blob.
Without recursion, this would be a very difficult thing to implement. Recursion
makes it relatively easy, but it still requires a new technique, which is also
useful in a number of other applications.

The data for the grid of squares is stored in a two dimensional array of
boolean values,

boolean[][] filled;

The value of filled[r][c] is true if the square in row r
and in column c of the grid is filled. The number of rows in the grid
is stored in an instance variable named rows, and the number of
columns is stored in columns. The program uses a recursive instance
method named getBlobSize() to count the number of squares in the blob
that contains the square in a given row r and column c. If
there is no filled square at position (r,c), then the answer is zero.
Otherwise, getBlobSize() has to count all the filled squares that can
be reached from the square at position (r,c). The idea is to use
getBlobSize() recursively to get the number of filled squares that can
be reached from each of the neighboring positions: (r+1,c),
(r-1,c), (r,c+1), and (r,c-1). Add up these numbers,
and add one to count the square at (r,c) itself, and you get the total
number of filled squares that can be reached from (r,c). Here is an
implementation of this algorithm, as stated. Unfortunately, it has a serious
flaw: It leads to an infinite recursion!

int getBlobSize(int r, int c) { // BUGGY, INCORRECT VERSION!!
 // This INCORRECT method tries to count all the filled
 // squares that can be reached from position (r,c) in the grid.
 if (r < 0 || r >= rows || c < 0 || c >= columns) {
 // This position is not in the grid, so there is
 // no blob at this position. Return a blob size of zero.
 return 0;
 }
 if (filled[r][c] == false) {
 // This square is not part of a blob, so return zero.
 return 0;
 }
 int size = 1; // Count the square at this position, then count the
 // the blobs that are connected to this square
 // horizontally or vertically.
 size += getBlobSize(r-1,c);
 size += getBlobSize(r+1,c);
 size += getBlobSize(r,c-1);
 size += getBlobSize(r,c+1);
 return size;
} // end INCORRECT getBlobSize()

Unfortunately, this routine will count the same square more than once. In
fact, it will try to count each square infinitely often! Think of yourself
standing at position (r,c) and trying to follow these instructions.
The first instruction tells you to move up one row. You do that, and then you
apply the same procedure. As one of the steps in that procedure, you have to
move down one row and apply the same procedure yet again. But that puts
you back at position (r,c)! From there, you move up one row, and from
there you move down one row.... Back and forth forever! We have to make sure
that a square is only counted and processed once, so we don't end up going
around in circles. The solution is to leave a trail of breadcrumbs -- or on the
computer a trail of boolean values -- to mark the squares that you've
already visited. Once a square is marked as visited, it won't be processed
again. The remaining, unvisited squares are reduced in number, so definite
progress has been made in reducing the size of the problem. Infinite recursion
is avoided!

A second boolean array, visited[r][c], is used to keep track of
which squares have already been visited and processed. It is assumed that all
the values in this array are set to false before getBlobSize() is
called. As getBlobSize() encounters unvisited squares, it marks them
as visited by setting the corresponding entry in the visited array to
true. When getBlobSize() encounters a square that it has already
visited, it doesn't count it or process it further. The technique of "marking"
items as they are encountered is one that is used over and over in the programming
of recursive algorithms. Here is the corrected version of
getBlobSize(), with changes shown in red italic:

/**
 * Counts the squares in the blob at position (r,c) in the
 * grid. Squares are only counted if they are filled and
 * unvisited. If this routine is called for a position that
 * has been visited, the return value will be zero.
 */
int getBlobSize(int r, int c) {
 if (r < 0 || r >= rows || c < 0 || c >= columns) {
 // This position is not in the grid, so there is
 // no blob at this position. Return a blob size of zero.
 return 0;
 }
 if (filled[r][c] == false || visited[r][c] == true) {
 // This square is not part of a blob, or else it has
 // already been counted, so return zero.
 return 0;
 }
 visited[r][c] = true; // Mark the square as visited so that
 // we won't count it again during the
 // following recursive calls.
 int size = 1; // Count the square at this position, then count the
 // the blobs that are connected to this square
 // horizontally or vertically.
 size += getBlobSize(r-1,c);
 size += getBlobSize(r+1,c);
 size += getBlobSize(r,c-1);
 size += getBlobSize(r,c+1);
 return size;
} // end getBlobSize()

In the program, this method is used to determine the size of a blob when the
user clicks on a square. After getBlobSize() has performed its task,
all the squares in the blob are still marked as visited. The
paintComponent() method draws visited squares in red, which makes the
blob visible. The getBlobSize() method is also used for counting
blobs. This is done by the following method, which includes comments to explain
how it works:

/**
 * When the user clicks the "Count the Blobs" button, find the
 * number of blobs in the grid and report the number in the
 * message label.
 */
void countBlobs() {

 int count = 0; // Number of blobs.

 /* First clear out the visited array. The getBlobSize() method
 will mark every filled square that it finds by setting the
 corresponding element of the array to true. Once a square
 has been marked as visited, it will stay marked until all the
 blobs have been counted. This will prevent the same blob from
 being counted more than once. */

 for (int r = 0; r < rows; r++)
 for (int c = 0; c < columns; c++)
 visited[r][c] = false;

 /* For each position in the grid, call getBlobSize() to get the
 size of the blob at that position. If the size is not zero,
 count a blob. Note that if we come to a position that was part
 of a previously counted blob, getBlobSize() will return 0 and
 the blob will not be counted again. */

 for (int r = 0; r < rows; r++)
 for (int c = 0; c < columns; c++) {
 if (getBlobSize(r,c) > 0)
 count++;
 }

 repaint(); // Note that all the filled squares will be red,
 // since they have all now been visited.

 message.setText("The number of blobs is " + count);

} // end countBlobs()

Answers to End-Of-Chapter Exercises

This section contains sample solutions to the exercises that occur at the end of each chapter,
starting with Chapter2.
The solution includes a discussion of the problem, as well as the code for a solution.
The discussion is meant to be read, and in many cases will supplement the reading from the
chapter itself.

Remember that there are many ways to solve a programming problem!

Solution for Programming Exercise 2.3

Exercise 2.3:

Write a program that asks
the user's name, and then greets the user by name. Before outputting the user's
name, convert it to upper case letters. For example, if the user's name is
Fred, then the program should respond "Hello, FRED, nice to meet you!".

Discussion

In order to read the name typed in by the user, this program uses one of the
input routines from the non-standard TextIO class. So, this program
can only be run if that class is available to the program. I will use System.out
for output. (Although it is possible to use TextIO for output as
well as for input, I will generally avoid that option in my examples.)

A name is a sequence of characters, so it is a value of type
String. The program must declare a variable of type String to
hold the user's name. I declare another variable to hold the user's name with
all the letters in the name converted to upper case. The conversion might be
difficult, except that String objects have a function that lets you do the
conversion with one line of code. If usersName is the variable that refers to the name that
the user enters, then the function call usersName.toUpperCase()
returns the string obtained by replacing any lower case letters in the name
with upper case letters.

There are several functions in the TextIO class that can be used for
reading Strings: getWord(), getlnWord(), and
getln(). The first two routines only read a single word, so if the
user entered "David J. Eck", they would only read the first name, "David". The
getln() routine will read the entire line, and so would get the whole
name. For this program, I use getln(), but you might prefer to use just
the first name.

I also give a version of the program that uses the built-in
class Scanner, instead of TextIO, for
reading input from the user. See Subsection 2.4.6 for a discussion of
the Scanner class. In the second version of the program,
a Scanner named stdin is created, and
the user's input is read using the function stdin.nextLine(), which
has essentially the same functionality as TextIO.getln().

(For this program, by the way, TextIO.getWord() and TextIO.getlnWord()
would be equivalent. They return the same value. The second version of the
routine, getlnWord(), would then discard the rest of the user's line
of input. However, since this program is only doing one input operation, it
doesn't matter whether it's discarded. It would only matter when it came time
to read a second value from input.)

The Solution

public class Greeting {

 /* This program asks the user's name and then
 greets the user by name. This program depends
 on the non-standard class, TextIO.
 */

 public static void main(String[] args) {

 String usersName; // The user's name, as entered by the user.
 String upperCaseName; // The user's name, converted to upper case letters.

 System.out.print("Please enter your name: ");
 usersName = TextIO.getln();

 upperCaseName = usersName.toUpperCase();

 System.out.println("Hello, " + upperCaseName + ", nice to meet you!");

 } // end main()

} // end class

A version using Scanner for input:

import java.util.Scanner;

public class GreetingWithScanner {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 String usersName; // The user's name, as entered by the user.
 String upperCaseName; // The user's name, converted to upper case letters.

 System.out.print("Please enter your name: ");
 usersName = stdin.nextLine();

 upperCaseName = usersName.toUpperCase();

 System.out.println("Hello, " + upperCaseName + ", nice to meet you!");

 } // end main()

} // end class

Section 2.6

Programming Environments

Although the Java language is highly
standardized, the procedures for creating, compiling, and editing Java programs
vary widely from one programming environment to another. There are two
basic approaches: a command line environment,
where the user types commands and the computer responds,
and an integrated development environment (IDE),
where the user uses the keyboard and mouse to interact with a graphical user
interface. While there is just one common command line environment for Java
programming, there are several common IDEs, including Eclipse, NetBeans,
and BlueJ. I cannot give complete or definitive information on Java programming environments
in this section, but I will try to give enough information to let you compile
and run the examples from this textbook. (Readers are strongly encouraged to read,
compile, and run the examples. Source code can be downloaded from the
book's web page, http://math.hws.edu/javanotes.)

One thing to keep in mind is that you do not have to pay any money
to do Java programming (aside from buying a computer, of course). Everything
that you need can be downloaded for free on the Internet.

2.6.1 Java Development Kit

The basic development system for Java programming is usually referred
to as the JDK (Java Development Kit). It is a part of Java SE,
the Java "Standard Edition" (as opposed to Java EE for servers or Java ME for mobile devices).
Note that Java SE comes in
two versions, a Development Kit version (the JDK) and a Runtime Environment version
(the JRE). The
Runtime can be used to run Java programs,
but it does not allow you to compile your own Java programs.
The Development Kit includes the Runtime but also
lets you compile programs. You need a JDK for use with this textbook.

Java was developed by Sun Microsystems, Inc., which is now a part of the Oracle corporation.
Oracle makes the JDK for Windows, Mac OS, and Linux
available for free download at its Java Web site. Many Windows computers come with
a Java Runtime already installed, but you might need to install the JDK.
Some versions of Linux come with the JDK either installed by default or
on the installation media. Mac OS does not currently come with Java pre-installed.
If you need to download and install the JDK, be sure to get the JDK for Java 7, Java 8, or later.
As of summer, 2014, it can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

If a JDK is properly installed on your computer, you can use the command line environment
to compile and run Java programs. An IDE will also require a JDK, but it might be included with
the IDE download.

2.6.2 Command Line Environment

Many modern computer users find the command line environment to be
pretty alien and unintuitive. It is certainly very different from the
graphical user interfaces that most people are used to. However, it
takes only a little practice to learn the basics of the command line
environment and to become productive using it.

To use a command line programming environment, you will have to open a window
where you can type in commands. In Windows, you can open such a command window
by running the program named cmd. (In Windows 7,
click "Start / Program Files / Accessories / Command Prompt." In Windows 8,
press the Windows and X keys together to bring up the "Power User Menu,"
and select "Command Prompt.")
In Mac OS, you want to run the
Terminal program, which can be found in
the Utilities folder inside the Applications folder. In Linux, there
are several possibilities, including an old program called xterm;
try looking for "Terminal" in your applications menu.

No matter what type of computer you are using, when you open a command window,
it will display a prompt of some sort. Type in a command at the prompt and
press return. The computer will carry out the command, displaying any
output in the command window, and will then redisplay the prompt so that you can
type another command. One of the central concepts in the command line
environment is the current directory which
contains files that can be used by the commands that you type. (The
words "directory" and "folder" mean the same thing.) Often, the
name of the current directory is part of the command prompt. You
can get a list of the files in the current directory by typing in the
command dir (on Windows) or
ls (on Linux and Mac OS). When the window
first opens, the current directory is your home directory,
where all your files are stored. You can change the current directory using
the cd command with the name of the
directory that you want to use. For example, to change into your
Desktop directory, type in the command cd Desktop and
press return.

You should create a directory (that is, a folder) to hold your Java work. For example,
create a directory named javawork in your home directory. You can do this using
your computer's GUI; another way to do it is to open a command
window, cd to the directory that you want to contain the new dirctory,
and enter the command mkdir javawork.
When you want to work on programming, open a command window and use
the cd command to change into your work directory.
Of course, you can have more than one working directory for your Java work;
you can organize your files any way you like.

The most basic commands for using Java on the command line are
javac and java;
javac is used to compile Java source code, and java
is used to run Java stand-alone applications. If
a JDK is correctly installed on your computer, it should recognize these
commands when you type them in on the command line. Try typing the commands
java -version and javac -version which
should tell you which version of Java is installed. If you get a message
such as "Command not found," then Java is not correctly installed. If the
"java" command works, but "javac" does not, it means that a Java Runtime
is installed rather than a Development Kit. (On Windows, after installing
the JDK, you need to modify the Windows PATH environment variable to make this work.
See the JDK installation instructions on Oracle's download site for information about how to do this.)

To test the javac command, place a copy of TextIO.java
into your working directory. (If you downloaded the Web site of this book,
you can find it in the directory named source; you can use
your computer's GUI to copy-and-paste this file into your working directory.
Alternatively, you can navigate to TextIO.java on the
book's Web site and use the
"Save As" command in your Web browser to save a copy of the file into your working directory.)
Type the command:

javac TextIO.java

This will compile TextIO.java and will create a bytecode file
named TextIO.class in the same directory. Note that if the command
succeeds, you will not get any response from the computer; it will just redisplay
the command prompt to tell you it's ready for another command.

To test the java command, copy a sample program such as Interest2.java from
this book's source directory into your working directory, or download it from the web site. First, compile the program
with the command

javac Interest2.java

Remember that for this to succeed, TextIO must already be in
the same directory. Then you can execute the program using the command

java Interest2

Be careful to use just the name of the program, Interest2,
with the java command, not the name of the Java source code file
or the name of the compiled class file.
When you give this command, the program will run. You will be asked to enter some
information, and you will respond by typing your answers into the command window,
pressing return at the end of the line. When the program ends, you will see the
command prompt, and you can enter another command. (Note that "java TextIO"
would not make sense, since TextIO does not have a main() routine,
and so it doesn't make sense to try to execute it as a program.)

You can follow a similar procedure to run all of the examples in this book. Some examples
require additional classes, such as TextIO, in addition to the main program. Remember to
place any required classes in the same folder as the program that uses them. (You can use either
the .java or the .class files for the required classes.)

To create your own programs, you will need a text editor.
A text editor is a computer program that allows you to create and save documents
that contain plain text. It is important that the documents be saved as plain text,
that is without any special encoding or formatting information. Word processor
documents are not appropriate, unless you can get your word processor to save
as plain text. A good text editor can make programming a lot more pleasant.
Linux comes with several text editors. On Windows, you can use notepad in a pinch,
but you will probably want something better. For Mac OS, you might download
the free TextWrangler application. One
possibility that will work on any platform is to use jedit,
a good programmer's text editor that is itself written in Java and that can be downloaded
for free from www.jedit.org.

To work on your programs, you can open a command line window and cd
into the working directory where you will store your source code files. Start up
your text editor program, such as by double-clicking its icon or selecting it from
a Start menu. Type your code into the editor window, or open an existing source code
file that you want to modify. Save the file into your working directory. Remember that the name of a Java
source code file must end in ".java", and the rest of the file name must match the name of the
class that is defined in the file. Once the file is saved in your working directory,
go to the command window and use the javac command to compile it,
as discussed above. If there are syntax errors in the code, they will be listed
in the command window. Each error message contains the line number in the file
where the computer found the error. Go back to the editor and try to fix one or more
errors, save your changes, and then try the javac command again.
(It's usually a good idea to just work on the first few errors; sometimes fixing
those will make other errors go away.)
Remember that when the javac command finally succeeds, you will get
no message at all. Then you can use the java command to run your
program, as described above. Once you've compiled the program, you can run it as
many times as you like without recompiling it.

That's really all there is to it: Keep both editor and command-line window open.
Edit, save, and compile until you have eliminated all the syntax errors. (Always
remember to save the file before compiling it -- the compiler only sees the saved
file, not the version in the editor window.) When you run the program, you might
find that it has semantic errors that cause it to run incorrectly. In that case,
you have to go back to the edit/save/compile loop to try to find and fix the problem.

2.6.3 Eclipse

In an Integrated Development Environment, everything you need to create, compile, and
run programs is integrated into a single package, with a graphical user interface
that will be familiar to most computer users. There are a number of different IDEs for Java program
development, ranging from fairly simple wrappers around the JDK to highly complex
applications with a multitude of features. For a beginning programmer, there is a danger
in using an IDE, since the difficulty of learning to use the IDE, on top of the
difficulty of learning to program, can be overwhelming. However, for my own programming,
I generally use the Eclipse IDE, and I introduce my students to it
after they have had some experience with the command line. I will discuss Eclipse in
some detail and two other IDEs, NetBeans and BlueJ, in much less detail.
All of these IDEs have features that are very useful even
for a beginning programmer, although a beginner will want to ignore many of their
advanced features.

You can download an Eclipse IDE from eclipse.org. It is a
free program. Eclipse is itself written in Java. It requires a Java Runtime Environment,
but not necessarily a JDK, since it includes its own compiler.
You should make sure that the JRE or JDK, Version 7 or higher is installed on your computer, as
described above, before you install Eclipse.
There are several versions of the Eclipse IDE; you can use the "Eclipse IDE for Java Developers."

The first time you start Eclipse, you will be asked to specify a workspace,
which is the directory where all your work will be stored. You can accept the default name, or
provide one of your own. When startup is complete, the Eclipse window will be filled by a large
"Welcome" screen that includes links to extensive documentation and tutorials. You can close this screen, by
clicking the "X" next to the word "Welcome"; you can get back to it later by choosing "Welcome"
from the "Help" menu.

The Eclipse GUI consists of one large window that is divided into several sections. Each section
contains one or more views. For example, a view can be a text editor, it can be a place where
a program can do I/O, or it can contain a list of all your projects.
If there are several views in one section of the window,
then there will be tabs at the top of the section to select the view that is displayed in that
section. Each view displays a different type of information. The whole set of views is called
a perspective. Eclipse uses different perspectives, that is different
sets of views of different types of information, for different tasks. For compiling and
running programs, the only perspective that you will need is the "Java Perspective,"
which is the default. As you become more experienced, you might want to the use
the "Debug Perspective," which has features designed to help you find semantic errors in programs.

The Java Perspective includes a large area in the center of the window
that contains text editor views. This is where you will create and edit your programs.
To the left of this is the
Package Explorer view, which will contain a list of your Java projects and source code
files. To the right are some other views that I don't find very useful,
and I suggest that you close them by clicking the small "X" next to the name of each one.
Several other views that will
be useful appear in a section of the window
below the editing area. If you accidently close one of the important views, such as the
Package Explorer, you can get it back by selecting it from the "Show View" submenu
of the "Window" menu. You can also reset the whole window to its default contents by
selecting "Reset Perspective" from the "Window" menu.

To do any work in Eclipse, you need a project. To start
a Java project, go to the "New" submenu in the "File" menu, and select the "Java Project" command.
In the window that pops up, it is only necessary to fill in a "Project Name" for
the project and click the "Finish" button. The project name can be anything you like.
The project should appear in the
"Package Explorer" view. Click on the small triangle or plus sign next to the project name to see the
contents of the project. Assuming that you use the default settings, there should be
a directory named "src," which is where your Java source code files will go. It also
contains the "JRE System Library"; this is the collection of standard built-in classes
that come with Java.

To run the TextIO based examples from this textbook, you must add the
source code file TextIO.java to your project. If you have downloaded
the Web site of this book, you can find a copy of TextIO.java in the source directory.
Alternatively, you can navigate to the file on-line and use the "Save As" command
of your Web browser to save a copy of the file onto your computer. The easiest way to
get TextIO into your project is to locate the source code file
on your computer and drag the file icon
onto the project name in the Eclipse window. If that doesn't work, you can try using
copy-and-paste: Right-click the file icon (or control-click on Mac OS), select "Copy"
from the pop-up menu, right-click the project's src folder in the Eclipse window, and select
"Paste". (Be sure to paste it into the src folder, not into the project itself; files outside
the source folder are not treated as Java source code files.)
Another option is to add the file directly to the src folder inside
your workspace directory. However, Eclipse will not automatically recognize a file added
in this way; to make Eclipse find the file, right-click the project name in the Eclipse
window and select "Refresh" from the pop-up menu. In any case, TextIO should
appear under "src" in your project, inside a package named
"default package". Once a file is in this list, you can open it by double-clicking it;
it will appear in the editing area of the Eclipse window.

To run any of the Java programs from this textbook, copy the source code file into
your Eclipse Java project in the same way that you copied TextIO.java.
To run the program, right-click in the editor window, or on the file name in
the Package Explorer view (or control-click in Mac OS). In the menu that pops
up, go to the "Run As" submenu, and select "Java Application". The program
will be executed. If the program writes to standard output, the output will
appear in the "Console" view, in the area of the Eclipse window below the editing area. If the program uses
TextIO for input, you will have to type the required input into
the "Console" view -- click the "Console" view before you start typing, so that
the characters that you type will be sent to the correct part of the window.
(For an easier way to run a program, find and click the small "Run" button in Eclipse's tool bar.)
Note that when you run a program in Eclipse, it is compiled automatically. There is
no separate compilation step.

You can have more than one program in the same Eclipse project, or you
can create additional projects to organize your work better. Remember to
place a copy of TextIO.java in any project that requires it.

To create a new Java program in Eclipse, you must create a new Java class.
To do that, right-click the Java project name in the "Project Explorer" view.
Go to the "New" submenu of the popup menu, and select "Class". (Alternatively,
there is a small icon in the toolbar at the top of the Eclipse window that you can click to
create a new Java class.) In the
window that opens, type in the name of the class that you want to create.
The class name must be a legal Java identifier.
Note that you want the name of the class, not the name of the
source code file, so don't add ".java" at the end of the name.
Examples in this book use the "default package," so you will also want
to erase the contents of the box labeled "Package." (See the last section of
this section for more information about packages.)
Finally, click the "Finish" button to create the class. The class
should appear inside the "src" folder, in the "default package," and it should automatically
open in the editing area so that you can start typing in your program.

Eclipse has several features that aid you as you type your code.
It will underline any syntax error with a jagged red line, and in some
cases will place an error marker in the left border of the edit window.
If you hover the mouse cursor over the error marker or over the error itself,
a description of
the error will appear. Note that you do not have to get rid of every
error immediately as you type; some errors will go away as you type
in more of the program. If an error marker displays a small "light
bulb," Eclipse is offering to try to fix the error for you. Click
the light bulb -- or simply hover your mouse over the actual error -- to
get a list of possible fixes, then double click
the fix that you want to apply. For example, if you use an undeclared
variable in your program, Eclipse will offer to declare it for you.
You can actually use this error-correcting feature to get Eclipse
to write certain types of code for you!
Unfortunately, you'll find that you won't understand a lot of the
proposed fixes until you learn more about the Java language, and
it is not a good idea to apply a fix that you don't
understand -- often that will just make things worse in the
end.

Eclipse will also look for spelling errors in comments and will underline
them with jagged red lines. Hover your mouse over the error to get
a list of possible correct spellings.

Another essential Eclipse feature is content assist.
Content assist can be invoked by typing Control-Space. It will offer possible
completions of whatever you are typing at the moment. For example,
if you type part of an identifier and hit Control-Space, you will get
a list of identifiers that start with the characters that you have typed;
use the up and down arrow keys to select one of the items in the list, and
press Return or Enter. (You can also click an item with the mouse to select it,
or hit Escape to dismiss the list.) If there is
only one possible completion when you hit Control-Space, it will be
inserted automatically. By default, Content Assist will also pop up automatically,
after a short delay, when you type a period or certain other characters.
For example, if you type "TextIO." and pause for just a
fraction of a second, you will get a list of all the subroutines in the
TextIO class. Personally, I find this auto-activation annoying.
You can disable it in the Eclipse Preferences. (Look under Java / Editor /
Content Assist, and turn off the "Enable auto activation" option.) You can
still call up Code Assist manually with Control-Space.

Once you have an error-free program, you can run it as described above.
If you find a problem when you run it, it's very
easy to go back to the editor, make changes, and run it again. Note that
using Eclipse, there is no explicit "compile" command. The source
code files in your project are automatically compiled, and are re-compiled
whenever you modify them.

2.6.4 NetBeans

Another IDE for professional programming is NetBeans. It can be downloaded from
netbeans.org. Alternatively, a bundle containing
both NetBeans and the JDK is available on Oracle's Java download page.

Using NetBeans is very similar to using Eclipse. Even the layout of its window is
very similar to the Eclipse window. Create a project in NetBeans with the "New Project"
command. You will have to select the type of project in a pop-up window. You want
to create a "Java Application." The project creation dialog will have a suggested name
for the project, which you will want to change. It also has an option to create
a main class for the project, which is selected by default. If you use that option,
you should change the class name. For use with this book, the name should not be in
a "package"; that is, it should not include a period.

A project will have a "Source Folder" where the source code files for the project
are stored. You can drag TextIO.java and other files onto that folder, or you can copy-and-paste
them from the file system. For running a file, you can right-click the file and select
"Run File" from the pop-up menu. There is also a "Run" button in the NetBeans toolbar.
There is no explicit compilation step. Input and ouput are done in an area below the
edit window, just as in Eclipse.

When you are editing a file, NetBeans will mark errors as you type. (Remember, again,
that many errors will go away on their own as you continue to type.) If NetBeans displays
an error marker with a light bulb in the left-hand margin of the editor, you have to click
the light bulb to get a list of possible automatic fixes for the error.
NetBeans also has a "Code Completion" feature that is similar to Content Assist in Eclipse.
Just press Control-Space as you are typing to get a list of possible completions.

2.6.5 BlueJ

Finally, I will mention BlueJ, an IDE that is designed specifically for people who
are learning to program. It is much less complex than Eclipse or NetBeans, but it
does have some features that make it useful for education.
BlueJ can be downloaded from bluej.org.

In BlueJ, you can begin a project with the "New Project" command in the "Project" menu.
A BlueJ project is simply a folder. When you create a project, you will have to select
a folder name that does not already exist. The folder will be created and a window will
be opened to show the contents of the folder. Files are shown as icons in the BlueJ window.
You can drag .java files from the file system
onto that window to add files to the project; they will be copied into the project folder
as well as shown in the window. You can also copy files directly into
the project folder, but BlueJ won't see them until the next time you open the project.
For example, you can do this with TextIO.java and the sample programs from this book.
When you restart BlueJ, it should show the last project you were working on, but
you can open any project with a command from the "Project" menu.

There is a button in the project window for creating a new class. An icon for the
class is added to the window, and a .java source code file is created in the project
folder. The file is not automatically opened for editing. To edit a file, double-click
its icon in the project window. An editor will be opened in a separate window. (A newly
created class will contain some default code that you probably don't want; you can erase it
and add a main() routine instead.) The BlueJ editor does not show errors as
you type. Errors will be reported when you compile the program. Also, it does not
offer automatic fixes for errors. It has a less capable version of Eclipse's Content
Assist, which seems only to work for getting a list of available subroutines in a
class or object; call up the list by hitting Control-Space after typing the period following
the name of a class or object.

An editor window contains a button for compiling the program in the window. There is also
a compile button in the project window, which compiles all the classes in the project.

To run a program, it must already be compiled. Right-click the icon of a compiled program.
In the menu that pops up, you will see "void main(String[] args)".
Select that option from the menu to run the program. Just click "OK" in the dialog box that pops up.
A separate window will open for input/output.

One of the neatest features of BlueJ is that you can actually use it to run any subroutine,
not just main. If a class contains other subroutines, you will see them in the
list that you get by right-clicking its icon. A pop-up dialog allows you to enter any parameters
required by the routine, and if the routine is a function, you will get another dialog box
after the routine has been executed to tell you its return value. This allows easy testing of
individual subroutines. Furthermore, you can also use BlueJ to create new objects from a class.
An icon for the object will be added at the bottom of the project window, and you can right-click
that icon to get a list of subroutines in the object. This will, of course, not be useful to
you until we get to object-oriented programming in Chapter 5.

2.6.6 The Problem of Packages

Every class in Java is contained in something called a package.
Classes that are not explicitly put into a package are in the "default" package.
Almost all the examples in this textbook are in the default package, and I will not
even discuss packages in any depth until Section 4.5. However,
some IDEs force you to pay attention to packages.

In fact, the use of the default package is discouraged, according to official Java
style guidelines. Nevertheless, I have
chosen to use it, since it seems easier for beginning programmers to
avoid the whole issue of packages, at least at first. If Eclipse or NetBeans
tries to put a class into a package, you can delete the package name from the
class-creation dialog to get it to use the default package instead.
But if you do create a class in a package, the source code starts with a line that specifies
which package the class is in. For example, if the class is in a package
named test.pkg, then the first line of the source code will be

package test.pkg;

In an IDE, this will not cause any problem unless the program you are writing
depends on TextIO. A class that is in a non-default package
cannot use a class from the default package. To make TextIO available to such a class,
you can move TextIO to a named, non-default package.
This means that the source code file TextIO.java
has to be modified
to specify the package: A package
statement like the one shown above must be added to the very beginning of the file, with the appropriate
package name.
(The IDE might do this for you, if you drag TextIO.java from the default package into a non-default package.)
If you add TextIO to the same package as the class that uses it, then TextIO will be automatically
available to that class. If TextIO is in a different named package, you have to add an
"import" statement to the other class to make TextIO available to it. For example, if
TextIO is in the package textio, add the statement

import textio.TextIO;

to the top of the other source code file, just after its own package declaration.

By the way, if you use packages in a command-line environment, other complications
arise. For example, if a class is in a package named test.pkg, then
the source code file must be in a subdirectory named "pkg" inside a
directory named "test" that
is in turn inside your main Java working directory. Nevertheless, when you compile or
execute the program, you should be in the main directory, not in a subdirectory.
When you compile the source code file, you have to include the name of the
directory in the command: Use "javac test/pkg/ClassName.java"
on Linux or Mac OS, or "javac test\pkg\ClassName.java" on
Windows. The command for executing the program is then
"java test.pkg.ClassName", with a period separating the package
name from the class name. However, you will not need to worry about
any of that when working with almost all of the examples in this book.

Solution for Programming Exercise 2.1

Exercise 2.1:

Write a program that will
print your initials to standard output in letters that are nine lines tall.
Each big letter should be made up of a bunch of *'s. For example, if your
initials were "DJE", then the output would look something like:

****** ************* **********
** ** ** **
** ** ** **
** ** ** **
** ** ** ********
** ** ** ** **
** ** ** ** **
** ** ** ** **
***** **** **********

Discussion

This is a very simple program. It consists of nothing but a sequence of
System.out.println statements. The hard part is designing the letters. You have to
experiment in your text editor until you get letters that look right to you.
Add System.out.println(" at the beginning of the first line, then
copy-and-paste it to the beginning of each of the other lines. (You don't need
to type it out on each line! Creative use of copy-and-paste can save you a lot
of work.) Then add "); to the end of each line. In my program, I've
also added a System.out.println() statement at the beginning and the
end. The extra blank lines make the output look better.

Don't forget that in order to have a complete program, you have to put the
program statements in a main subroutine and put that subroutine in a
public class. Also, the name of the file must correspond to the
name of the class; in this case, the file must be named PrintInitials.java.

The Solution

 public class PrintInitials {

 /* This program prints my initials (DJE) in big letters,
 where each letter is nine lines tall.
 */

 public static void main(String[] args) {
 System.out.println();
 System.out.println(" ****** ************* **********");
 System.out.println(" ** ** ** **");
 System.out.println(" ** ** ** **");
 System.out.println(" ** ** ** **");
 System.out.println(" ** ** ** ********");
 System.out.println(" ** ** ** ** **");
 System.out.println(" ** ** ** ** **");
 System.out.println(" ** ** ** ** **");
 System.out.println(" ***** **** **********");
 System.out.println();
 } // end main()

 } // end class

Programming Exercises for Chapter 2

Exercise 2.1:

Write a program that will
print your initials to standard output in letters that are nine lines tall.
Each big letter should be made up of a bunch of *'s. For example, if your
initials were "DJE", then the output would look something like:

****** ************* **********
** ** ** **
** ** ** **
** ** ** **
** ** ** ********
** ** ** ** **
** ** ** ** **
** ** ** ** **
***** **** **********

See the Solution

Exercise 2.2:

 Write a program that
simulates rolling a pair of dice. You can simulate rolling one die by choosing
one of the integers 1, 2, 3, 4, 5, or 6 at random. The number you pick
represents the number on the die after it is rolled. As pointed out in Section 2.5, the expression

(int)(Math.random()*6) + 1

does the computation to select a random integer between 1 and 6.
You can assign this value to a variable to represent one of the dice that are
being rolled. Do this twice and add the results together to get the total roll.
Your program should report the number showing on each die as well as the total
roll. For example:

The first die comes up 3
The second die comes up 5
Your total roll is 8

See the Solution

Exercise 2.3:

Write a program that asks
the user's name, and then greets the user by name. Before outputting the user's
name, convert it to upper case letters. For example, if the user's name is
Fred, then the program should respond "Hello, FRED, nice to meet you!".

See the Solution

Exercise 2.4:

Write a program that helps
the user count his change. The program should ask how many quarters the user
has, then how many dimes, then how many nickels, then how many pennies. Then
the program should tell the user how much money he has, expressed in
dollars.

See the Solution

Exercise 2.5:

If you have N
eggs, then you have N/12 dozen eggs, with N%12 eggs left
over. (This is essentially the definition of the / and %
operators for integers.) Write a program that asks the user how many eggs she
has and then tells the user how many dozen eggs she has and how many extra eggs
are left over.

A gross of eggs is equal to 144 eggs. Extend your program so that it will
tell the user how many gross, how many dozen, and how many left over eggs she
has. For example, if the user says that she has 1342 eggs, then your program
would respond with

Your number of eggs is 9 gross, 3 dozen, and 10

since 1342 is equal to 9*144 + 3*12 + 10.

See the Solution

Exercise 2.6:

This exercise asks you to write a program that tests
some of the built-in subroutines for working with Strings.
The program should ask the user to enter their first name and their last name, separated
by a space. Read the user's response using TextIO.getln().
Break the input string up into two strings, one containing the first name
and one containing the last name. You can do that by using the indexOf()
subroutine to find the position of the space, and then using substring()
to extract each of the two names. Also output the number of characters in each
name, and output the user's initials. (The initials are the first letter of
the first name together with the first letter of the last name.)
 A sample run of the program should look something like this:

Please enter your first name and last name, separated by a space.
? Mary Smith
Your first name is Mary, which has 4 characters
Your last name is Smith, which has 5 characters
Your initials are MS

See the Solution

Exercise 2.7:

Suppose that a file named "testdata.txt" contains the following information:
 The first line of the file is the name of a student. Each of the next three
 lines contains an integer. The integers are the student's scores on three
 exams. Write a program that will read the information in the file
 and display (on standard output) a message that contains the name of
 the student and the student's average grade on the three exams.
 The average is obtained by adding up the individual exam grades and
 then dividing by the number of exams.

See the Solution

Solution for Programming Exercise 2.2

Exercise 2.2:

 Write a program that
simulates rolling a pair of dice. You can simulate rolling one die by choosing
one of the integers 1, 2, 3, 4, 5, or 6 at random. The number you pick
represents the number on the die after it is rolled. As pointed out in Section 2.5, the expression

(int)(Math.random()*6) + 1

does the computation to select a random integer between 1 and 6.
You can assign this value to a variable to represent one of the dice that are
being rolled. Do this twice and add the results together to get the total roll.
Your program should report the number showing on each die as well as the total
roll. For example:

The first die comes up 3
The second die comes up 5
Your total roll is 8

Discussion

When designing a program, one of the first things you should ask yourself
is, "What values do I need to represent?" The answer helps you decide what
variables to declare in the program. This program will need some variables to
represent the numbers showing on each die and the total of the two dice. Since
these numbers are all integers, we can use three variables of type
int. I'll call the variables die1, die2, and
roll. The program begins by declaring the variables:

int die1;
int die2;
int roll;

In the actual program, of course, I've added a comment to explain the
purpose of each variable. The values of die1 and die2 can be
computed using the expression given in the exercise:

die1 = (int)(Math.random()*6) + 1;
die2 = (int)(Math.random()*6) + 1;

Note that even though the expressions on the right-hand sides of these
assignment statements are the same, the values can be different because the
function Math.random() can return different values when it is called
twice.

We can then compute roll = die1 + die2 and use three
System.out.println statements to display the three lines of
output:

System.out.println("The first die comes up " + die1);
System.out.println("The second die comes up " + die2);
System.out.println("Your total roll is " + roll);

Note that I've chosen to use the concatenation operator, +, to
append the value of die1 onto the string "The first die comes up".
Alternatively, I could use two output statements:

System.out.print("The first die comes up ");
System.out.println(die1);

Yet another possibility is to use System.out.printf:

System.out.printf("The first die comes up %d%n", die1);

I'll also note that I could get away without the variable roll,
since I could output the value of the expression die1 + die2
directly:

System.out.println("Your total roll is " + (die1 + die2));

However, it's generally better style to have a meaningful name for a
quantity. By the way, the parentheses around (die1 + die2) are
essential because of the precedence rules for the + operator. You
might try to experiment with leaving them out and see what happens.

The Solution

public class RollTheDice {

 /* This program simulates rolling a pair of dice.
 The number that comes up on each die is output,
 followed by the total of the two dice.
 */

 public static void main(String[] args) {

 int die1; // The number on the first die.
 int die2; // The number on the second die.
 int roll; // The total roll (sum of the two dice).

 die1 = (int)(Math.random()*6) + 1;
 die2 = (int)(Math.random()*6) + 1;
 roll = die1 + die2;

 System.out.println("The first die comes up " + die1);
 System.out.println("The second die comes up " + die2);
 System.out.println("Your total roll is " + roll);

 } // end main()

} // end class

Section 2.5

Details of Expressions

This section takes a closer look at expressions.
Recall that an expression is a piece of program code that represents or
computes a value. An expression can be a literal, a variable, a function call,
or several of these things combined with operators such as + and
>. The value of an expression can be assigned to a variable, used
as a parameter in a subroutine call, or combined with other values into a
more complicated expression. (The value can even, in some cases, be ignored, if
that's what you want to do; this is more common than you might think.)
Expressions are an essential part of programming. So far, this book has
dealt only informally with expressions. This section tells you the more-or-less
complete story (leaving out some of the less commonly used operators).

The basic building blocks of expressions are literals (such as 674,
3.14, true, and 'X'), variables, and function calls.
Recall that a function is a subroutine that returns a value. You've already
seen some examples of functions, such as the input routines from the TextIO
class and the mathematical functions from the Math class.

The Math class also contains a couple of mathematical constants
that are useful in mathematical expressions: Math.PI represents
π (the ratio of the circumference of a circle to its
diameter), and Math.E represents e (the base of the natural
logarithms). These "constants" are actually member variables in
Math of type double. They are only
approximations for the mathematical constants, which would require an infinite
number of digits to specify exactly. The standard class Integer
contains a couple of constants related to the int data type:
Integer.MAX_VALUE is the largest possible int,
2147483647, and Integer.MIN_VALUE is the smallest int,
-2147483648. Similarly, the class Double contains some
constants related to type double. Double.MAX_VALUE
is the largest value of type double, and Double.MIN_VALUE
is the smallest positive value. It also has constants to represent infinite
values, Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY,
and the special value Double.NaN to represent an undefined value. For
example, the value of Math.sqrt(-1) is Double.NaN.

Literals, variables, and function calls are simple expressions. More complex
expressions can be built up by using operators to
combine simpler expressions. Operators include + for adding two
numbers, > for comparing two values, and so on. When several
operators appear in an expression, there is a question of precedence,
which determines how the operators are grouped for
evaluation. For example, in the expression "A + B * C", B*C
is computed first and then the result is added to A. We say that
multiplication (*) has higher precedence
than addition (+). If the default precedence is not what you want, you
can use parentheses to explicitly specify the grouping you want. For example,
you could use "(A + B) * C" if you want to add A to
B first and then multiply the result by C.

The rest of this section gives details of operators in Java. The number of
operators in Java is quite large. I will not cover them all here, but most of
the important ones are here.

2.5.1 Arithmetic Operators

Arithmetic operators include addition, subtraction, multiplication, and
division. They are indicated by +, -, *, and
/. These operations can be used on values of any numeric type:
byte, short, int, long, float, or
double. (They can also be used with values of type char, which
are treated as integers in this context;
a char is converted into its Unicode code number when it is used with an
arithmetic operator.) When the computer actually calculates one of these operations,
the two values that it combines must be of the same type. If your program tells
the computer to combine two values of different types, the computer will
convert one of the values from one type to another. For example, to compute
37.4 + 10, the computer will convert the integer 10 to a real number 10.0 and
will then compute 37.4 + 10.0. This is called a type conversion.
Ordinarily, you don't have to worry about type conversion in expressions,
because the computer does it automatically.

When two numerical values are combined (after doing type conversion on one
of them, if necessary), the answer will be of the same type. If you multiply
two ints, you get an int; if you multiply two
doubles, you get a double. This is what you would expect, but
you have to be very careful when you use the division operator /. When
you divide two integers, the answer will always be an integer; if the quotient
has a fractional part, it is discarded. For example, the value of 7/2
is 3, not 3.5. If N is an integer variable, then
N/100 is an integer, and 1/N is equal to zero for any
N greater than one! This fact is a common source of programming
errors. You can force the computer to compute a real number as the answer by
making one of the operands real: For example, when the computer evaluates
1.0/N, it first converts N to a real number in order to match
the type of 1.0, so you get a real number as the answer.

Java also has an operator for computing the remainder when one number is
divided by another. This operator is indicated by %. If A and
B are integers, then A % B represents the remainder when
A is divided by B.
(However, for negative operands, % is not quite the
same as the usual mathematical "modulus" operator, since if one of A or
B is negative, then the value of A % B will be negative.)
For example, 7 % 2 is 1,
while 34577 % 100 is 77, and 50 % 8 is 2. A
common use of % is to test whether a given integer is even or odd:
N is even if N % 2 is zero, and it is odd if N % 2
is 1. More generally, you can check whether an integer N is
evenly divisible by an integer M by checking whether
N % M is zero.

The % operator also works with real numbers.
In general, A % B is what is left over after you remove as many copies of B
as possible from A. For example, 7.52 % 0.5 is 0.02.

Finally, you might need the unary minus
operator, which takes the negative of a number. For example, -X has
the same value as (-1)*X. For completeness, Java also has a unary plus
operator, as in +X, even though it doesn't really do anything.

By the way, recall that the + operator can also be used to concatenate
a value of any type onto a String. When you use + to combine
a string with a value of some other type, it is another example of
type conversion, since any type can be automatically converted into type
String.

2.5.2 Increment and Decrement

You'll find that adding 1 to a variable is an extremely common
operation in programming. Subtracting 1 from a variable is also pretty
common. You might perform the operation of adding 1 to a variable with
assignment statements such as:

counter = counter + 1;
goalsScored = goalsScored + 1;

The effect of the assignment statement x = x + 1 is to take the old
value of the variable x, compute the result of adding 1 to
that value, and store the answer as the new value of x. The same
operation can be accomplished by writing x++ (or, if you prefer,
++x). This actually changes the value of x, so that it has
the same effect as writing "x = x + 1". The two statements above could
be written

counter++;
goalsScored++;

Similarly, you could write x-- (or --x) to subtract
1 from x. That is, x-- performs the same computation
as x = x - 1. Adding 1 to a variable is called
incrementing that variable, and subtracting 1 is
called decrementing. The operators ++ and
-- are called the increment operator and the decrement operator,
respectively. These operators can be used on variables belonging to any of the
numerical types and also on variables of type char.
('A'++ is 'B'.)

Usually, the operators ++ or -- are used in statements
like "x++;" or "x--;". These statements are commands to
change the value of x. However, it is also legal to use x++,
++x, x--, or --x as expressions, or as parts of
larger expressions. That is, you can write things like:

y = x++;
y = ++x;
TextIO.putln(--x);
z = (++x) * (y--);

The statement "y = x++;" has the effects of adding 1 to
the value of x and, in addition, assigning some value to y.
The value assigned to y is the value of the expression x++,
which is defined to be the old value of x, before the
1 is added. Thus, if the value of x is 6, the
statement "y = x++;" will change the value of x to
7, but it will change the value of y to 6 since the
value assigned to y is the old value of x. On the
other hand, the value of ++x is defined to be the new
value of x, after the 1 is added. So if x is
6, then the statement "y = ++x;" changes the values of both
x and y to 7. The decrement operator, --,
works in a similar way.

Note in particular that the statement x = x++; does not change the value of x!
This is because the value that is being assigned to x is the old value of x, the one that it had
before the statement was executed. The net result is that x is incremented but then immediately
changed back to its previous value! You also need to remember that x++ is not
the same as x + 1. The expression x++ changes the value of x;
the expression x + 1 does not.

This can be confusing, and I have seen many bugs in student programs resulting from the confusion.
My advice is: Don't be confused. Use ++ and
-- only as stand-alone statements, not as expressions. I will follow
this advice in almost all examples in these notes.

2.5.3 Relational Operators

Java has boolean variables and boolean-valued expressions that can be used
to express conditions that can be either true or false. One
way to form a boolean-valued expression is to compare two values using a
relational operator. Relational operators are used
to test whether two values are equal, whether one value is greater than
another, and so forth. The relational operators in Java are: ==,
!=, <, >, <=, and >=.
The meanings of these operators are:

A == B Is A "equal to" B?
A != B Is A "not equal to" B?
A < B Is A "less than" B?
A > B Is A "greater than" B?
A <= B Is A "less than or equal to" B?
A >= B Is A "greater than or equal to" B?

These operators can be used to compare values of any of the numeric types.
They can also be used to compare values of type char. For characters,
< and > are defined according the numeric Unicode
values of the characters. (This might not always be what you want. It is not
the same as alphabetical order because all the upper case letters come before
all the lower case letters.)

When using boolean expressions, you should remember that as far as the
computer is concerned, there is nothing special about boolean values. In the
next chapter, you will see how to use them in loop and branch statements. But
you can also assign boolean-valued expressions to boolean variables, just as
you can assign numeric values to numeric variables. And functions can return
boolean values.

By the way, the operators == and != can be used to compare boolean values too.
This is occasionally useful. For example, can you figure out what this
does:

boolean sameSign;
sameSign = ((x > 0) == (y > 0));

One thing that you cannot do with the relational operators
<, >, <=, and >= is to use them
to compare values of type String. You can legally use == and
!= to compare Strings, but because of peculiarities in the
way objects behave, they might not give the results you want. (The ==
operator checks whether two objects are stored in the same memory location,
rather than whether they contain the same value. Occasionally, for some
objects, you do want to make such a check -- but rarely for strings. I'll get
back to this in a later chapter.) Instead, you should use the subroutines
equals(), equalsIgnoreCase(), and compareTo(), which
were described in Subsection 2.3.3, to compare two
Strings.

Another place where == and != don't work as you would expect
is with Double.NaN, the constant that represents an undefined value of
type double. The values of x == Double.NaN
and x != Double.NaN are both defined to be false in
all cases, whether or not x is Double.NaN! To test whether
a real value x is the undefined value Double.NaN,
use the boolean-valued function Double.isNaN(x).

2.5.4 Boolean Operators

In English, complicated conditions can be formed using the words "and",
"or", and "not." For example, "If there is a test and you did not
study for it...". "And", "or", and "not" are boolean operators, and they exist
in Java as well as in English.

In Java, the boolean operator "and" is represented by &&.
The && operator is used to combine two boolean values. The
result is also a boolean value. The result is true if both of
the combined values are true, and the result is false if
either of the combined values is false. For example,
"(x == 0) && (y == 0)" is true if and only if both x is
equal to 0 and y is equal to 0.

The boolean operator "or" is represented by ||. (That's supposed to
be two of the vertical line characters, |.) The expression
"A || B" is true if either A is true or B is
true, or if both are true. "A || B" is false only if
both A and B are false.

The operators && and || are said to be
short-circuited versions of the boolean operators.
This means that the second operand of && or || is not
necessarily evaluated. Consider the test

(x != 0) && (y/x > 1)

Suppose that the value of x is in fact zero. In that case, the
division y/x is undefined mathematically.
However, the computer will never perform the division, since when the computer
evaluates (x != 0), it finds that the result is false, and so
it knows that ((x != 0) && anything) has to
be false. Therefore, it doesn't bother to evaluate the second operand.
The evaluation has been short-circuited and the division by zero
is avoided. (This may seem like a technicality, and it is. But at
times, it will make your programming life a little easier.)

The boolean operator "not" is a unary operator. In Java, it is indicated by
! and is written in front of its single operand. For example, if
test is a boolean variable, then

test = ! test;

will reverse the value of test, changing it from true to
false, or from false to true.

2.5.5 Conditional Operator

Any good programming language has some nifty little features that aren't
really necessary but that let you feel cool when you use them. Java has the
conditional operator. It's a ternary operator -- that is, it has three operands -- and
it comes in two pieces, ? and :, that have to be used together. It takes
the form

boolean-expression
 ?
expression1
 :
expression2

The computer tests the value of
boolean-expression
. If the value is true, it
evaluates
expression1
; otherwise, it evaluates

expression2
. For example:

next = (N % 2 == 0) ? (N/2) : (3*N+1);

will assign the value N/2 to next if N is even
(that is, if N % 2 == 0 is true), and it will assign the
value (3*N+1) to next if N is odd. (The parentheses
in this example are not required, but they do make the expression easier to read.)

2.5.6 Assignment Operators and Type Conversion

You are already familiar with the assignment statement, which uses the
symbol "=" to assign the value of an expression to a variable. In fact, = is
really an operator in the sense that an assignment can itself be used as an
expression or as part of a more complex expression. The value of an assignment
such as A=B is the same as the value that is assigned to A.
So, if you want to assign the value of B to A and test at the
same time whether that value is zero, you could say:

if ((A=B) == 0)...

Usually, I would say, don't do things like that!

In general, the type of the expression on the right-hand side of an
assignment statement must be the same as the type of the variable on the
left-hand side. However, in some cases, the computer will automatically convert
the value computed by the expression to match the type of the variable.
Consider the list of numeric types: byte, short,
int, long, float, double. A value of a type
that occurs earlier in this list can be converted automatically to a value that
occurs later. For example:

int A;
double X;
short B;
A = 17;
X = A; // OK; A is converted to a double
B = A; // illegal; no automatic conversion
 // from int to short

The idea is that conversion should only be done automatically when it can be
done without changing the semantics of the value. Any int can be
converted to a double with the same numeric value. However, there are
int values that lie outside the legal range of shorts. There
is simply no way to represent the int 100000 as a short, for
example, since the largest value of type short is 32767.

In some cases, you might want to force a conversion that wouldn't be done
automatically. For this, you can use what is called a type cast.
A type cast is indicated by putting a type name, in
parentheses, in front of the value you want to convert. For example,

int A;
short B;
A = 17;
B = (short)A; // OK; A is explicitly type cast
 // to a value of type short

You can do type casts from any numeric type to any other numeric type.
However, you should note that you might change the numeric value of a number by
type-casting it. For example, (short)100000 is -31072. (The -31072 is
obtained by taking the 4-byte int 100000 and throwing away two of
those bytes to obtain a short -- you've lost the real information that
was in those two bytes.)

When you type-cast a real number to an integer, the fractional part is
discarded. For example, (int)7.9453 is 7.
As another example of type casts, consider the problem of getting a random
integer between 1 and 6. The function Math.random() gives a real
number between 0.0 and 0.9999..., and so 6*Math.random() is between
0.0 and 5.999.... The type-cast operator, (int), can be used to
convert this to an integer: (int)(6*Math.random()). Thus,
(int)(6*Math.random()) is one of the integers 0, 1, 2, 3, 4, and 5. To
get a number between 1 and 6, we can add 1: "(int)(6*Math.random()) + 1".
(The parentheses around 6*Math.random() are necessary because of precedence
rules; without the parentheses, the type cast operator would apply only to the 6.)

The type char is almost an integer type. You can assign char
values to int variables, and you can assign numerical constants in the
range 0 to 65535 to char variables. You can also use explicit type-casts between
char and the numeric types. For example, (char)97 is 'a',
(int)'+' is 43, and (char)('A' + 2) is 'C'.

Type conversion between String and other types cannot be done
with type-casts. One way to convert a value of any type into a string is to concatenate
it with an empty string. For example, "" + 42 is the string "42".
But a better way is to use the function String.valueOf(x), a static member function
in the String class. String.valueOf(x) returns the value of
x, converted into a string. For example, String.valueOf(42) is
the string "42", and if ch is a char variable, then
String.valueOf(ch) is a string of length one containing the single character that
is the value of ch.

It is also possible to convert certain strings into values of other types. For example,
the string "10" should be convertible into the
int value 10, and the string "17.42e-2" into
the double value 0.1742. In Java, these conversions
are handled by built-in functions.

The standard class Integer contains
a static member function for converting from String
to int. In particular, if str is any expression of type String,
then Integer.parseInt(str) is a function call that attempts to convert the
value of str into a value of type int. For example,
the value of Integer.parseInt("10") is the int value 10.
If the parameter to Integer.parseInt does not represent a legal int
value, then an error occurs.

Similarly, the standard class Double includes
a function Double.parseDouble. If str is a String,
then the function call Double.parseDouble(str) tries to convert str
into a value of type double. An error occurs if str does not
represent a legal double value.

Getting back to assignment statements,
Java has several variations on the assignment operator, which exist to save
typing. For example, "A += B" is defined
to be the same as "A = A + B".
Every operator in Java that applies to two operands, except for the relational operators, gives rise to a
similar assignment operator. For example:

x -= y; // same as: x = x - y;
x *= y; // same as: x = x * y;
x /= y; // same as: x = x / y;
x %= y; // same as: x = x % y;
q &&= p; // same as: q = q && p; (for booleans q and p)

The combined assignment operator += even works with strings. Recall that when the +
operator is used with a string as one of the operands, it represents
concatenation. Since str += x is equivalent to str = str + x,
when += is used with a string on the left-hand side, it appends the
value on the right-hand side onto the string. For example, if str has
the value "tire", then the statement str += 'd'; changes the value of
str to "tired".

2.5.7 Precedence Rules

If you use several operators in one expression, and if you don't use
parentheses to explicitly indicate the order of evaluation, then you have to
worry about the precedence rules that determine the order of evaluation.
(Advice: don't confuse yourself or the reader of your program; use parentheses
liberally.)

Here is a listing of the operators discussed in this section, listed in
order from highest precedence (evaluated first) to lowest precedence (evaluated
last):

Unary operators: ++, --, !, unary -, unary +, type-cast
Multiplication and division: *, /, %
Addition and subtraction: +, -
Relational operators: <, >, <=, >=
Equality and inequality: ==, !=
Boolean and: &&
Boolean or: ||
Conditional operator: ?:
Assignment operators: =, +=, -=, *=, /=, %=

Operators on the same line have the same precedence. When operators of the same precedence are strung
together in the absence of parentheses, unary operators and assignment operators are evaluated right-to-left,
while the remaining operators are evaluated left-to-right. For example,
A*B/C means (A*B)/C, while A=B=C means
A=(B=C). (Can you see how the expression A=B=C might be
useful, given that the value of B=C as an expression is the same as
the value that is assigned to B?)

Solution for Programming Exercise 2.7

Exercise 2.7:

Suppose that a file named "testdata.txt" contains the following information:
 The first line of the file is the name of a student. Each of the next three
 lines contains an integer. The integers are the student's scores on three
 exams. Write a program that will read the information in the file
 and display (on standard output) a message that contains the name of
 the student and the student's average grade on the three exams.
 The average is obtained by adding up the individual exam grades and
 then dividing by the number of exams.

Discussion

TextIO can be used to read data from a file; this is discussed
 in Subsection 2.4.4. To read data from a file named
 "testdata.txt", all you need to do is say TextIO.readFile("testdata.txt").
 From then on, the input functions in TextIO will read from the file
 instead of reading data typed in by the user. (Note that this assumes that
 the file is in the same directory with the program.) In this case, we
 can use TextIO.getln() to read the student's name from the first
 line of the file, and then we can read the exam grades by calling
 TextIO.getln() three times.

 The average should be computed as a value of type double. Don't forget
 that if you divide an integer by an integer in Java, the result is an integer
 and the remainder of the division is discarded. To get the correct
 average in this case, the program divides the sum of the three grades by
 3.0 rather than by 3.

 One final technicality is that simply outputting a double
 value might print out something like 83.333333333333333. By default, all
 significant digits in the number are output. In this case, one digit
 after the decimal point is probably sufficient. The program
 uses formatted output to achieve this:

 System.out.printf("The average grade for %s was %1.1f", name, average);

 The format string
 "The average grade for %s was %1.1f" is used
 to format the name and the average. The name is substituted for the
 format specifier %s, which means that the name is
 printed as a string, with no extra spaces. The average is substituted
 for %1.1f, which means that the average
 is printed as a floating point number with no extra spaces and with
 1 digit after the decimal point.

 You might want to run this program with no data file, or with a
 data file that is not in the correct format, to see what happens.
 (The program will crash and print an error message.)

The Solution

public class FindAverage {

 public static void main(String[] args) {

 String name; // The student's name, from the first line of the file.
 int exam1, exam2, exam3; // The student's grades on the three exams.
 double average; // The average of the three exam grades.

 TextIO.readFile("testdata.txt"); // Read from the file.

 name = TextIO.getln(); // Reads the entire first line of the file.
 exam1 = TextIO.getlnInt();
 exam2 = TextIO.getlnInt();
 exam3 = TextIO.getlnInt();

 average = (exam1 + exam2 + exam3) / 3.0;

 System.out.printf("The average grade for %s was %1.1f", name, average);
 System.out.println();

 }

}

Section 2.3

Strings, Classes, Objects, and Subroutines

The previous section introduced the eight primitive
data types and the type String. There is a fundamental difference
between the primitive types and String: Values of type
String are objects. While we will not study objects in detail until
Chapter 5, it will be useful for you to know a
little about them and about a closely related topic: classes. This is not just
because strings are useful but because objects and classes are essential to
understanding another important programming concept, subroutines.

2.3.1 Built-in Subroutines and Functions

Recall that a subroutine is a set of program instructions that have been
chunked together and given a name. A subroutine is designed to perform some
task. To get that task performed in a program, you can "call" the subroutine
using a subroutine call statement. In Chapter 4,
you'll learn how to write your own subroutines, but you can get a lot done in a
program just by calling subroutines that have already been written for you. In
Java, every subroutine is contained either in a class or in an object. Some classes
that are standard parts of the Java language contain predefined subroutines
that you can use. A value of type String, which is an object, contains
subroutines that can be used to manipulate that string. These subroutines are
"built into" the Java language. You can call all these
subroutines without understanding how they were written or how they work.
Indeed, that's the whole point of subroutines: A subroutine is a "black box"
which can be used without knowing what goes on inside.

Let's first consider subroutines that are part of a class. One of the
purposes of a class is to group together some variables and subroutines,
which are contained in that class.
These variables and subroutines are called static members
of the class. You've seen one example: In a class that defines a
program, the main() routine is a static member of the class. The parts
of a class definition that define static members are marked with the reserved
word "static", such as the word "static" in public static void main...

When a class contains a static variable or subroutine, the name of the class is part
of the full name of the variable or subroutine. For example,
the standard class named System contains a subroutine named
exit. To use that subroutine in your program, you must refer to it as
System.exit. This full name consists of the name of the class that contains
the subroutine, followed by a period, followed by the name of the subroutine.
This subroutine requires an integer as parameter, so you would actually use it with
a subroutine call statement such as

System.exit(0);

Calling System.exit will terminate the program and shut down the
Java Virtual Machine. You
could use it if you had some reason to terminate the program before the end of
the main routine. (The parameter
tells the computer why the program was terminated. A parameter value of 0
indicates that the program ended normally. Any other value indicates that
the program was terminated because an error was detected, so you could
call System.exit(1) to indicate that the program is ending because of
an error. The parameter is sent back to the operating system; in practice,
the value is usually ignored by the operating system.)

System is just one of many standard classes that come
with Java. Another useful class is called Math.
This class gives us an example of a class that contains
static variables: It includes the variables Math.PI and Math.E
whose values are the mathematical constants π and e.
Math also contains a large number of mathematical "functions."
Every subroutine performs some specific task. For some subroutines, that
task is to compute or retrieve some data value. Subroutines of this type are
called functions. We say that a function
returns a value. Generally, the returned value is meant to be
used somehow in the program that calls the function.

You are familiar with the mathematical function that computes the square
root of a number. The corresponding function in Java is called Math.sqrt.
This function is a static member subroutine of the class named Math.
If x is any numerical value, then Math.sqrt(x) computes and
returns the square root of that value. Since Math.sqrt(x) represents a
value, it doesn't make sense to put it on a line by itself in a subroutine call
statement such as

Math.sqrt(x); // This doesn't make sense!

What, after all, would the computer do with the value computed by the
function in this case? You have to tell the computer to do something with the
value. You might tell the computer to display it:

System.out.print(Math.sqrt(x)); // Display the square root of x.

or you might use an assignment statement to tell the computer to store that
value in a variable:

lengthOfSide = Math.sqrt(x);

The function call Math.sqrt(x) represents a value of type
double, and it can be used anyplace where a numeric literal of type
double could be used.

The Math class contains many static member functions. Here is a
list of some of the more important of them:

	
Math.abs(x), which computes the absolute value of x.

	The usual trigonometric functions, Math.sin(x),
Math.cos(x), and Math.tan(x). (For all the trigonometric
functions, angles are measured in radians, not degrees.)

	The inverse trigonometric functions arcsin, arccos, and arctan, which are
written as: Math.asin(x), Math.acos(x), and
Math.atan(x). The return value is expressed in radians, not degrees.

	The exponential function Math.exp(x) for computing the number e
raised to the power x, and the natural logarithm function
Math.log(x) for computing the logarithm of x in the base
e.

	
Math.pow(x,y) for computing x raised to the power
y.

	
Math.floor(x), which rounds x down to the nearest integer
value that is less than or equal to x. Even though the return value is
mathematically an integer, it is returned as a value of type double, rather than
of type int as you might expect. For example,
Math.floor(3.76) is 3.0. The function Math.round(x) returns
the integer that is closest to x, and Math.ceil(x) rounds x
up to an integer. ("Ceil" is short for "ceiling", the opposite of "floor.")

	
Math.random(), which returns a randomly chosen double in
the range 0.0 <= Math.random() < 1.0. (The computer actually
calculates so-called "pseudorandom" numbers, which are not truly random but are effectively
random enough for most purposes.) We will find a lot of uses for Math.random
in future examples.

For these functions, the type of the parameter -- the x or y inside
the parentheses -- can be any value of any numeric type. For most of the functions, the value
returned by the function is of type double no matter what the type of
the parameter. However, for Math.abs(x), the value returned will be
the same type as x; if x is of type int, then so is
Math.abs(x). So, for example, while Math.sqrt(9) is the
double value 3.0, Math.abs(9) is the int value
9.

Note that Math.random() does not have any parameter. You still need
the parentheses, even though there's nothing between them. The parentheses let
the computer know that this is a subroutine rather than a variable. Another
example of a subroutine that has no parameters is the function
System.currentTimeMillis(), from the System class. When this
function is executed, it retrieves the current time, expressed as the number of
milliseconds that have passed since a standardized base time (the start of the
year 1970, if you care). One millisecond is one-thousandth
of a second. The return value of System.currentTimeMillis() is of type
long (a 64-bit integer). This function can be used to measure the time that it takes the
computer to perform a task. Just record the time at which the task is begun and
the time at which it is finished and take the difference.

Here is a sample program that performs a few mathematical tasks and reports
the time that it takes for the program to run. On some computers, the time
reported might be zero, because it is too small to measure in milliseconds.
Even if it's not zero, you can be sure that most of the time reported by the
computer was spent doing output or working on tasks other than the program,
since the calculations performed in this program occupy only a tiny fraction of
a millisecond of a computer's time.

/**
 * This program performs some mathematical computations and displays the
 * results. It also displays the value of the constant Math.PI. It then
 * reports the number of seconds that the computer spent on this task.
 */

public class TimedComputation {

 public static void main(String[] args) {

 long startTime; // Starting time of program, in milliseconds.
 long endTime; // Time when computations are done, in milliseconds.
 double time; // Time difference, in seconds.

 startTime = System.currentTimeMillis();

 double width, height, hypotenuse; // sides of a triangle
 width = 42.0;
 height = 17.0;
 hypotenuse = Math.sqrt(width*width + height*height);
 System.out.print("A triangle with sides 42 and 17 has hypotenuse ");
 System.out.println(hypotenuse);

 System.out.println("\nMathematically, sin(x)*sin(x) + "
 + "cos(x)*cos(x) - 1 should be 0.");
 System.out.println("Let's check this for x = 1:");
 System.out.print(" sin(1)*sin(1) + cos(1)*cos(1) - 1 is ");
 System.out.println(Math.sin(1)*Math.sin(1)
 + Math.cos(1)*Math.cos(1) - 1);
 System.out.println("(There can be round-off errors when"
 + " computing with real numbers!)");

 System.out.print("\nHere is a random number: ");
 System.out.println(Math.random());

 System.out.print("The value of Math.PI is ");
 System.out.println(Math.PI);

 endTime = System.currentTimeMillis();
 time = (endTime - startTime) / 1000.0;

 System.out.print("\nRun time in seconds was: ");
 System.out.println(time);

 } // end main()

} // end class TimedComputation

2.3.2 Classes and Objects

Classes can be containers for static variables and subroutines. However classes also have
another purpose. They are used to describe objects. In
this role, the class is a type, in the same way that int
and double are types. That is, the class name can be used to declare
variables. Such variables can only hold one type of value. The values in this case are
objects. An object is a collection of variables and subroutines.
Every object has an associated class that tells what "type" of object it is.
The class of an object specifies what subroutines and variables that object contains.
All objects defined by the same class are similar in that they contain similar collections
of variables and subroutines. For example, an object might represent a point in the plane,
and it might contain variables named x and y to represent the
coordinates of that point. Every point object would have an x and a y,
but different points would have different values for these variables. A class, named
Point, for example, could exist to define the common structure of
all point objects, and all such objects would then be values of type Point.

As another example, let's look again at System.out.println. System
is a class, and out is a static variable within that class. However, the value of
System.out is an object, and System.out.println is actually
the full name of a subroutine that is contained in the object System.out. You don't need to
understand it at this point, but the object referred to by System.out
is an object of the class PrintStream. PrintStream is another
class that is a standard part of Java. Any object of type
PrintStream is a destination to which information can be printed;
any object of type PrintStream has a println
subroutine that can be used to send information to that destination. The object
System.out is just one possible destination, and
System.out.println is a subroutine that sends information to that particular
destination. Other objects of type PrintStream might send information
to other destinations such as files or across a network to other computers.
This is object-oriented programming: Many different things which have something
in common -- they can all be used as destinations for information -- can all be
used in the same way -- through a println subroutine. The
PrintStream class expresses the commonalities among all these
objects.

The dual role of classes can be confusing, and in practice most classes are designed to
perform primarily or exclusively in only one of the two possible roles. Fortunately,
you will not need to worry too much about it until we start working with objects in a
more serious way, in Chapter 5.

By the way, since class names and variable names are used in similar ways, it might be
hard to tell which is which. Remember that all the built-in, predefined names in Java follow
the rule that class names begin with an upper case letter while variable names
begin with a lower case letter. While this is not a formal syntax rule, I strongly
recommend that you follow it in your own programming. Subroutine names should
also begin with lower case letters. There is no possibility of confusing a
variable with a subroutine, since a subroutine name in a program is always
followed by a left parenthesis.

As one final general note, you should be aware that subroutines in Java
are often referred to as methods. Generally, the
term "method" means a subroutine that is contained in a class or in an object.
Since this is true of every subroutine in Java, every subroutine in Java is
a method. The same is not true for other programming languages, and
for the time being, I will prefer to use the more general term, "subroutine."
However, I should note that some people prefer to use the term "method"
from the beginning.

2.3.3 Operations on Strings

String is a class, and a value of type String is an object.
That object contains data, namely the sequence of characters that make up the string. It also contains
subroutines. All of these subroutines are in fact functions. For example, every string object contains
a function named length that computes the number of characters in that string. Suppose
that advice is a variable that refers to a String. For example,
advice might have been declared and assigned a value as follows:

String advice;
advice = "Seize the day!";

Then advice.length() is a function call that returns the number of
characters in the string "Seize the day!". In this case, the return value would be 14.
In general, for any variable str of type String,
the value of str.length() is an
int equal to the number of characters in the string.
Note that this function has no parameter; the particular string whose length
is being computed is the value of str. The length subroutine is defined by
the class String, and it can be used with any value of type
String. It can even be used with String literals, which are,
after all, just constant values of type String. For example, you could
have a program count the characters in "Hello World" for you by saying

System.out.print("The number of characters in ");
System.out.print("the string \"Hello World\" is ");
System.out.println("Hello World".length());

The String class defines a lot of functions. Here are some that you
might find useful. Assume that s1 and s2 are variables of
type String:

	
s1.equals(s2) is a function that returns a boolean value.
It returns true if s1 consists of exactly the same sequence
of characters as s2, and returns false otherwise.

	
s1.equalsIgnoreCase(s2) is another boolean-valued function that
checks whether s1 is the same string as s2, but this function
considers upper and lower case letters to be equivalent. Thus, if s1
is "cat", then s1.equals("Cat") is false, while
s1.equalsIgnoreCase("Cat") is true.

	
s1.length(), as mentioned above, is an integer-valued function
that gives the number of characters in s1.

	
s1.charAt(N), where N is an integer, returns a value of
type char. It returns the Nth character in the string.
Positions are numbered starting with 0, so s1.charAt(0) is actually
the first character, s1.charAt(1) is the second, and so on. The final
position is s1.length() - 1. For example, the value of
"cat".charAt(1) is 'a'. An error occurs if the value of the parameter
is less than zero or is greater than or equal to s1.length().

	
s1.substring(N,M), where N and M are integers,
returns a value of type String. The returned value consists of the
characters of s1 in positions N, N+1,...,
M-1. Note that the character in position M is not included.
The returned value is called a substring of s1.
The subroutine s1.substring(N) returns the substring of s1
consisting of characters starting at position N up until the end of
the string.

	
s1.indexOf(s2) returns an integer. If s2 occurs as a
substring of s1, then the returned value is the starting position of
that substring. Otherwise, the returned value is -1. You can also use
s1.indexOf(ch) to search for a char, ch, in
s1. To find the first occurrence of x at or after position
N, you can use s1.indexOf(x,N). To find the last occurance of
x in s1, use s1.lastIndexOf(x).

	
s1.compareTo(s2) is an integer-valued function that compares the
two strings. If the strings are equal, the value returned is zero. If
s1 is less than s2, the value returned is a number less than
zero, and if s1 is greater than s2, the value returned is
some number greater than zero. (If both of the strings consist entirely of
lower case letters, or if they consist entirely of upper case letters,
then "less than" and "greater than" refer to alphabetical
order. Otherwise, the ordering is more complicated.)

	
s1.toUpperCase() is a String-valued function that returns
a new string that is equal to s1, except that any lower case letters
in s1 have been converted to upper case. For example,
"Cat".toUpperCase() is the string "CAT". There is also a function
s1.toLowerCase().

	
s1.trim() is a String-valued function that returns a new
string that is equal to s1 except that any non-printing characters
such as spaces and tabs have been trimmed from the beginning and from the end
of the string. Thus, if s1 has the value "fred ", then
s1.trim() is the string "fred", with the spaces at the end removed.

For the functions s1.toUpperCase(), s1.toLowerCase(), and
s1.trim(), note that the value of s1 is not changed. Instead
a new string is created and returned as the value of the function. The returned
value could be used, for example, in an assignment statement such as "smallLetters =
s1.toLowerCase();". To change the value of s1, you could
use an assignment "s1 = s1.toLowerCase();".

Here is another extremely useful fact about strings: You can use the plus
operator, +, to concatenate two strings. The
concatenation of two strings is a new string consisting of all the characters
of the first string followed by all the characters of the second string. For
example, "Hello" + "World" evaluates to "HelloWorld". (Gotta watch those
spaces, of course -- if you want a space in the concatenated string, it has to be
somewhere in the input data, as in "Hello " + "World".)

Let's suppose that name is a variable of type
String and that it already refers to the name of the person using the
program. Then, the program could greet the user by executing the statement:

System.out.println("Hello, " + name + ". Pleased to meet you!");

Even more surprising is that you can actually concatenate values of any
type onto a String using the + operator. The value
is converted to a string, just as it would be if you printed it
to the standard output, and then that string is concatenated with the other string. For
example, the expression "Number" + 42 evaluates to the string "Number42". And
the statements

System.out.print("After ");
System.out.print(years);
System.out.print(" years, the value is ");
System.out.print(principal);

can be replaced by the single statement:

System.out.print("After " + years +
 " years, the value is " + principal);

Obviously, this is very convenient. It would have shortened some of the
examples presented earlier in this chapter.

2.3.4 Introduction to Enums

Java comes with eight built-in primitive types and a large set of types that
are defined by classes, such as String. But even
this large collection of types is not sufficient to cover all the possible situations
that a programmer might have to deal with. So, an essential part of Java, just like
almost any other programming language, is the ability to create new types. For the
most part, this is done by defining new classes; you will learn how to do that
in Chapter 5. But we will look here at one particular case:
the ability to define enums (short for
enumerated types).

Technically, an enum is considered to be a special kind of class, but that
is not important for now. In this section, we will look at enums in a simplified
form. In practice, most uses of enums will only need the simplified form
that is presented here.

An enum is a type that has a fixed list of possible values, which is specified
when the enum is created. In some ways, an enum is similar to the boolean
data type, which has true and false as its only possible
values. However, boolean is a primitive type, while an enum is not.

The definition of an enum type has the (simplified) form:

enum enum-type-name { list-of-enum-values }

This definition cannot be inside a subroutine. You can place it outside the main() routine
of the program. The enum-type-name can be any simple identifier.
This identifier becomes the name of the enum type, in the same way that "boolean" is the name of
the boolean type and "String" is the name of the String type.
Each value in the list-of-enum-values must be a simple identifier,
and the identifiers in the list are separated by commas. For example, here is the definition
of an enum type named Season whose values are the names of the four seasons of the year:

enum Season { SPRING, SUMMER, FALL, WINTER }

By convention, enum values are given names that are made up of upper case letters, but that is
a style guideline and not a syntax rule. An enum value is a constant; that is,
it represents a fixed value that cannot be changed. The possible values of an enum type are usually referred
to as enum constants.

Note that the enum constants of type Season are considered to be "contained in"
Season, which means -- following the convention that compound identifiers
are used for things that are contained in other things -- the names that you actually
use in your program to refer to them are Season.SPRING, Season.SUMMER,
Season.FALL, and Season.WINTER.

Once an enum type has been created, it can be used to declare variables in exactly
the same ways that other types are used. For example, you can declare a variable
named vacation of type Season with the statement:

Season vacation;

After declaring the variable, you can assign a value to it using an assignment statement.
The value on the right-hand side of the assignment can be one of the enum constants of
type Season. Remember to use the full name of the constant, including
"Season"! For example:

vacation = Season.SUMMER;

You can print out an enum value with an output statement such as System.out.print(vacation).
The output value will be the name of the enum constant (without the "Season."). In this case,
the output would be "SUMMER".

Because an enum is technically a class, the enum values are technically objects. As objects,
they can contain subroutines. One of the subroutines in every enum value is named ordinal(). When
used with an enum value, it returns the ordinal number of the value in the
list of values of the enum. The ordinal number simply tells the position of the value in the list.
That is, Season.SPRING.ordinal() is the int value 0, Season.SUMMER.ordinal() is 1,
Season.FALL.ordinal() is 2, and Season.WINTER.ordinal() is 3. (You will see over
and over again that computer scientists like to start counting at zero!) You can, of course, use
the ordinal() method with a variable of type Season, such
as vacation.ordinal().

Using enums can make a program more readable, since you can use meaningful names for the values.
And it can prevent certain types of errors, since a compiler can check that the values assigned
to an enum variable are in fact legal values for that variable.
However, we will in fact use them only occasionally in this book. For now, you should just appreciate
them as the first example of an important concept: creating new types.
Here is a little example that shows enums being used in a complete program:

public class EnumDemo {

 // Define two enum types -- remember that the definitions
 // go OUTSIDE The main() routine!

 enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

 enum Month { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC }

 public static void main(String[] args) {

 Day tgif; // Declare a variable of type Day.
 Month libra; // Declare a variable of type Month.

 tgif = Day.FRIDAY; // Assign a value of type Day to tgif.
 libra = Month.OCT; // Assign a value of type Month to libra.

 System.out.print("My sign is libra, since I was born in ");
 System.out.println(libra); // Output value will be: OCT
 System.out.print("That's the ");
 System.out.print(libra.ordinal());
 System.out.println("-th month of the year.");
 System.out.println(" (Counting from 0, of course!)");

 System.out.print("Isn't it nice to get to ");
 System.out.println(tgif); // Output value will be: FRIDAY

 System.out.println(tgif + " is the " + tgif.ordinal()
 + "-th day of the week.");
 }

}

Solution for Programming Exercise 2.4

Exercise 2.4:

Write a program that helps
the user count his change. The program should ask how many quarters the user
has, then how many dimes, then how many nickels, then how many pennies. Then
the program should tell the user how much money he has, expressed in
dollars.

Discussion

The program will need variables to represent the number of each type of
coin. Since the number of coins has to be an integer, these variables are of
type int. I'll call the variables quarters, dimes,
nickels, and pennies.

The total value of the coins, when expressed in dollars, can be a
non-integer number such as 1.57 or 3.02. Since the total value in dollars is a
real number, I will use a variable of type double to represent it. The
variable is named dollars

The outline of the program is clear enough:

Declare the variables.
Ask the user for the number of each type of coin, and read the responses.
Compute the total value of the coins, in dollars.
Display the result to the user.

The function TextIO.getlnInt() can be used to read each of the
user's responses. The alternative function TextIO.getInt() could also
be used, but it is less safe. Suppose, for example, that the user responds to
the request to type in the number of quarters by entering "7 quarters". After
TextIO.getlnInt() reads the number 7, it will discard the extra input
"quarters". TextIO.getInt() will read the 7 correctly, but the extra
input is not discarded. Later, when the program tries to read the number of
dimes, it sees the left-over input and tries to read that, without giving the
user a chance to type in another response. You might want to experiment and see
what happens if you change getlnInt() to getInt(). (Of
course, if the user's response is "I have 7 quarters" or "seven", then you are
out of luck in any case.)

Since one quarter is worth 0.25 dollars, the number of dollars in N quarters
is 0.25*N. Similarly, a dime is worth 0.10 dollars, a nickel is 0.05 dollars,
and a penny is 0.01 dollars. So, to get the total value of all the user's
coins, I just have to add up (0.25*quarters) + (0.10*dimes) +
(0.05*nickels) + (0.01*pennies). This value is assigned to the variable,
dollars, and that is the result that is displayed to the user.
Formatted output, using System.out.printf,
can be used to specify that the output value should be printed with two
digits after the decimal point.

Alternatively, I could first have computed the total number of cents in all
the coins, and then divided by 100 to convert the amount into dollars:

int totalCents; // Total number of cents in the coins.

totalCents = 25*quarters + 10*dimes + 5*nickels + pennies;
dollars = totalCents/100.0;

Since totalCents is of type int, it is essential here that
I compute dollars as totalCents/100.0 and not as
totalCents/100. The value computed by totalCents/100 is an
integer. For example, if totalCents is 397, then
totalCents/100 is 3. Using totalCents/100.0 forces the
computer to compute the answer as a real number, giving 3.97.

A second version of the program, using a Scanner for input,
is also given. (See Subsection 2.4.6.) A Scanner
named stdio is created, and integers are read using the function
stdio.nextInt(). This method corresponds to TextIO.getInt(),
not TextIO.getlnInt(). To get something equivalent to TextIO.getlnInt(),
we can follow the call to stdio.nextInt() with a call to stdio.nextLine().
The call to stdio.nextLine() will read and discard any extra characters on the
same line after the integer that was read by stdio.nextInt(). If you are not
worried about the user typing extra stuff on a line, you can leave out the calls to
stdio.nextInt().

The Solution

public class CountChange {

 /* This program will add up the value of a number of quarters,
 dimes, nickels, and pennies. The number of each type of
 coin is input by the user. The total value is reported
 in dollars. This program depends on the non-standard class,
 TextIO.
 */

 public static void main(String[] args) {

 int quarters; // Number of quarters, to be input by the user.
 int dimes; // Number of dimes, to be input by the user.
 int nickels; // Number of nickels, to be input by the user.
 int pennies; // Number of pennies, to be input by the user.

 double dollars; // Total value of all the coins, in dollars.

 /* Ask the user for the number of each type of coin. */

 System.out.print("Enter the number of quarters: ");
 quarters = TextIO.getlnInt();

 System.out.print("Enter the number of dimes: ");
 dimes = TextIO.getlnInt();

 System.out.print("Enter the number of nickels: ");
 nickels = TextIO.getlnInt();

 System.out.print("Enter the number of pennies: ");
 pennies = TextIO.getlnInt();

 /* Add up the values of the coins, in dollars. */

 dollars = (0.25 * quarters) + (0.10 * dimes)
 + (0.05 * nickels) + (0.01 * pennies);

 /* Report the result back to the user. */

 System.out.println();
 System.out.print("The total in dollars is $");
 System.out.printf("%1.2f", dollars); // Formatted output!
 System.out.println();

 } // end main()

} // end class

A version using Scanner for input:

import java.util.Scanner;

public class CountChangeWithScanner {

 public static void main(String[] args) {

 int quarters; // Number of quarters, to be input by the user.
 int dimes; // Number of dimes, to be input by the user.
 int nickels; // Number of nickels, to be input by the user.
 int pennies; // Number of pennies, to be input by the user.

 Scanner stdio = new Scanner(System.in);

 double dollars; // Total value of all the coins, in dollars.

 /* Ask the user for the number of each type of coin. */

 System.out.print("Enter the number of quarters: ");
 quarters = stdio.nextInt();
 stdio.nextLine();

 System.out.print("Enter the number of dimes: ");
 dimes = stdio.nextInt();
 stdio.nextLine();

 System.out.print("Enter the number of nickels: ");
 nickels = stdio.nextInt();
 stdio.nextLine();

 System.out.print("Enter the number of pennies: ");
 pennies = stdio.nextInt();
 stdio.nextLine();

 /* Add up the values of the coins, in dollars. */

 dollars = (0.25 * quarters) + (0.10 * dimes)
 + (0.05 * nickels) + (0.01 * pennies);

 /* Report the result back to the user. */

 System.out.println();
 System.out.print("The total in dollars is $");
 System.out.printf("%1.2f", dollars); // Formatted output!
 System.out.println();

 } // end main()

} // end class

Quiz on Chapter 2

Question 1:

Briefly explain what is
meant by the syntax and the semantics of a programming language.
Give an example to illustrate the difference between a syntax error and a
semantics error.

Question 2:

What does the computer do
when it executes a variable declaration statement. Give an example.

Question 3:

What is a type, as
this term relates to programming?

Question 4:

One of the primitive types
in Java is boolean. What is the boolean type? Where are boolean
values used? What are its possible values?

Question 5:

Give the meaning of each of
the following Java operators:

a) ++

b) &&

c) !=

Question 6:

Explain what is meant by an
assignment statement, and give an example. What are assignment
statements used for?

Question 7:

What is meant by
precedence of operators?

Question 8:

What is a
literal?

Question 9:

In Java, classes have two
fundamentally different purposes. What are they?

Question 10:

What is the difference
between the statement "x = TextIO.getDouble();" and the statement
"x = TextIO.getlnDouble();"

Question 11:

Explain why the value of the expression 2 + 3 + "test"
 is the string "5test" while the value of the expression
 "test" + 2 + 3 is the string "test23".
 What is the value of "test" + 2 * 3 ?

Question 12:

Integrated Development Environments such as Eclipse often use syntax coloring,
 which assigns various colors to the characters in a program to reflect the syntax of the language.
 A student notices that Eclipse colors the word String differently from
 int, double, and boolean. The student asks why
 String should be a different color, since all these words are names of types.
 What's the answer to the student's question?

See the Answers

Section 2.4

Text Input and Output

We have seen that it is very easy to display
text to the user with the functions System.out.print and System.out.println.
But there is more to say on the topic of outputting text. Furthermore, most programs
use data that is input to the program at run time, so you need to know how to do input
as well as output. This section explains how to get
data from the user, and it covers output in more detail than we have seen so far. It also
has a section on using files for input and output.

2.4.1 Basic Output and Formatted Output

The most basic output function is System.out.print(x), where x
can be a value or expression of any type. If the parameter, x, is not already
a string, it is converted to a value of type String, and the string
is then output to the destination called standard output. (Generally,
this means that the string is displayed to the user; however, in GUI programs, it
outputs to a place where a typical user is unlikely to see it. Furthermore, standard
output can be "redirected" to write to a different output destination. Nevertheless,
for the type of program that we are working with now, the purpose of System.out
is to display text to the user.)

System.out.println(x) outputs the same text as System.out.print,
but it follows that text by a line feed, which means that any subsequent output will be on the
next line. It is possible to use this function with no parameter, System.out.println(),
which outputs nothing but a line feed. Note that System.out.println(x) is equivalent
to

System.out.print(x);
System.out.println();

You might have noticed that System.out.print outputs real numbers with
as many digits after the decimal point as necessary, so that for example π is output
as 3.141592653589793, and numbers that are supposed to represent money might be output
as 1050.0 or 43.575. You might prefer to have these numbers output as, for example,
3.14159, 1050.00, and 43.58.
Java has a "formatted output" capability that makes it easy
to control how real numbers and other values are printed. A lot of formatting options
are available. I will cover just a few of the simplest and most commonly used
possibilities here.

The function System.out.printf can be used to produce formatted
output. (The name "printf," which stands for "print formatted," is copied from
the C and C++ programming languages, where this type of output originated.)
System.out.printf takes one or more parameters.
The first parameter is a String that specifies the format of the
output. This parameter is called the format string.
The remaining parameters specify the values that are to be output. Here is
a statement that will print a number in the proper format for a dollar amount,
where amount is a variable of type double:

System.out.printf("%1.2f", amount);

The output format of a value is specified by a format specifier.
In this example, the format specifier is %1.2f.
The format string (in the simple cases that I cover here) contains one format specifier for
each of the values that is to be output. Some typical format specifiers are
%d, %12d, %10s, %1.2f, %15.8e and %1.8g.
Every format specifier begins with a percent sign (%) and ends with a letter, possibly with
some extra formatting information in between. The letter specifies the type of output
that is to be produced. For example, in %d and %12d,
the "d" specifies that an integer is to be written. The "12" in %12d
specifies the minimum number of spaces that should be used for the output. If the
integer that is being output takes up fewer than 12 spaces, extra blank spaces
are added in front of the integer to bring the total up to 12. We say that the
output is "right-justified in a field of length 12." A very large value is not forced into
12 spaces; if the value has more than 12 digits, all the digits will be printed, with
no extra spaces. The specifier %d means the same as %1d -- that is,
an integer will be printed using just as many spaces as necessary.
(The "d," by the way, stands for "decimal" -- that is, base-10 -- numbers. You can replace the "d" with an "x" to
output an integer value in hexadecimal form.)

The letter "s" at the end of a format specifier can be used with any type of value.
It means that the value should be output in its default format, just as it would be
in unformatted output. A number, such as the "20" in %20s, can
be added to specify the (minimum) number of characters. The "s" stands for "string,"
and it can be used for values of type String. It can also be used
for values of other types; in that case the value is converted into a String
value in the usual way.

The format specifiers for values of type double are more complicated.
An "f", as in %1.2f, is used to output a number in "floating-point" form,
that is with digits after a decimal point. In %1.2f, the "2" specifies
the number of digits to use after the decimal point. The "1" specifies the (minimum)
number of characters to output; a "1" in this position effectively means that just as many characters
as are necessary should be used. Similarly, %12.3f would specify a
floating-point format with 3 digits after the decimal point, right-justified in a
field of length 12.

Very large and very small numbers should be written in exponential format, such
as 6.00221415e23, representing "6.00221415 times 10 raised to the power 23."
A format specifier such as %15.8e specifies an output in exponential
form, with the "8" telling how many digits to use after the decimal point.
If you use "g" instead of "e", the output will be in exponential form for
very small values and very large values and in floating-point form for other values. In %1.8g,
the 8 gives the total number of digits in the answer, including both the
digits before the decimal point and the digits after the decimal point.

For numeric output, the format specifier can include a comma (","),
which will cause the digits of the number to be separated into groups, to
make it easier to read big numbers. In the United States, groups of three
digits are separated by commas. For example, if x is one billion,
then System.out.printf("%,d",x) will output 1,000,000,000.
In other countries, the separator character and the
number of digits per group might be different. The comma should come at the
beginning of the format specifier, before the field width; for example:
%,12.3f. If you want the output to be left-justified instead of
right justified, add a minus sign to the beginning of the format specifier:
for example, %-20s.

In addition to format specifiers, the format string in a printf statement
can include other characters. These extra characters are just copied to the
output. This can be a convenient way to insert values into the middle of an
output string. For example, if x and y are variables
of type int, you could say

System.out.printf("The product of %d and %d is %d", x, y, x*y);

When this statement is executed, the value of x is substituted for the
first %d in the string, the value of y for the second
%d, and the value of the expression x*y for the third,
so the output would be something like "The product of 17 and 42 is 714" (quotation
marks not included in output!).

To output a percent sign, use the format specifier %% in the format
string. You can use %n to output a line feed. You can also use
a backslash, \, as usual in strings to output special characters
such as tabs and double quote characters.

2.4.2 A First Text Input Example

For some unfathomable reason, Java
has never made it very easy to read data typed in by the user of a program.
You've already seen that output can be displayed to the user using the
subroutine System.out.print. This subroutine is part of a pre-defined
object called System.out. The purpose of this object is precisely to
display output to the user. There is a corresponding object called
System.in that exists to read data input by the user, but it provides
only very primitive input facilities, and it requires some advanced Java
programming skills to use it effectively.

Java 5.0 finally made input a little easier with a
new Scanner class. However, it requires some knowledge of
object-oriented programming to use this class, so it's not ideal for use
here at the beginning of this course. Java 6 introduced the Console
class for communicating with the user, but Console
has its own problems. (It is not always available, and it can only read
strings, not numbers.) Furthermore, in my opinion,
Scanner and Console still don't get things quite right.
Nevertheless, I will introduce Scanner briefly at the end of this
section, in case you want to start using it now. However, we start with my own version
of text input.

Fortunately, it is possible to extend Java by
creating new classes that provide subroutines that are not available in the
standard part of the language. As soon as a new class is
available, the subroutines that it contains can be used in exactly the same way
as built-in routines. Along these lines, I've written a class named TextIO that defines
subroutines for reading values typed by the user. The subroutines in this class
make it possible to get input from the standard input object,
System.in, without knowing about the advanced aspects of Java that are
needed to use Scanner
or to use System.in directly. TextIO also has a few
other capabilities that I will discuss later in this section.

To use the TextIO class, you must make sure that the class is
available to your program. What this means depends on the Java programming
environment that you are using. In general, you just have to
add the source code file, TextIO.java, to the same directory that contains
your main program. See Section 2.6
for information about how to use TextIO.

The input routines in the TextIO class are static member functions.
(Static member functions were introduced in the previous section.)
Let's suppose that you want your program to read an integer typed
in by the user. The TextIO class contains a static member function
named getlnInt that you can use for this purpose. Since this function is
contained in the TextIO class, you have to refer to it in your program
as TextIO.getlnInt. The function has no parameters, so a complete call to the
function takes the form "TextIO.getlnInt()". This function call
represents the int value typed by the user, and you have to do
something with the returned value, such as assign it to a variable. For
example, if userInput is a variable of type int (created with
a declaration statement "int userInput;"), then you could use the
assignment statement

userInput = TextIO.getlnInt();

When the computer executes this statement, it will wait for the user to type
in an integer value. The user must type a number and press return before the program can
continue. The value that the user typed will then be returned by the function, and it
will be stored in the variable, userInput. Here is a complete program
that uses TextIO.getlnInt to read a number typed by the user and then
prints out the square of that number:

/**
 * A program that reads an integer that is typed in by the
 * user and computes and prints the square of that integer.
 */

public class PrintSquare {

 public static void main(String[] args) {

 int userInput; // The number input by the user.
 int square; // The userInput, multiplied by itself.

 System.out.print("Please type a number: ");
 userInput = TextIO.getlnInt();
 square = userInput * userInput;

 System.out.println();
 System.out.println("The number that you entered was " + userInput);
 System.out.println("The square of that number is " + square);
 System.out.println();

 } // end of main()

} //end of class PrintSquare

When you run this program, it
will display the message "Please type a number:" and will pause until you type
a response, including a carriage return after the number. Note that it is
good style to output a question or some other prompt to the user before reading
input. Otherwise, the user will have no way of knowing exactly what the
computer is waiting for, or even that it is waiting for the user to do something.

2.4.3 Basic TextIO Input Functions

TextIO includes a variety of functions for inputting values
of various types. Here are the functions that you are
most likely to use:

j = TextIO.getlnInt(); // Reads a value of type int.
y = TextIO.getlnDouble(); // Reads a value of type double.
a = TextIO.getlnBoolean(); // Reads a value of type boolean.
c = TextIO.getlnChar(); // Reads a value of type char.
w = TextIO.getlnWord(); // Reads one "word" as a value of type String.
s = TextIO.getln(); // Reads an entire input line as a String.

For these statements to be legal, the variables on the left side of each
assignment statement must already be declared and must be of the same type as
that returned by the function on the right side. Note carefully that
these functions do not have parameters. The values that they return come
from outside the program, typed in by the user as the program is running.
To "capture" that data so that you can use it in your program, you have
to assign the return value of the function to a variable. You will then
be able to refer to the user's input value by using the name of the variable.

When you call one of these functions, you are guaranteed that it will return
a legal value of the correct type. If the user types in an illegal value as
input -- for example, if you ask for an int and the user types in a
non-numeric character or a
number that is outside the legal range of values that can be stored
in a variable of type int -- then the computer will
ask the user to re-enter the value, and your program never sees the first,
illegal value that the user entered. For TextIO.getlnBoolean(),
the user is allowed to type in any of the following: true, false, t, f, yes, no, y,
n, 1, or 0. Furthermore, they can use either upper or lower case letters.
In any case, the user's input is interpreted as a true/false value. It's
convenient to use TextIO.getlnBoolean() to read the user's
response to a Yes/No question.

You'll notice that there are two input functions that return Strings. The
first, getlnWord(), returns a string consisting of non-blank characters
only. When it is called, it skips over any spaces and carriage returns typed in
by the user. Then it reads non-blank characters until it gets to the next space
or carriage return. It returns a String consisting of all the
non-blank characters that it has read. The second input function,
getln(), simply returns a string consisting of all the characters
typed in by the user, including spaces, up to the next carriage return. It gets
an entire line of input text. The carriage return itself is not returned as
part of the input string, but it is read and discarded by the computer. Note
that the String returned by TextIO.getln() might be the empty string,
"", which contains no characters at
all. You will get this return value if the user simply presses return, without
typing anything else first.

TextIO.getln() does not skip blanks
or end-of-lines before reading a value. But the input functions getlnInt(),
getlnDouble(), getlnBoolean(), and
getlnChar() behave like getlnWord() in that they will skip
past any blanks and carriage returns in the input before reading a value. When one
of these functions skips over an end-of-line, it outputs a '?' to let the user know
that more input is expected.

Furthermore, if the user types extra characters on the line after the
input value, all the extra characters will be discarded, along with
the carriage return at the end of the line. If the
program executes another input function, the user will have to type in
another line of input, even if they had typed more than one value on the previous line.
It might not sound like a good idea to discard any
of the user's input, but it turns out to be the safest thing to do in most
programs.

Using TextIO for input and output, we can now improve the program
from Section 2.2 for computing the value of an investment.
We can have the user type in the initial value of the investment and the
interest rate. The result is a much more useful program -- for one thing, it
makes sense to run it more than once! Note that this program uses formatted
output to print out monetary values in their correct format.

/**
 * This class implements a simple program that will compute
 * the amount of interest that is earned on an investment over
 * a period of one year. The initial amount of the investment
 * and the interest rate are input by the user. The value of
 * the investment at the end of the year is output. The
 * rate must be input as a decimal, not a percentage (for
 * example, 0.05 rather than 5).
 */

public class Interest2 {

 public static void main(String[] args) {

 double principal; // The value of the investment.
 double rate; // The annual interest rate.
 double interest; // The interest earned during the year.

 System.out.print("Enter the initial investment: ");
 principal = TextIO.getlnDouble();

 System.out.print("Enter the annual interest rate (as a decimal): ");
 rate = TextIO.getlnDouble();

 interest = principal * rate; // Compute this year's interest.
 principal = principal + interest; // Add it to principal.

 System.out.printf("The amount of interest is $%1.2f%n", interest);
 System.out.printf("The value after one year is $%1.2f%n", principal);

 } // end of main()

} // end of class Interest2

(You might be wondering why there is only one output routine, System.out.println,
which can output data values of any type, while there is a
separate input routine for each data type. For the output function, the computer can
tell what type of value is being output by looking at the parameter. However, the input
routines don't have parameters, so the different input routines can only be
distinguished by having different names.)

2.4.4 Introduction to File I/O

System.out sends its output to the output destination known as
"standard output." But standard output is just one possible output destination.
For example, data can be written to a file that
is stored on the user's hard drive. The advantage to this, of course, is that
the data is saved in the file even after the program ends, and the user can
print the file, email it to someone else, edit it with another program, and so
on. Similarly, System.in has only one possible source for input
data.

TextIO has the ability to write data to files and to read data
from files. TextIO includes output functions
TextIO.put, TextIO.putln, and TextIO.putf.
Ordinarily, these functions work exactly like
System.out.print, System.out.println, and
System.out.printf and are interchangeable with them.
However, they can also be used to output text to files and to other destinations.

When you write output using TextIO.put, TextIO.putln,
or TextIO.putf, the output is sent to
the current output destination. By default,
the current output destination is standard output. However, TextIO
has subroutines that can be used to change the current output destination.
To write to a file named "result.txt", for example, you would use the statement:

TextIO.writeFile("result.txt");

After this statement is executed, any output from TextIO output
statements will be sent to the file named "result.txt" instead of to standard
output. The file will be created if it does not already exist.
Note that if a file with the same name already exists, its previous
contents will be erased without any warning!

When you call TextIO.writeFile, TextIO
remembers the file and automatically sends any output from TextIO.put
or other output functions to that file. If you want to go back to writing to
standard output, you can call

TextIO.writeStandardOutput();

Here is a simple program that asks the user some
questions and outputs the user's responses to a file named
"profile.txt." As an example, it uses TextIO for
output to standard output as well as to the file, but System.out
could also have been used for the output to standard output.

public class CreateProfile {

 public static void main(String[] args) {

 String name; // The user's name.
 String email; // The user's email address.
 double salary; // the user's yearly salary.
 String favColor; // The user's favorite color.

 TextIO.putln("Good Afternoon! This program will create");
 TextIO.putln("your profile file, if you will just answer");
 TextIO.putln("a few simple questions.");
 TextIO.putln();

 /* Gather responses from the user. */

 TextIO.put("What is your name? ");
 name = TextIO.getln();
 TextIO.put("What is your email address? ");
 email = TextIO.getln();
 TextIO.put("What is your yearly income? ");
 salary = TextIO.getlnDouble();
 TextIO.put("What is your favorite color? ");
 favColor = TextIO.getln();

 /* Write the user's information to the file named profile.txt. */

 TextIO.writeFile("profile.txt"); // subsequent output goes to file
 TextIO.putln("Name: " + name);
 TextIO.putln("Email: " + email);
 TextIO.putln("Favorite Color: " + favColor);
 TextIO.putf("Yearly Income: %,1.2f%n", salary);

 /* Print a final message to standard output. */

 TextIO.writeStandardOutput();
 TextIO.putln("Thank you. Your profile has been written to profile.txt.");

 }

}

In many cases, you want to let the user select
the file that will be used for output. You could ask the user to type in the
file name, but that is error-prone, and users are more familiar with
selecting a file from a file dialog box. The statement

TextIO.writeUserSelectedFile();

will open a typical graphical-user-interface file selection dialog where
the user can specify the output file. This also has the advantage of alerting the
user if they are about to replace an existing file. It is possible for the
user to cancel the dialog box without selecting a file. TextIO.writeUserSelectedFile
is a function that returns a boolean value. The return value is true
if the user selected a file, and is false if the user canceled the dialog box.
Your program can check the return value if it needs to know whether it is actually going
to write to a file or not.

TextIO can also read from files, as an alternative to
reading from standard input.
You can specify an input source for TextIO's various
"get" functions. The default input source is standard input. You can use
the statement TextIO.readFile("data.txt") to read from
a file named "data.txt" instead, or you can let the user select the
input file with a GUI-style dialog box by saying TextIO.readUserSelectedFile().
After you have done this, any input will come from the file instead of being
typed by the user. You can go back to reading the user's input with
TextIO.readStandardInput().

When your program is reading from standard input, the user gets
a chance to correct any errors in the input. This is not possible
when the program is reading from a file. If illegal data is found
when a program tries to read from a file, an error occurs that
will crash the program. (Later, we will see that it is possible
to "catch" such errors and recover from them.) Errors can also
occur, though more rarely, when writing to files.

A complete understanding of input/output in Java requires
a knowledge of object oriented programming. We will return to
the topic later, in Chapter 11.
The file I/O capabilities in TextIO are rather
primitive by comparison. Nevertheless, they are sufficient
for many applications, and they will allow you to get some
experience with files sooner rather than later.

2.4.5 Other TextIO Features

The TextIO input functions that we have seen so
far can only read one value from a line of input.
Sometimes, however, you do want to read more than one value
from the same line of input. For example, you might want the
user to be able to type something like "42 17" to input the
two numbers 42 and 17 on the same line.
TextIO provides the following
alternative input functions to allow you to do this:

j = TextIO.getInt(); // Reads a value of type int.
y = TextIO.getDouble(); // Reads a value of type double.
a = TextIO.getBoolean(); // Reads a value of type boolean.
c = TextIO.getChar(); // Reads a value of type char.
w = TextIO.getWord(); // Reads one "word" as a value of type String.

The names of these functions start with "get" instead of "getln".
"Getln" is short for "get line" and should remind you that the functions
whose names begin with "getln" will consume an entire line of data. A function
without the "ln" will read an input value in the same way, but will then
save the rest of the input line in a chunk of internal memory
called the input buffer.
The next time the computer wants to read an input value, it will look
in the input buffer before prompting the user for input. This allows the
computer to read several values from one line of the user's input.
Strictly speaking, the computer actually reads only from the input buffer.
The first time the program tries to read input from the user, the
computer will wait while the user types in an entire line of
input. TextIO stores that line in the input buffer until
the data on the line has been read or discarded (by one of the "getln"
functions). The user only gets to
type when the buffer is empty.

Note, by the way, that although the TextIO input functions will
skip past blank spaces and carriage returns while looking for input, they will
not skip past other characters. For example, if you try
to read two ints and the user types "42,17", the computer will read the
first number correctly, but when it tries to read the second number, it will
see the comma. It will regard this as an error and will force the user to
retype the number. If you want to input several numbers from one line, you
should make sure that the user knows to separate them with spaces, not commas.
Alternatively, if you want to require a comma between the numbers, use
getChar() to read the comma before reading the second number.

There is another character input function, TextIO.getAnyChar(),
which does not skip past blanks or carriage returns. It simply reads and
returns the next character typed by the user, even if it's a blank or
carriage return. If the user typed a carriage return,
then the char returned by getAnyChar() is the special linefeed
character '\n'. There is also a function, TextIO.peek(), that lets
you look ahead at the next character in the input without actually reading it.
After you "peek" at the next character, it will still be there when you read
the next item from input. This allows you to look ahead and see what's coming
up in the input, so that you can take different actions depending on what's
there.

The TextIO class provides a number of other functions. To
learn more about them, you can look at the comments in the source code file,
TextIO.java.

Clearly, the semantics of input is much more complicated than the semantics of output!
Fortunately, for the majority of applications, it's pretty straightforward in practice.
You only need to follow the details if you want to do something fancy. In particular,
I strongly advise you to use the "getln" versions of
the input routines, rather than the "get" versions, unless you really want to
read several items from the same line of input, precisely because the semantics
of the "getln" versions is much simpler.

2.4.6 Using Scanner for Input

TextIO makes it easy to get input from the user.
However, since it is not a standard class, you have to remember to make
TextIO.java available to any program that uses it. Another option for input
is the Scanner class.
One advantage of using Scanner is that it's
a standard part of Java and so is always there when you want it.

It's not that hard to use a Scanner for user input, and it has
some nice features, but using it requires some
syntax that will not be introduced until Chapter 4 and
Chapter 5. I'll tell you how to do it here, without explaining why
it works. You won't understand all the syntax at this point.
(Scanners will be covered in more detail in Subsection 11.1.5.)

First, you should add the following
line to your program at the beginning of the source code file, before the "public class...":

import java.util.Scanner;

Then include the following statement at the beginning of your main() routine:

Scanner stdin = new Scanner(System.in);

This creates a variable named stdin of type Scanner.
(You can use a different name for the variable if you want; "stdin" stands for "standard input.")
You can then use stdin in your program to access a variety of subroutines for
reading user input. For example, the function stdin.nextInt() reads one value of type
int from the user and returns it. It is almost the same as TextIO.getInt()
except for two things: If the value entered by the user is not a legal int, then
stdin.nextInt() will crash rather than prompt the user to re-enter the value.
And the integer entered by the user must be followed by a blank space or by an end-of-line,
whereas TextIO.getInt() will stop reading at any character that is not a digit.

There are corresponding methods for reading other types of data, including
stdin.nextDouble(), stdin.nextLong(), and stdin.nextBoolean().
(stdin.nextBoolean() will only accept "true" or "false" as input.) These subroutines
can read more than one value from a line, so they are more similar to the "get" versions of
TextIO subroutines rather than the "getln" versions. The method
stdin.nextLine() is equivalent to TextIO.getln(), and
stdin.next(), like TextIO.getWord(), returns a string of
non-blank characters.

As a simple example, here is a version of the sample program Interest2.java
that uses Scanner instead of TextIO for user
input:

import java.util.Scanner; // Make the Scanner class available.

public class Interest2WithScanner {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in); // Create the Scanner.

 double principal; // The value of the investment.
 double rate; // The annual interest rate.
 double interest; // The interest earned during the year.

 System.out.print("Enter the initial investment: ");
 principal = stdin.nextDouble();

 System.out.print("Enter the annual interest rate (as a decimal): ");
 rate = stdin.nextDouble();

 interest = principal * rate; // Compute this year's interest.
 principal = principal + interest; // Add it to principal.

 System.out.printf("The amount of interest is $%1.2f%n", interest);
 System.out.printf("The value after one year is $%1.2f%n", principal);

 } // end of main()

} // end of class Interest2With Scanner

Note the inclusion of the two lines given above to import Scanner and
create stdin. Also note the substitution of
stdin.nextDouble() for TextIO.getlnDouble(). (In fact,
stdin.nextDouble() is really equivalent to TextIO.getDouble()
rather than to the "getln" version, but this will not affect the behavior of the
program as long as the user types just one number on each line of input.)

I will continue to use TextIO for input for the time
being, but I will give a few more examples of using Scanner
in the on-line solutions to the end-of-chapter exercises. There will be more
detailed coverage of Scanner later in the book.

Answers for Quiz on Chapter 2

Question 1:

Briefly explain what is
meant by the syntax and the semantics of a programming language.
Give an example to illustrate the difference between a syntax error and a
semantics error.

Answer:

The syntax of a language is its
grammar, and the semantics is its meaning. A program with a syntax error cannot
be compiled. A program with a semantic error can be compiled and run, but gives
an incorrect result. A missing semicolon in a program is an example of a syntax
error, because the compiler will find the error and report it. If N is
an integer variable, then the statement "frac = 1/N;" is probably an
error of semantics. The value of 1/N will be 0 for any N
greater than 1. It's likely that the programmer meant to say
1.0/N.

Question 2:

What does the computer do
when it executes a variable declaration statement. Give an example.

Answer:

A variable is a "box", or
location, in the computer's memory that has a name. The box holds a value of
some specified type. A variable declaration statement is a statement such
as

int x;

which creates the variable x. When the computer executes a variable
declaration, it creates the box in memory and associates a name (in this case,
x) with that box. Later in the program, that variable can be referred to by
name.

Question 3:

What is a type, as
this term relates to programming?

Answer:

A "type" represents a set of
possible values. When you specify that a variable has a certain type, you are
saying what values it can hold. When you say that an expression is of a certain
type, you are saying what values the expression can have. For example, to say
that a variable is of type int says that integer values in a certain
range can be stored in that variable.

Question 4:

One of the primitive types
in Java is boolean. What is the boolean type? Where are boolean
values used? What are its possible values?

Answer:

The only values of type boolean
are true and false. Expressions of type boolean are used in
places where true/false values are expected, such as the conditions in
while loops and if statements.

Question 5:

Give the meaning of each of
the following Java operators:

a) ++

b) &&

c) !=

Answer:

The operator ++ is used to add 1
to the value of a variable. For example, "count++" has the same effect
as "count = count + 1".

The operator && represents the word and. It can be used to
combine two boolean values, as in "(x > 0 && y > 0)",
which means, "x is greater than 0 and y is greater than 0."

The operation != means "is not equal to", as in "if (x != 0)",
meaning "if x is not equal to zero.".

Question 6:

Explain what is meant by an
assignment statement, and give an example. What are assignment
statements used for?

Answer:

An assignment statement computes
a value and stores that value in a variable. Examples include:

x = 17; // Assign a constant value to the variable, x.
newRow = row; // Copy the value from the variable, row,
 // into the variable, newRow.
ans = 17*x + 42; // Compute the value of the expression
 // 17*x + 42, and store that value in ans.

An assignment statement is used to change the value of a variable as the
program is running. Since the value assigned to the variable can be another
variable or an expression, assignments statements can be used to copy data from
one place to another in the computer, and to do complex computations.

Question 7:

What is meant by
precedence of operators?

Answer:

If two or more operators are
used in an expression, and if there are no parentheses to indicate the order in
which the operators are to be evaluated, then the computer needs some way of
deciding which operator to evaluate first. The order is determined by the
precedence of the operators. For example, * has higher precedence than
+, so the expression 3+5*7 is evaluated as if it were written
3+(5*7).

Question 8:

What is a
literal?

Answer:

A literal is a sequence of
characters used in a program to represent a constant value. For example,
'A' is a literal that represents the value A, of type char,
and 17L is a literal that represents the number 17 as a value of type
long. A literal is a way of writing a value, and should not be
confused with the value itself.

Question 9:

In Java, classes have two
fundamentally different purposes. What are they?

Answer:

A class can be used to group
together variables and subroutines that are contained in the class. These are
called the static members of the class. For example, the subroutine
Math.sqrt is a static member of the class called Math. Also,
the main routine in any program is a static member of a class. The
second possible purpose of a class is to describe and create objects. The class
specifies what variables and subroutines are contained in those objects. In
this role, classes are used in object-oriented programming (which we haven't
studied yet in any detail.)

Question 10:

What is the difference
between the statement "x = TextIO.getDouble();" and the statement
"x = TextIO.getlnDouble();"

Answer:

Either statement will read a
real number input by the user, and store that number in the variable, x. They
would both read and return exactly the same value. The difference is that in
the second statement (using getlnDouble), after reading the value the
computer will continue reading characters from input up to and including the
next carriage return. These extra characters are discarded.

Question 11:

Explain why the value of the expression 2 + 3 + "test"
 is the string "5test" while the value of the expression
 "test" + 2 + 3 is the string "test23".
 What is the value of "test" + 2 * 3 ?

Answer:

The reason is somewhat technical.
 The difference is due to the order of evaluation. When
 several + operators are used in a row, with no parentheses, they
 are evaluated from left to right.
 2 + 3 + "test" is interpreted as
 (2 + 3) + "test", so 2 and 3 are
 added together, giving 5, and then the 5 is concatenated onto the string "test".
 On the other hand, "test" + 2 + 3 is interpreted as
 ("test" + 2) + 3, so the 2 is first concatenated onto
 the "test", giving "test2", and then the 3 is concatenated
 onto that. In the case of "test" + 2 * 3, the precedence
 rules for + and * come into play. Since *
 has higher precedence, this expression is interpreted as
 "test" + (2 * 3), which evaluates to "test6".

Question 12:

Integrated Development Environments such as Eclipse often use syntax coloring,
 which assigns various colors to the characters in a program to reflect the syntax of the language.
 A student notices that Eclipse colors the word String differently from
 int, double, and boolean. The student asks why
 String should be a different color, since all these words are names of types.
 What's the answer to the student's question?

Answer:

(This was a real question from a real student.)

 Although String, like int, double, and boolean, is a type name,
 there is a fundamental difference between String and the other types. String
 is the name of a class, while int, double, and boolean are
 primitive types. Eclipse colors all class names in the same way that it does String,
 and it uses a different color for the primitive types. (Although the difference between classes and
 primitive types might not seem very important to you now, it really is an important distinction
 and it's reasonable for Eclipse to use different colors for the two concepts.)

Solution for Programming Exercise 2.5

Exercise 2.5:

If you have N
eggs, then you have N/12 dozen eggs, with N%12 eggs left
over. (This is essentially the definition of the / and %
operators for integers.) Write a program that asks the user how many eggs she
has and then tells the user how many dozen eggs she has and how many extra eggs
are left over.

A gross of eggs is equal to 144 eggs. Extend your program so that it will
tell the user how many gross, how many dozen, and how many left over eggs she
has. For example, if the user says that she has 1342 eggs, then your program
would respond with

Your number of eggs is 9 gross, 3 dozen, and 10

since 1342 is equal to 9*144 + 3*12 + 10.

Discussion

All the variables for the program will be of type int. The
quantities that we have to represent are: the number of eggs, the number of
dozens in that many eggs, and the number of left over eggs. I will declare
variables named eggs, dozens, and extras to
represent these quantities.

The number of eggs can be read from the user's input using eggs =
TextIO.getlnInt().

The description of the problem already tells us that dozens can be
computed as eggs/12 and extras can be computed as
eggs%12. So, the first version of the program is easy to write.
Note that the entire output from this program could have been done with
one System.out.printf:

System.out.print("Your number of eggs is %d dozen and %d extras%n",
 dozens, extras);

The improved version requires a little thought. Given a pile of eggs that
you want to divide into gross, dozens, and extras, you could first remove as
many gross as possible, leaving a pile of between 0 and 143 eggs. This is just
like dividing the pile into dozens, except that the unit of measure is 144 eggs
instead of 12. So, eggs/144 will give the number of gross, and
eggs%144 is the number of eggs left over. Next, the eggs in the left-over
pile still have to be divided into dozens, plus some extra number of eggs
between 0 and 11. Of course, we already know how to do this: If there are
N eggs in the pile, the number of dozens is N/12 and the
number of extra eggs is N%12. This leads to the computation in the
improved version of the program, shown below. (Note that this program uses the
variable named aboveGross to represent a quantity that is not
mentioned explicitly in the problem description. This is far from being
unusual.)

The Solution

public class Dozens {

 /* This program will convert a given number of eggs into
 the number of dozens plus the number of left over eggs.
 For example, 57 eggs is 4 dozen eggs plus 9 eggs left over.
 The number of eggs is input by the user, and the computed
 results are displayed.
 */

 public static void main(String[] args) {

 int eggs; // Number of eggs, input by user.
 int dozens; // How many dozens in that number of eggs?
 int extras; // How many eggs are left over, above an integral
 // number of dozens? This value is in the
 // range 0 to 11, and it is computed as
 // the remainder when eggs is divided by 12.

 System.out.print("How many eggs do you have? ");
 eggs = TextIO.getlnInt();

 dozens = eggs / 12;
 extras = eggs % 12;

 System.out.print("Your number of eggs is ");
 System.out.print(dozens);
 System.out.print(" dozen and ");
 System.out.print(extras);
 System.out.println();

 } // end main()

} // end class

Improved version:

public class GrossAndDozens {

 /* This program will convert a given number of eggs into
 the number of gross plus the number of dozens plus the
 number of left over eggs.
 For example, 1342 eggs is 9 gross plus 3 dozen plus 10.
 The number of eggs is input by the user, and the computed
 results are displayed.
 */

 public static void main(String[] args) {

 int eggs; // Number of eggs, input by user.
 int gross; // How many gross in that number of eggs?
 int aboveGross; // How many eggs are left over, above an
 // integral number of gross? This number
 // can be computed as eggs % 144, and is
 // in the range 0 to 143. This number will
 // be divided into dozens and extras.
 int dozens; // How many dozens in aboveGross?
 int extras; // How many eggs are left over, above integral
 // numbers of gross and dozens?

 System.out.print("How many eggs do you have? ");
 eggs = TextIO.getlnInt();

 gross = eggs / 144;
 aboveGross = eggs % 144;

 dozens = aboveGross / 12;
 extras = aboveGross % 12;

 System.out.print("Your number of eggs is ");
 System.out.print(gross);
 System.out.print(" gross, ");
 System.out.print(dozens);
 System.out.print(" dozen, and ");
 System.out.print(extras);
 System.out.println();

 } // end main()

} // end class

Chapter 2

Programming in the Small I: Names and Things

On a basic level (the level of machine language), a
 computer can perform only very simple operations. A computer performs complex
 tasks by stringing together large numbers of such operations. Such tasks must
 be "scripted" in complete and perfect detail by programs. Creating complex
 programs will never be really easy, but the difficulty can be handled to some
 extent by giving the program a clear overall structure.
 The design of the overall structure of a program is
 what I call "programming in the large."

 Programming in the small, which is sometimes called coding,
 would then refer to filling in the details of that
 design. The details are the explicit, step-by-step instructions for performing
 fairly small-scale tasks. When you do coding, you are working "close to
 the machine," with some of the same concepts that you might use in machine
 language: memory locations, arithmetic operations, loops and branches. In a
 high-level language such as Java, you get to work with these concepts on a
 level several steps above machine language. However, you still have to worry
 about getting all the details exactly right.

 This chapter and the next examine the facilities for programming in the
 small in the Java programming language. Don't be misled by the term
 "programming in the small" into thinking that this material is easy or
 unimportant. This material is an essential foundation for all types of
 programming. If you don't understand it, you can't write programs, no matter
 how good you get at designing their large-scale structure.

 The last section of this chapter discusses programming environments.
 That section contains information about how to compile and run Java programs,
 and you should take a look at it before trying to write and use your own programs
 or trying to use the sample programs in this book.

Contents of Chapter 2:

	Section 1: The Basic Java Application

	Section 2: Variables and the Primitive Types

	Section 3: Strings, Classes, Objects, and Subroutines

	Section 4: Text Input and Output

	Section 5: Details of Expressions

	Section 6: Programming Environments

	
Programming Exercises

	
Quiz on This Chapter

Solution for Programming Exercise 2.6

Exercise 2.6:

This exercise asks you to write a program that tests
some of the built-in subroutines for working with Strings.
The program should ask the user to enter their first name and their last name, separated
by a space. Read the user's response using TextIO.getln().
Break the input string up into two strings, one containing the first name
and one containing the last name. You can do that by using the indexOf()
subroutine to find the position of the space, and then using substring()
to extract each of the two names. Also output the number of characters in each
name, and output the user's initials. (The initials are the first letter of
the first name together with the first letter of the last name.)
 A sample run of the program should look something like this:

Please enter your first name and last name, separated by a space.
? Mary Smith
Your first name is Mary, which has 4 characters
Your last name is Smith, which has 5 characters
Your initials are MS

Discussion

Once you have the first name and the last name in separate String
variables, it's easy to produce the desired output. The length of a string, str,
can be obtained by calling the function str.length(). To get the first
character of str, you can call str.charAt(0). (Remember that
characters are numbered starting from zero.) If the first and last names are in the
variables firstName and lastName, then the output of the
program can be produced using

System.out.println("Your first name is " + firstName + ", which has "
 + firstName.length() + " characters.");
System.out.println("Your last name is " + lastName + ", which has "
 + lastName.length() + " characters.");
System.out.println("Your initials are " + firstName.charAt(0) + lastName.charAt(0));

Or, using formatted output to make it easier to read:

System.out.printf("Your first name is %s, which has %d characters.%n",
 firstName, firstName.length());
System.out.printf("Your last name is %s, which has %d characters.%n",
 lastName, lastName.length());
System.out.print("Your initials are %s%s%n",
 firstName.charAt(0), lastName.charAt(0));

Note that it is not necessary to put values like firstName.length()
and firstName.charAt(0) into their own variables, if all that you want
to do with them is print them out. (But some people might consider it better style
to use variables.)

The harder part of the problem is breaking up the input string to get the first
and last name. If the user's input is in a String named
input, then input.indexOf(' ') is an int
that gives the position of the space in the string. (Note that the space
character is written as a literal that consists of a space between two left single
quotation marks.)

Once you have the position of the space, you have to figure out how to use it to
get the first and last name. Let's look at exactly how the characters in a
string are numbered:

 M a r y S m i t h
 0 1 2 3 4 5 6 7 8 9

In this example, the space is at index 4. We have to extract the substring in
positions 0 through 3 and the substring in positions 5 through 9.
The value of input.substring(start,end) will be a string that
starts in position start and ends in position end-1.
Note that the value of the second parameter is the position after
the end of the substring. So, the fist name in this case is input.substring(0,4)
and the last name is input.substring(5,10). (Even though there is no character
in position 10, that's the correct value for the position after the end of the substring that
we want.) In fact, there's an easier way to get the last name, using another version
of substring: The value of input.substring(start)
is the substring starting at position start and extending to the end
of the string, so the last name in this example is input.substring(4).

The important thing to note here is that the "4" in input.substring(0,4)
is the index of the space character, and the "5" in
input.substring(5) is that index plus 1. So we can
get the first and last names using:

space = input.indexOf(' ');
firstName = input.substring(0,space); // Everything before the space
lastName = input.substring(space+1); // Everything after the space

By the way, this program will only work correctly if the user follows the
instructions. If the user's input does not contain a space, then the value of
input.indexOf(' ') will be -1, and the -1 will cause the program
to crash when used in the substring function. And if the input doens't have exactly one
space, then the program output won't be correct. For now, you don't have any way
to test the user's input to see whether it is correct. To do that, you need to
know about if statements, which you will learn about very soon.

One more remark: Instead of using TextIO.getln() to read a line
of text and then breaking that line into two words, you could simply use
TextIO.getWord() twice to read the two words from the same line of
input -- except that the exercise says to use getln().

The Solution

/**
 * This program reads the user's first name and last name,
 * separated by a space. It then prints the user's first and
 * last names separately, along with the number of characters
 * in each name. It also prints the user's initials. Note that
 * this program will crash if the user's input does not contain
 * a space.
 */
public class FirstNameLastName {

 public static void main(String[] args) {

 String input; // The input line entered by the user.
 int space; // The location of the space in the input.
 String firstName; // The first name, extracted from the input.
 String lastName; // The last name, extracted from the input.

 System.out.println();
 System.out.println("Please enter your first name and last name, separated by a space.");
 System.out.print("? ");
 input = TextIO.getln();

 space = input.indexOf(' ');
 firstName = input.substring(0, space);
 lastName = input.substring(space+1);

 System.out.println("Your first name is " + firstName + ", which has "
 + firstName.length() + " characters.");
 System.out.println("Your last name is " + lastName + ", which has "
 + lastName.length() + " characters.");
 System.out.println("Your initials are " + firstName.charAt(0) + lastName.charAt(0));

 }

}

Section 2.2

Variables and the Primitive Types

Names are fundamental to programming. In programs,
names are used to refer to many different sorts of things. In order to use
those things, a programmer must understand the rules for giving names to them
and the rules for using the names to work with them. That is, the
programmer must understand the syntax and the semantics of names.

According to the syntax rules of Java, the most basic names are identifiers.
Identifiers can be used to name classes, variables, and subroutines.
An identifier is a sequence of one or more
characters. It must begin with a letter or underscore and must consist entirely of letters,
digits, and underscores. ("Underscore" refers to the character '_'.) For example, here are some legal
identifiers:

N n rate x15 quite_a_long_name HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier,
but "Hello World" is not.
Upper case and lower case letters are considered to be different, so that
HelloWorld, helloworld, HELLOWORLD, and
hElloWorLD are all distinct names. Certain words are reserved for
special uses in Java, and cannot be used as identifiers.
These reserved words include: class,
public, static, if, else, while,
and several dozen other words. (Remember that reserved words are
not identifiers, since they can't be used as names for things.)

Java is actually pretty liberal about what counts as a letter or a digit.
Java uses the Unicode character set, which
includes thousands of characters from many different languages and different
alphabets, and many of these characters count as letters or digits. However, I
will be sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose
names for things. For example, it is customary for names of classes to begin with
upper case letters, while names of variables and of subroutines begin with
lower case letters; you can avoid a lot of confusion by following this standard
convention in your own programs. Most Java programmers do not use underscores in names,
although some do use them at the beginning of the names of certain kinds
of variables. When a name is made up of several words, such
as HelloWorld or interestRate, it is customary
to capitalize each word, except possibly the first; this is sometimes
referred to as camel case, since the
upper case letters in the middle of a name are supposed to look something
like the humps on a camel's back.

Finally, I'll note that in addition to simple identifiers, things in Java
can have compound names
which consist of several simple names separated by periods. (Compound names
are also called qualified names.) You've already
seen an example: System.out.println. The idea here is that things in
Java can contain other things. A compound name is a kind of path to an item
through one or more levels of containment. The name System.out.println
indicates that something called "System" contains something called "out" which
in turn contains something called "println".

2.2.1 Variables

Programs manipulate data that are stored in memory. In machine language,
data can only be referred to by giving the numerical address of the location in
memory where the data is stored. In a high-level language such as Java, names are
used instead of numbers to refer to data. It is the job of the computer to keep
track of where in memory the data is actually stored; the programmer only has
to remember the name. A name used in this way -- to refer to data stored in
memory -- is called a variable.

Variables are actually rather subtle. Properly speaking, a variable is not a
name for the data itself but for a location in memory that can hold data. You
should think of a variable as a container or box where you can store data that
you will need to use later. The variable refers directly to the box and only
indirectly to the data in the box. Since the data in the box can change, a
variable can refer to different data values at different times during the
execution of the program, but it always refers to the same box. Confusion can
arise, especially for beginning programmers, because when a variable is used in
a program in certain ways, it refers to the container, but when it is used in
other ways, it refers to the data in the container. You'll see examples of both
cases below.

(In this way, a variable is something like the title, "The President of the
United States." This title can refer to different people at different times, but
it always refers to the same office. If I say "the President is playing basketball," I
mean that Barack Obama is playing basketball. But if I say "Hillary Clinton wants to
be President" I mean that she wants to fill the office, not that she wants to
be Barack Obama.)

In Java, the only way to get data into a variable -- that
is, into the box that the variable names -- is with an assignment statement.
An assignment statement takes the
form:

variable = expression;

where expression represents anything that
refers to or computes a data value. When the computer comes to an assignment
statement in the course of executing a program, it evaluates the expression and
puts the resulting data value into the variable. For example, consider the
simple assignment statement

rate = 0.07;

The variable in this assignment statement is
rate, and the expression is the number
0.07. The computer executes this assignment statement by putting the number
0.07 in the variable rate, replacing whatever was there before. Now,
consider the following more complicated assignment statement, which might come
later in the same program:

interest = rate * principal;

Here, the value of the expression "rate * principal" is being
assigned to the variable interest. In the expression, the *
is a "multiplication operator" that tells the computer to multiply
rate times principal. The names rate and
principal are themselves variables, and it is really the
values stored in those variables that are to be multiplied. We
see that when a variable is used in an expression, it is the value stored in
the variable that matters; in this case, the variable seems to refer to the
data in the box, rather than to the box itself. When the computer executes this
assignment statement, it takes the value of rate,
multiplies it by the value of principal, and stores
the answer in the box referred to by interest.
When a variable is used on the left-hand side of an assignment statement,
it refers to the box that is named by the variable.

(Note, by the way, that an assignment statement is a command that is
executed by the computer at a certain time. It is not a statement of fact. For
example, suppose a program includes the statement "rate = 0.07;". If
the statement "interest = rate * principal;" is executed later in the
program, can we say that the principal is multiplied by 0.07? No! The
value of rate might have been changed in the meantime by another
statement. The meaning of an assignment statement is completely different from
the meaning of an equation in mathematics, even though both use the symbol
"=".)

2.2.2 Types

A variable in Java is designed to hold only one particular type of data; it
can legally hold that type of data and no other. The compiler will consider it
to be a syntax error if you try to violate this rule by assigning a variable of the
wrong type to a variable. We say that Java is a
strongly typed language because it enforces this
rule.

There are eight so-called primitive types built
into Java. The primitive types are named byte, short,
int, long, float, double, char,
and boolean. The first four types hold integers (whole numbers such as
17, -38477, and 0). The four integer types are distinguished by the ranges of
integers they can hold. The float and double types hold real
numbers (such as 3.6 and -145.99). Again, the two real types are distinguished
by their range and accuracy. A variable of type char holds a single
character from the Unicode character set. And a variable of type
boolean holds one of the two logical values true or
false.

Any data value stored in the computer's memory must be represented as a
binary number, that is as a string of zeros and ones. A single zero or one is
called a bit. A string of eight bits is called a
byte. Memory is usually measured in terms of
bytes. Not surprisingly, the byte data type refers to a single byte of
memory. A variable of type byte holds a string of eight bits, which
can represent any of the integers between -128 and 127, inclusive. (There are
256 integers in that range; eight bits can represent 256 -- two raised to the
power eight -- different values.) As for the other integer types,

	
short corresponds to two bytes (16 bits). Variables of type
short have values in the range -32768 to 32767.

	
int corresponds to four bytes (32 bits). Variables of type
int have values in the range -2147483648 to 2147483647.

	
long corresponds to eight bytes (64 bits). Variables of type
long have values in the range -9223372036854775808 to
9223372036854775807.

You don't have to remember these numbers, but they do give you some idea of
the size of integers that you can work with. Usually, for representing integer
data you should just stick to
the int data type, which is good enough for most purposes.

The float data type is represented in four bytes of memory, using a
standard method for encoding real numbers. The maximum value for a
float is about 10 raised to the power 38. A float can have
about 7 significant digits. (So that 32.3989231134 and 32.3989234399 would both
have to be rounded off to about 32.398923 in order to be stored in a variable
of type float.) A double takes up 8 bytes, can range up to
about 10 to the power 308, and has about 15 significant digits. Ordinarily, you
should stick to the double type for real values.

A variable of type char occupies two bytes in memory. The value of
a char variable is a single character such as A, *, x, or a space
character. The value can also be a special character such a tab or a carriage
return or one of the many Unicode characters that come from different
languages. Values of type char are closely related to integer
values, since a character is actually stored as a 16-bit integer code number. In
fact, we will see that chars in Java can actually be used like integers in
certain situations.

It is important to remember that a primitive type value is represented using ony
a certain, finite number of bits. So, an int can't be an arbitrary integer;
it can only be an integer in a certain finite range of values. Similarly, float
and double variables can only take on certain values. They are not true
real numbers in the mathematical sense. For example, the mathematical constant π can only
be approximated by a value of type float or double, since
it would require an infinite number of decimal places to represent it exactly. For that
matter, simple numbers like 1/3 can only be approximated by floats and
doubles.

2.2.3 Literals

A data value is stored in the computer as a sequence of bits. In the computer's
memory, it doesn't look anything like a value written on this page. You need a
way to include constant values in the programs that you write. In a program, you represent constant values
as literals. A literal is something that you can type in a program to
represent a value. It is a kind of name for a constant value.

For example, to type a value of type char in a program, you must surround it with
a pair of single quote marks, such as 'A', '*', or 'x'.
The character and the quote marks make up a literal of type char.
Without the quotes, A would be an
identifier and * would be a multiplication operator. The quotes are not part of
the value and are not stored in the variable; they are just a convention for
naming a particular character constant in a program. If you want to store the character A in
a variable ch of type char, you could do so with the assignment
statement

ch = 'A';

Certain special characters have special literals
that use a backslash, \, as an "escape character". In particular, a tab is
represented as '\t', a carriage return as '\r', a linefeed as
'\n', the single quote character as '\'', and the backslash
itself as '\\'. Note that even though you type two characters between
the quotes in '\t', the value represented by this literal is a single
tab character.

Numeric literals are a little more complicated than you might expect. Of
course, there are the obvious literals such as 317 and 17.42. But there are
other possibilities for expressing numbers in a Java program. First of all,
real numbers can be represented in an exponential form such as 1.3e12 or
12.3737e-108. The "e12" and "e-108" represent powers of 10, so that 1.3e12
means 1.3 times 1012 and 12.3737e-108 means 12.3737 times
10-108. This format can be used to express very large and very small numbers.
Any numeric literal that contains a decimal point or exponential is a literal
of type double. To make a literal of type float, you have to
append an "F" or "f" to the end of the number. For example, "1.2F" stands for
1.2 considered as a value of type float. (Occasionally, you need to
know this because the rules of Java say that you can't assign a value of type
double to a variable of type float, so you might be
confronted with a ridiculous-seeming error message if you try to do something
like "x = 1.2;" if x is a variable of type
float. You have to say "x = 1.2F;".
This is one reason why I advise sticking to type double for real
numbers.)

Even for integer literals, there are some complications. Ordinary integers
such as 177777 and -32 are literals of type byte, short, or
int, depending on their size. You can make a literal of type
long by adding "L" as a suffix. For example: 17L or 728476874368L. As
another complication, Java allows binary, octal (base-8), and hexadecimal (base-16)
literals. I don't want to cover number bases in detail, but in case
you run into them in other people's programs, it's worth knowing a few things:
Octal numbers use only the digits 0 through 7. In Java, a numeric literal
that begins with a 0 is interpreted as an octal number; for example, the octal
literal 045 represents the number 37, not the number 45. Octal numbers are rarely
used, but you need to be aware of what happens when you start a number with a zero.
Hexadecimal numbers use 16 digits, the usual digits 0 through 9 and the letters
A, B, C, D, E, and F. Upper case and lower case letters can be used
interchangeably in this context. The letters represent the numbers 10 through 15.
In Java, a hexadecimal literal begins with 0x or 0X,
as in 0x45 or 0xFF7A. Finally, binary literals
start with 0b or 0B and contain only the digits
0 and 1; for example: 0b10110.

As a final complication, numeric
literals in Java 7 can include the underscore character ("_"), which
can be used to separate groups of digits. For example, the integer constant
for seven billion could be written 7_000_000_000, which is a good deal easier to decipher
than 7000000000. There is no rule about how many digits have to be in each group.
Underscores can be especially useful in long binary numbers; for example,
0b1010_1100_1011.

I will note that hexadecimal numbers can also be used in character literals to represent
arbitrary Unicode characters. A Unicode literal consists of \u followed
by four hexadecimal digits. For example, the character literal '\u00E9'
represents the Unicode character that is an "e" with an acute accent.

For the type boolean, there are precisely two literals:
true and false. These literals are typed just as I've written
them here, without quotes, but they represent values, not variables. Boolean
values occur most often as the values of conditional expressions. For
example,

rate > 0.05

is a boolean-valued expression that evaluates to true if the value
of the variable rate is greater than 0.05, and to false if
the value of rate is not greater than 0.05. As you'll see in Chapter 3,
boolean-valued expressions are used
extensively in control structures. Of course, boolean values can also be
assigned to variables of type boolean. For example, if test is
a variable of type boolean, then both of the following assignment statements
are legal:

test = true;
test = rate > 0.05;

2.2.4 Strings and String Literals

Java has other types in addition to the primitive types, but all the other
types represent objects rather than "primitive" data values.
For the most part,
we are not concerned with objects for the time being. However, there is one
predefined object type that is very important: the type String.
(String is a type, but not a primitive type; it is in fact the
name of a class, and we will return to that aspect of strings in the
next section.)

A value of type String is a sequence of characters. You've already seen a string
literal: "Hello World!". The double quotes are part of the literal; they have
to be typed in the program. However, they are not part of the actual String
value, which consists of just the characters between the quotes. A string can contain
any number of characters, even zero. A string with no characters is called the
empty string and is represented by the literal "", a pair
of double quote marks with nothing between them. Remember the difference between single
quotes and double quotes! Single quotes are used for char literals and
double quotes for String literals! There is a big difference between
the String "A" and the char 'A'.

Within a string literal, special characters can be represented using the backslash notation.
Within this context, the double quote is itself a special character. For
example, to represent the string value

I said, "Are you listening!"

with a linefeed at the end, you would have to type the string literal:

"I said, \"Are you listening!\"\n"

You can also use \t, \r, \\,
and Unicode sequences such as \u00E9 to
represent other special characters in string literals.

2.2.5 Variables in Programs

A variable can be used in a program only if it has first been declared.
A variable declaration statement is used to declare one or more variables and to give them
names. When the computer executes a variable declaration, it sets aside memory
for the variable and associates the variable's name with that memory. A simple
variable declaration takes the form:

type-name variable-name-or-names;

The
variable-name-or-names
 can be a single
variable name or a list of variable names separated by commas. (We'll see later
that variable declaration statements can actually be somewhat more complicated
than this.) Good programming style is to declare only one variable in a
declaration statement, unless the variables are closely related in some way.
For example:

int numberOfStudents;
String name;
double x, y;
boolean isFinished;
char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to
explain its purpose in the program, or to give other information that might
be useful to a human reader. For example:

double principal; // Amount of money invested.
double interestRate; // Rate as a decimal, not percentage.

In this chapter, we will only use variables declared inside the
main() subroutine of a program. Variables declared inside a subroutine
are called local variables for that subroutine.
They exist only inside the subroutine, while it is running, and are completely
inaccessible from outside. Variable declarations can occur anywhere inside the
subroutine, as long as each variable is declared before it is used in any
way. Some people like to declare all the variables at the beginning of
the subroutine. Others like to wait to declare a variable until it is needed.
My preference: Declare important variables at the beginning of the subroutine,
and use a comment to explain the purpose of each variable. Declare "utility
variables" which are not important to the overall logic of the subroutine at
the point in the subroutine where they are first used. Here is a simple program
using some variables and assignment statements:

/**
 * This class implements a simple program that
 * will compute the amount of interest that is
 * earned on $17,000 invested at an interest
 * rate of 0.027 for one year. The interest and
 * the value of the investment after one year are
 * printed to standard output.
 */

public class Interest {

 public static void main(String[] args) {

 /* Declare the variables. */

 double principal; // The value of the investment.
 double rate; // The annual interest rate.
 double interest; // Interest earned in one year.

 /* Do the computations. */

 principal = 17000;
 rate = 0.027;
 interest = principal * rate; // Compute the interest.

 principal = principal + interest;
 // Compute value of investment after one year, with interest.
 // (Note: The new value replaces the old value of principal.)

 /* Output the results. */

 System.out.print("The interest earned is $");
 System.out.println(interest);
 System.out.print("The value of the investment after one year is $");
 System.out.println(principal);

 } // end of main()

} // end of class Interest

This program uses several subroutine call statements to display information
to the user of the program. Two different subroutines are used:
System.out.print and System.out.println. The difference
between these is that System.out.println adds a linefeed after
the end of the information that it displays, while System.out.print
does not. Thus, the value of interest, which is displayed by the
subroutine call "System.out.println(interest);", follows on the same
line as the string displayed by the previous System.out.print statement. Note that the value
to be displayed by System.out.print or System.out.println is
provided in parentheses after the subroutine name. This value is called a
parameter to the subroutine. A parameter provides
a subroutine with information it needs to perform its task. In a subroutine
call statement, any parameters are listed in parentheses after the subroutine
name. Not all subroutines have parameters. If there are no parameters in a
subroutine call statement, the subroutine name must be followed by an empty
pair of parentheses.

All the sample programs for this textbook are available in separate source code files in
the on-line version of this text at http://math.hws.edu/javanotes/source.
They are also included in the downloadable archives of the web site, in a folder named source.
The source code for the Interest program, for example,
can be found in the file Interest.java in subfolder named chapter2 inside the source
folder.

Section 2.1

The Basic Java Application

A program is a sequence of instructions that a
computer can execute to perform some task. A simple enough idea, but for the
computer to make any use of the instructions, they must be written in a form
that the computer can use. This means that programs have to be written in
programming languages. Programming languages
differ from ordinary human languages in being completely unambiguous and very
strict about what is and is not allowed in a program. The rules that determine
what is allowed are called the syntax of the
language. Syntax rules specify the basic vocabulary of the language and how
programs can be constructed using things like loops, branches, and subroutines.
A syntactically correct program is one that can be successfully compiled or
interpreted; programs that have syntax errors will be rejected (hopefully with
a useful error message that will help you fix the problem).

So, to be a successful programmer, you have to develop a detailed knowledge
of the syntax of the programming language that you are using. However, syntax
is only part of the story. It's not enough to write a program that will
run -- you want a program that will run and produce the correct result! That is, the
meaning of the program has to be right. The meaning of a
program is referred to as its semantics. More correctly, the semantics
of a programming language is the set of rules that determine the meaning of a
program written in that language.
A semantically correct program is one that does what you want it to.

Furthermore, a program can be syntactically and semantically correct but
still be a pretty bad program. Using the language correctly is not the
same as using it well. For example, a good program has "style." It is written
in a way that will make it easy for people to read and to understand.
It follows conventions that will be familiar to other programmers.
And it has an overall design that will make sense to human readers.
The computer is completely oblivious to such things, but to a human
reader, they are paramount. These aspects of programming are sometimes
referred to as pragmatics. (I will often use
the more common term style.)

When I introduce a new language feature, I will explain
the syntax, the semantics, and some of the pragmatics of that feature. You should memorize the syntax;
that's the easy part. Then you should get a feeling for the semantics by
following the examples given, making sure that you understand how they work,
and, ideally, writing short programs of your own to test your understanding.
And you should try to appreciate and absorb the pragmatics -- this means learning
how to use the language feature well, with style that will earn
you the admiration of other programmers.

Of course, even when you've become familiar with all the individual features
of the language, that doesn't make you a programmer. You still have to learn
how to construct complex programs to solve particular problems. For that,
you'll need both experience and taste. You'll find hints about software
development throughout this textbook.

We begin our exploration of Java with the problem that has become
traditional for such beginnings: to write a program that displays the message
"Hello World!". This might seem like a trivial problem, but getting a computer
to do this is really a big first step in learning a new programming language
(especially if it's your first programming language). It means that you
understand the basic process of:

	getting the program text into the computer,

	compiling the program, and

	running the compiled program.

The first time through, each of these steps will probably take you a few
tries to get right. I won't go into the details here of how you do each of
these steps; it depends on the particular computer and Java programming
environment that you are using. See Section 2.6
for information about creating and running Java programs in specific programming
environments. But in general,
you will type the program using some sort of text editor and save the program
in a file. Then, you will use some command to try to compile the file. You'll
either get a message that the program contains syntax errors, or you'll get a
compiled version of the program. In the case of Java, the program is compiled
into Java bytecode, not into machine language. Finally, you can run the
compiled program by giving some appropriate command. For Java, you will
actually use an interpreter to execute the Java bytecode. Your programming
environment might automate some of the steps for you -- for example, the
compilation step is often done automatically -- but you can be sure that
the same three steps are being done in the background.

Here is a Java program to display the message "Hello World!". Don't expect
to understand what's going on here just yet; some of it you won't really
understand until a few chapters from now:

/** A program to display the message
 * "Hello World!" on standard output.
 */
public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello World!");
 }

} // end of class HelloWorld

The command that actually displays the message is:

System.out.println("Hello World!");

This command is an example of a subroutine call statement.
It uses a "built-in subroutine" named
System.out.println to do the actual work. Recall that a subroutine
consists of the instructions for performing some task, chunked together and
given a name. That name can be used to "call" the subroutine whenever that task
needs to be performed. A built-in subroutine is
one that is already defined as part of the language and therefore automatically
available for use in any program.

When you run this program, the message "Hello World!" (without the quotes)
will be displayed on standard output. Unfortunately, I can't say exactly what
that means! Java is meant to run on many different platforms, and standard
output will mean different things on different platforms. However, you can
expect the message to show up in some convenient or inconvenient place. (If you use a
command-line interface, like that in Oracle's Java Development Kit,
you type in a command to tell the computer to run the program. The computer
will type the output from the program, Hello World!, on the next line.
In an integrated development environment such as Eclipse, the output
might appear somewhere in one of the environment's windows.)

You must be curious about all the other stuff in the above program. Part of
it consists of comments. Comments in a program are
entirely ignored by the computer; they are there for human readers only. This
doesn't mean that they are unimportant. Programs are meant to be read by people
as well as by computers, and without comments, a program can be very difficult
to understand. Java has two types of comments. The first type
begins with // and extends to the end of a line. There
is a comment of this form on the last line of the above program. The computer
ignores the // and everything that follows it on the same line.
The second type of comment starts with /* and ends with */,
and it can extend over more than one line. The first three lines of the
program are an example of this second type of comment. (A comment that actually
begins with /**, like this one does,
has special meaning; it is a "Javadoc" comment that can be used
to produce documentation for the program.)

Everything else in the program is required by the rules of Java syntax. All
programming in Java is done inside "classes." The first line in the above
program (not counting the comment) says that this is a class named HelloWorld. "HelloWorld," the
name of the class, also serves as the name of the program. Not every class is a
program. In order to define a program, a class must include a subroutine named
main, with a definition that takes the form:

public static void main(String[] args) {
 statements
}

When you tell the Java interpreter to run the program, the interpreter calls
this main() subroutine, and the statements that it contains are
executed. These statements make up the script that tells the computer exactly
what to do when the program is executed. The main() routine can call other
subroutines that are defined in the same class or even in other classes, but it
is the main() routine that determines how and in what order the other
subroutines are used.

The word "public" in the first line of main() means that this
routine can be called from outside the program. This is essential because the
main() routine is called by the Java interpreter, which is something
external to the program itself. The remainder of the
first line of the routine is harder to explain at the moment; for now, just
think of it as part of the required syntax. The definition of the subroutine -- that
is, the instructions that say what it does -- consists of the sequence of
"statements" enclosed between braces, { and }. Here, I've used statements
as a placeholder for the actual statements that
make up the program. Throughout this textbook, I will always use a similar
format: anything that you see in this style of text
(italic in angle brackets)
is a placeholder that describes something you need to
type when you write an actual program.

As noted above, a subroutine can't exist by itself. It has to be part of a
"class". A program is defined by a public class that takes the form:

public class program-name {

 optional-variable-declarations-and-subroutines

 public static void main(String[] args) {
 statements
 }

 optional-variable-declarations-and-subroutines

}

The name on the first line is the name of the program, as well as the name
of the class. (Remember, again, that program-name is a placeholder for the
actual name!)

If the name of the class is HelloWorld, then the class must be
saved in a file called HelloWorld.java. When this file is compiled,
another file named HelloWorld.class will be produced. This class file,
HelloWorld.class, contains the translation of the program into Java bytecode,
which can be executed by a
Java interpreter. HelloWorld.java is called the source code
for the program. To execute the program, you only
need the compiled class file, not the source code.

The layout of the program on the page, such as the use of blank lines
and indentation, is not part of the syntax or semantics of the language.
The computer doesn't care about layout -- you could run the entire program
together on one line as far as it is concerned. However, layout is important
to human readers, and there are certain style guidelines for layout that
are followed by most programmers.

Also note that according to the above syntax specification, a program can
contain other subroutines besides main(), as well as things called
"variable declarations." You'll learn more about these later, but not until
Chapter 4.

Section 1.6

The Modern User Interface

When computers were first introduced, ordinary
people -- including most programmers -- couldn't get near them. They were
locked up in rooms with white-coated attendants who would take your programs
and data, feed them to the computer, and return the computer's response some
time later. When timesharing -- where the computer switches its attention
rapidly from one person to another -- was invented in the 1960s, it became
possible for several people to interact directly with the computer at the same
time. On a timesharing system, users sit at "terminals" where they type
commands to the computer, and the computer types back its response. Early
personal computers also used typed commands and responses, except that there
was only one person involved at a time. This type of interaction between a user
and a computer is called a command-line interface.

Today, of course, most people interact with computers in a completely
different way. They use a Graphical User Interface,
or GUI. The computer draws interface components on the
screen. The components include things like windows, scroll bars, menus,
buttons, and icons. Usually, a mouse is used to
manipulate such components or, on "touchscreens," your fingers.
Assuming that you have not just been teleported in
from the 1970s, you are no doubt already familiar with the basics of graphical user
interfaces!

A lot of GUI interface components have become fairly standard. That is, they
have similar appearance and behavior on many different computer platforms
including Mac OS, Windows, and Linux. Java programs,
which are supposed to run on many different platforms without modification to
the program, can use all the standard GUI components. They might vary a little in
appearance from platform to platform, but their functionality should be
identical on any computer on which the program runs.

Shown below is an image of a very simple Java program that demonstrates
a few standard GUI interface components. When the program is run, a window
similar to the picture shown here will open on the computer screen.
There are four components in the window with which the user can interact:
a button, a checkbox, a text field, and
a pop-up menu. These components are labeled. There are a few other components
in the window. The labels themselves are components (even though you can't
interact with them). The right half of the window is a text area component,
which can display multiple lines of text. A scrollbar component appears
alongside the text area when the number of lines of text becomes larger
than will fit in the text area. And in fact, in Java terminology, the
whole window is itself considered to be a "component."

[image: Screenshot from GUIDemo demonstrates some basic GUI components]

(If you would like to run this program, the source code, GUIDemo.java,
as well as a compiled program, , are available on line. For more information on using
this and other examples from this textbook, see Section 2.6.)

Now, Java actually has two complete sets of GUI components. One of these,
the AWT or Abstract Windowing Toolkit, was
available in the original version of Java. The other, which is known as
Swing, was introduced in Java version 1.2,
and is used in preference to the AWT in most modern Java programs. The
program that is shown above uses components that are part of Swing.

When a user interacts with GUI components,
"events" are generated. For example, clicking a push button generates an event, and pressing
return while typing in a text field generates an event.
Each time an
event is generated, a message is sent to the program telling it that the event
has occurred, and the program responds according to its program. In fact, a typical GUI
program consists largely of "event handlers" that tell the program how to respond
to various types of events. In this example, the program has been programmed
to respond to each event by displaying a message in the text area.
In a more realistic example, the event handlers would have more to do.

The use of the term "message" here is deliberate. Messages, as you saw in
the previous section, are sent to objects. In fact, Java
GUI components are implemented as objects. Java includes many predefined
classes that represent various types of GUI components. Some of these classes
are subclasses of others. Here is a diagram showing just a few of Swing's GUI classes
and their relationships:

[image:]

Don't worry about the details for now, but try to get some feel about how
object-oriented programming and inheritance are used here. Note that all the
GUI classes are subclasses, directly or indirectly, of a class called
JComponent, which represents general properties
that are shared by all Swing components. In the diagram,
two of the direct subclasses of JComponent
themselves have subclasses. The classes JTextArea and
JTextField, which have certain behaviors in common, are grouped
together as subclasses of JTextComponent.
Similarly JButton and JToggleButton
are subclasses of JAbstractButton, which represents
properties common to both buttons and checkboxes. (JComboBox,
by the way, is the Swing class that represents pop-up menus.)

Just from this brief discussion, perhaps you can see how GUI programming can
make effective use of object-oriented design. In fact, GUIs, with their
"visible objects," are probably a major factor contributing to the popularity
of OOP.

Programming with GUI components and events is one of the most interesting
aspects of Java. However, we will spend several chapters on the basics before
returning to this topic in Chapter 6.

Section 1.7

The Internet and Beyond

Computers can be connected together on networks.
A computer on a network can communicate with other
computers on the same network by exchanging data and files or by sending and
receiving messages. Computers on a network can even work together on a large
computation.

Today, millions of computers throughout the world are connected to a single
huge network called the Internet. New computers
are being connected to the Internet every day, both by wireless communication
and by physical connection using technologies such as DSL, cable modems,
and Ethernet.

There are elaborate protocols for communication
over the Internet. A protocol is simply a detailed specification of how
communication is to proceed. For two computers to communicate at all, they must
both be using the same protocols. The most basic protocols on the Internet are
the Internet Protocol (IP), which specifies how
data is to be physically transmitted from one computer to another, and the
Transmission Control Protocol (TCP), which ensures
that data sent using IP is received in its entirety and without error. These
two protocols, which are referred to collectively as TCP/IP, provide a
foundation for communication. Other protocols use TCP/IP to send specific types
of information such as web pages, electronic mail, and data files.

All communication over the Internet is in the form of packets.
A packet consists of some data being sent from one
computer to another, along with addressing information that indicates where on
the Internet that data is supposed to go. Think of a packet as an envelope with
an address on the outside and a message on the inside. (The message is the
data.) The packet also includes a "return address," that is, the address of the
sender. A packet can hold only a limited amount of data; longer messages must
be divided among several packets, which are then sent individually over the net
and reassembled at their destination.

Every computer on the Internet has an IP address,
a number that identifies it uniquely among all the computers on
the net. (Actually, the claim about uniqueness is not quite true, but
the basic idea is valid, and the full truth is complicated.)
The IP address is used for addressing packets. A computer can only
send data to another computer on the Internet if it knows that computer's IP
address. Since people prefer to use names rather than numbers, most computers
are also identified by names, called domain names.
For example, the main computer of the Mathematics Department at Hobart and William Smith Colleges has the
domain name math.hws.edu. (Domain names are just for convenience; your computer
still needs to know IP addresses before it can communicate. There are computers
on the Internet whose job it is to translate domain names to IP addresses. When
you use a domain name, your computer sends a message to a domain name server to
find out the corresponding IP address. Then, your computer uses the IP address,
rather than the domain name, to communicate with the other computer.)

The Internet provides a number of services to the computers connected to it
(and, of course, to the users of those computers). These services use TCP/IP to
send various types of data over the net. Among the most popular services are
instant messaging, file sharing, electronic mail, and the World-Wide Web.
Each service has its own protocols, which are used to control transmission of
data over the network. Each service also has some sort of user interface,
which allows the user to view, send, and receive data through the service.

For example, the email service uses a protocol known as SMTP
(Simple Mail Transfer Protocol) to transfer email messages from one computer to another.
Other protocols, such as POP and IMAP, are used to fetch messages from an email
account so that the recipient can read them. A person who uses email, however,
doesn't need to understand or even know about these protocols. Instead, they
are used behind the scenes by computer programs to send
and receive email messages. These programs provide the user with an easy-to-use user interface
to the underlying network protocols.

The World-Wide Web is perhaps the most exciting of network services. The World-Wide Web
allows you to request pages of information that are stored on computers all over
the Internet. A Web page can contain links to other pages on the
same computer from which it was obtained or to other computers anywhere in the world.
A computer that stores such pages of information is called a
web server. The user interface to the Web is the type of
program known as a web browser. Common web browsers include
Internet Explorer, Firefox, Chrome, and Safari. You use a Web browser to
request a page of information. The browser sends a request for that page to
the computer on which the page is stored, and when a response is received from that
computer, the web browser displays it to you in a neatly formatted form.
A web browser is just a user interface to the Web. Behind the scenes, the
web browser uses a protocol called HTTP (HyperText Transfer Protocol)
to send each page request and to receive the response from the web server.

Now just what, you might be thinking, does all this have to do with Java? In
fact, Java is intimately associated with the Internet and the World-Wide Web.
When Java was first introduced, one of its big attractions was the ability
to write applets. An applet is a small program that is
transmitted over the Internet and that runs on a web page. Applets make it
possible for a web page to perform complex tasks and have complex interactions
with the user. Alas, applets have suffered from a variety of security problems,
and fixing those problems has made them more difficult to use. Applets have
become much less common on the Web, and in any case, there are other options for
running programs on Web pages.

But applets are only one aspect of Java's relationship with the Internet.
Java can be used to write complex, stand-alone applications that do not depend
on a Web browser. Many of these programs are network-related. For example
many of the largest and most complex web sites use web server software
that is written in Java. Java includes excellent support for network protocols,
and its platform independence makes it possible to write network programs
that work on many different types of computer. You will learn about Java's
network support in Chapter 11.

Its support for networking is not Java's only advantage. But many good
programming languages have been invented only to be soon forgotten. Java has
had the good luck to ride on the coattails of the Internet's immense and increasing
popularity.

As Java has matured, its applications have reached far beyond the Net.
The standard version of Java already comes with support for many technologies,
such as cryptography and data compression. Free extensions are available to support
many other technologies such as advanced sound processing and three-dimensional
graphics. Complex, high-performance systems can be developed in Java. For example,
Hadoop, a system for large scale data processing, is written in Java. Hadoop is
used by Yahoo, Facebook, and other Web sites to process the huge amounts of data
generated by their users.

Furthermore, Java is not restricted to use on traditional computers. Java can
be used to write programs for many smartphones (though not for the iPhone).
It is the primary development language for Android-based
devices. (Some mobile devices use
a version of Java called Java ME ("Mobile Edition"), but Android uses
Google's own version of Java and does not use the same graphical user interface
components as standard Java.) Java is also the programming language
for the Amazon Kindle eBook reader and for interactive features on Blu-Ray
video disks.

At this time, Java certainly ranks as one of the most widely used programming
languages. It is a good choice for almost any programming project that
is meant to run on more than one type of computing device, and is
a reasonable choice even for many programs that will run on only one device.
It is probably still the most widely taught language at Colleges and Universities.
It is similar enough to other popular languages, such as C, C++, and Python, that
knowing it will give you a good start on learning those languages as well.
Overall, learning Java is a great starting point on the road to becoming an
expert programmer. I hope you enjoy the journey!

Section 1.5

Objects and Object-oriented Programming

Programs must be designed. No one can just sit down
at the computer and compose a program of any complexity. The discipline called
software engineering is concerned with the
construction of correct, working, well-written programs. The software engineer
tries to use accepted and proven methods for analyzing the problem to be solved
and for designing a program to solve that problem.

During the 1970s and into the 80s, the primary software engineering
methodology was structured programming. The
structured programming approach to program design was based on the following
advice: To solve a large problem, break the problem into several pieces and
work on each piece separately; to solve each piece, treat it as a new problem
which can itself be broken down into smaller problems; eventually, you will
work your way down to problems that can be solved directly, without further
decomposition. This approach is called top-down programming.

There is nothing wrong with top-down programming. It is a valuable and
often-used approach to problem-solving. However, it is incomplete. For one
thing, it deals almost entirely with producing the
instructions necessary to solve a problem. But as time went
on, people realized that the design of the data structures for
a program was at least as important as the design of subroutines and control
structures. Top-down programming doesn't give adequate consideration to the
data that the program manipulates.

Another problem with strict top-down programming is that it makes it
difficult to reuse work done for other projects. By starting with a particular
problem and subdividing it into convenient pieces, top-down programming tends
to produce a design that is unique to that problem. It is unlikely that you
will be able to take a large chunk of programming from another program and fit
it into your project, at least not without extensive modification. Producing
high-quality programs is difficult and expensive, so programmers and the people
who employ them are always eager to reuse past work.

So, in practice, top-down design is often combined with bottom-up design.
In bottom-up design, the approach is to
start "at the bottom," with problems that you already know how to solve (and
for which you might already have a reusable software component at hand). From
there, you can work upwards towards a solution to the overall problem.

The reusable components should be as "modular" as possible. A module
is a component of a larger system that interacts with
the rest of the system in a simple, well-defined, straightforward manner. The
idea is that a module can be "plugged into" a system. The details of what goes
on inside the module are not important to the system as a whole, as long as the
module fulfills its assigned role correctly. This is called information hiding,
and it is one of the most important
principles of software engineering.

One common format for software modules is to contain some data, along with
some subroutines for manipulating that data. For example, a mailing-list module
might contain a list of names and addresses along with a subroutine for adding
a new name, a subroutine for printing mailing labels, and so forth. In such
modules, the data itself is often hidden inside the module; a program that uses
the module can then manipulate the data only indirectly, by calling the
subroutines provided by the module. This protects the data, since it can only
be manipulated in known, well-defined ways. And it makes it easier for programs
to use the module, since they don't have to worry about the details of how the
data is represented. Information about the representation of the data is
hidden.

Modules that could support this kind of information-hiding became common in
programming languages in the early 1980s. Since then, a more advanced form of
the same idea has more or less taken over software engineering. This latest
approach is called object-oriented programming,
often abbreviated as OOP.

The central concept of object-oriented programming is the object,
which is a kind of module containing data and
subroutines. The point-of-view in OOP is that an object is a kind of
self-sufficient entity that has an internal state
(the data it contains) and that can respond to messages
(calls to its subroutines). A mailing list object,
for example, has a state consisting of a list of names and addresses. If you
send it a message telling it to add a name, it will respond by modifying its
state to reflect the change. If you send it a message telling it to print
itself, it will respond by printing out its list of names and addresses.

The OOP approach to software engineering is to start by identifying the
objects involved in a problem and the messages that those objects should
respond to. The program that results is a collection of objects, each with its
own data and its own set of responsibilities. The objects interact by sending
messages to each other. There is not much "top-down" in the large-scale design of such a program, and
people used to more traditional programs can have a hard time getting used to
OOP. However, people who use OOP would claim that object-oriented programs tend
to be better models of the way the world itself works, and that they are
therefore easier to write, easier to understand, and more likely to be
correct.

You should think of objects as "knowing" how to respond to certain messages.
Different objects might respond to the same message in different ways. For
example, a "print" message would produce very different results, depending on
the object it is sent to. This property of objects -- that different objects
can respond to the same message in different ways -- is called polymorphism.

It is common for objects to bear a kind of "family resemblance" to one
another. Objects that contain the same type of data and that respond to the
same messages in the same way belong to the same class.
(In actual programming, the class is primary; that is,
a class is created and then one or more objects are created using that class as
a template.) But objects can be similar without being in exactly the same
class.

For example, consider a drawing program that lets the user draw lines,
rectangles, ovals, polygons, and curves on the screen. In the program, each
visible object on the screen could be represented by a software object in the
program. There would be five classes of objects in the program, one for each
type of visible object that can be drawn. All the lines would belong to one
class, all the rectangles to another class, and so on. These classes are
obviously related; all of them represent "drawable objects." They would, for
example, all presumably be able to respond to a "draw yourself" message.
Another level of grouping, based on the data needed to represent each type of
object, is less obvious, but would be very useful in a program: We can group
polygons and curves together as "multipoint objects," while lines, rectangles,
and ovals are "two-point objects." (A line is determined by its two endpoints, a
rectangle by two of its corners, and an oval by two corners of the rectangle
that contains it. The rectangles that I am talking about here have
sides that are vertical and horizontal, so that they can be specified by just
two points; this is the common meaning of "rectangle" in drawing programs.)
We could diagram these relationships as follows:

[image: A sample class hierarchy.]

DrawableObject, MultipointObject, and TwoPointObject would be classes in the
program. MultipointObject and TwoPointObject would be subclasses
of DrawableObject. The class Line would be a
subclass of TwoPointObject and (indirectly) of DrawableObject. A subclass of a
class is said to inherit the properties of that
class. The subclass can add to its inheritance and it can even "override" part
of that inheritance (by defining a different response to some method).
Nevertheless, lines, rectangles, and so on are drawable
objects, and the class DrawableObject expresses this relationship.

Inheritance is a powerful means for organizing a program. It is also related
to the problem of reusing software components. A class is the ultimate reusable
component. Not only can it be reused directly if it fits exactly into a program
you are trying to write, but if it just almost fits, you can still reuse it by
defining a subclass and making only the small changes necessary to adapt it
exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a
partial solution to the software reuse problem. Objects, classes, and
object-oriented programming will be important themes throughout the rest of
this text. You will start using objects that are built into the Java
language in the next chapter, and in
Chapter 5 you will begin creating your own classes and objects.

Section 1.3

The Java Virtual Machine

Machine language consists of very simple
instructions that can be executed directly by the CPU of a computer. Almost all
programs, though, are written in high-level programming languages
such as Java, Fortran, or C++. A program written in a
high-level language cannot be run directly on any computer. First, it has to be
translated into machine language. This translation can be done by a program
called a compiler. A compiler takes a
high-level-language program and translates it into an executable
machine-language program. Once the translation is done, the machine-language
program can be run any number of times, but of course it can only be run on one
type of computer (since each type of computer has its own individual machine
language). If the program is to run on another type of computer it has to be
re-translated, using a different compiler, into the appropriate machine
language.

There is an alternative to compiling a high-level language program. Instead
of using a compiler, which translates the program all at once, you can use an
interpreter, which translates it
instruction-by-instruction, as necessary. An interpreter is a program that acts
much like a CPU, with a kind of fetch-and-execute cycle. In order to execute a
program, the interpreter runs in a loop in which it repeatedly reads one
instruction from the program, decides what is necessary to carry out that
instruction, and then performs the appropriate machine-language commands to do
so.

One use of interpreters is to execute high-level language programs. For
example, the programming language Lisp is usually executed by an interpreter
rather than a compiler. However, interpreters have another purpose: they can
let you use a machine-language program meant for one type of computer on a
completely different type of computer. For example, one of the original home
computers was the Commodore 64 or "C64". While you might not find an actual
C64, you can find programs that run on other computers -- or even in
a web browser -- that "emulate" one. Such an emulator can run C64 programs by
acting as an interpreter for the C64 machine language.

The designers of Java chose to use a combination of compilation and
interpreting. Programs written in Java are compiled into machine language,
but it is a machine language for a computer that doesn't really exist. This
so-called "virtual" computer is known as the Java Virtual Machine,
or JVM.
The machine language for the Java Virtual Machine is called
Java bytecode. There is no reason why Java
bytecode couldn't be used as the machine language of a real computer, rather
than a virtual computer. But in fact the use of a virtual machine makes possible
one of the main selling points of Java: the fact that it can actually be
used on any computer. All that the computer needs is an interpreter for
Java bytecode. Such an interpreter simulates the JVM in the
same way that a C64 emulator simulates a Commodore 64 computer. (The term JVM is also used
for the Java bytecode interpreter program that does the simulation, so we say that
a computer needs a JVM in order to run Java programs. Technically, it would
be more correct to say that the interpreter implements the JVM than
to say that it is a JVM.)

Of course, a different Java bytecode interpreter is needed for each type of
computer, but once a computer has a Java bytecode interpreter, it can run any
Java bytecode program, and the same program can be run on any
computer that has such an interpreter. This is one of the essential features of
Java: the same compiled program can be run on many different types of
computers.

[image:]

Why, you might wonder, use the intermediate Java bytecode at all? Why not
just distribute the original Java program and let each person compile it into
the machine language of whatever computer they want to run it on? There are
several reasons. First of all, a compiler has to understand Java, a complex
high-level language. The compiler is itself a complex program. A Java bytecode
interpreter, on the other hand, is a relatively small, simple program. This makes
it easy to write a bytecode interpreter for a new type of computer; once that
is done, that computer can run any compiled Java program. It would be much
harder to write a Java compiler for the same computer.

Furthermore, some Java programs are meant to be downloaded over a network.
This leads to obvious security concerns: you don't want to download and run a
program that will damage your computer or your files. The bytecode interpreter
acts as a buffer between you and the program you download. You are really
running the interpreter, which runs the downloaded program indirectly. The
interpreter can protect you from potentially dangerous actions on the part of
that program.

When Java was still a new language, it was criticized for being slow:
Since Java bytecode was executed by an interpreter, it seemed that Java
bytecode programs could never run as quickly as programs compiled into
native machine language (that is, the actual
machine language of the computer on which the program is running).
However, this problem has been largely overcome by the use of just-in-time
compilers for executing Java bytecode. A just-in-time compiler
translates Java bytecode into native machine language. It does
this while it is executing the program. Just as for a normal interpreter,
the input to a just-in-time compiler is a Java bytecode program, and its task
is to execute that program. But as it is executing the program, it also
translates parts of it into machine language. The translated parts of the
program can then be executed much more quickly than they could be interpreted.
Since a given part of a program is often executed many times as the program
runs, a just-in-time compiler can significantly speed up the overall
execution time.

I should note that there is no necessary connection between Java and Java
bytecode. A program written in Java could certainly be compiled into the
machine language of a real computer. And programs written in other languages
can be compiled into Java bytecode. However, the combination of Java
and Java bytecode is platform-independent, secure, and network-compatible
while allowing you to program in a modern high-level object-oriented
language.

(In the past few years, it has become fairly common to create new programming
languages, or versions of old languages, that compile into Java bytecode. The
compiled bytecode programs can then be executed by a standard JVM. New languages
that have been developed specifically for programming the JVM include
Groovy, Clojure, and Processing. Jython and JRuby are versions of older languages,
Python and Ruby, that target the JVM. These languages make it possible to
enjoy many of the advantages of the JVM while avoiding some of the technicalities
of the Java language. In fact, the use of other languages with the JVM has
become important enough that several new features have been added to the
JVM specifically to add better support for some of those languages. And this
improvement to the JVM has in turn made possible some of the new features in Java 7 and
Java 8.)

I should also note that the really hard part of platform-independence is
providing a "Graphical User Interface" -- with windows, buttons, etc. -- that
will work on all the platforms that support Java. You'll see more about this
problem in Section 1.6.

Quiz on Chapter 1

Question 1:

One of the components of a
computer is its CPU. What is a CPU and what role does it play in a
computer?

Question 2:

Explain what is meant by an
"asynchronous event." Give some examples.

Question 3:

What is the difference
between a "compiler" and an "interpreter"?

Question 4:

Explain the difference
between high-level languages and machine language.

Question 5:

If you have the source code
for a Java program, and you want to run that program, you will need both a
compiler and an interpreter. What does the Java compiler do, and
what does the Java interpreter do?

Question 6:

What is a subroutine?

Question 7:

Java is an object-oriented
programming language. What is an object?

Question 8:

What is a variable?
(There are four different ideas associated with variables in Java. Try to
mention all four aspects in your answer. Hint: One of the aspects is the
variable's name.)

Question 9:

Java is a
"platform-independent language." What does this mean?

Question 10:

What is the "Internet"?
Give some examples of how it is used. (What kind of services does it
provide?)

See the Answers

Section 1.4

Fundamental Building Blocks of Programs

There are two basic aspects of programming: data
and instructions. To work with data, you need to understand variables
and types; to work with
instructions, you need to understand control structures
and subroutines. You'll spend a
large part of the course becoming familiar with these concepts.

A variable is just a memory location (or
several consecutive locations treated as a unit) that has been given a name so that it can
be easily referred to and used in a program. The programmer only has to worry
about the name; it is the compiler's responsibility to keep track of the memory
location. As a programmer, you need to keep in mind that the name refers to a
kind of "box" in memory that can hold data, even though you don't have
to know where in memory that box is located.

In Java and in many other programming languages, a variable has a type
that indicates what sort of data it can hold. One type of
variable might hold integers -- whole numbers such as 3, -7, and 0 -- while
another holds floating point numbers -- numbers with decimal points such as
3.14, -2.7, or 17.0. (Yes, the computer does make a distinction between the
integer 17 and the floating-point number 17.0; they actually look quite
different inside the computer.) There could also be types for individual
characters ('A', ';', etc.), strings ("Hello", "A string can include many
characters", etc.), and less common types such as dates, colors, sounds, or any
other kind of data that a program might need to store.

Programming languages always have commands for getting data into and out of
variables and for doing computations with data. For example, the following
"assignment statement," which might appear in a Java program, tells the
computer to take the number stored in the variable named "principal", multiply
that number by 0.07, and then store the result in the variable named
"interest":

interest = principal * 0.07;

There are also "input commands" for getting data from the user or from files
on the computer's disks, and there are "output commands" for sending data in the other
direction.

These basic commands -- for moving data from place to place and for
performing computations -- are the building blocks for all programs. These
building blocks are combined into complex programs using control structures and
subroutines.

A program is a sequence of instructions. In the ordinary "flow of control,"
the computer executes the instructions in the sequence in which they occur in the program,
one after the other. However, this is obviously very limited: the computer
would soon run out of instructions to execute. Control structures
are special instructions that can change the flow of control.
There are two basic types of control structure: loops,
which allow a sequence of instructions to be repeated
over and over, and branches, which allow the
computer to decide between two or more different courses of action by testing
conditions that occur as the program is running.

For example, it might be that if the value of the variable "principal" is
greater than 10000, then the "interest" should be computed by multiplying the
principal by 0.05; if not, then the interest should be computed by multiplying
the principal by 0.04. A program needs some way of expressing this type of
decision. In Java, it could be expressed using the following "if
statement":

if (principal > 10000)
 interest = principal * 0.05;
else
 interest = principal * 0.04;

(Don't worry about the details for now. Just remember that the computer can
test a condition and decide what to do next on the basis of that test.)

Loops are used when the same task has to be performed more than once. For
example, if you want to print out a mailing label for each name on a mailing
list, you might say, "Get the first name and address and print the label; get
the second name and address and print the label; get the third name and address
and print the label..." But this quickly becomes ridiculous -- and might not
work at all if you don't know in advance how many names there are. What you
would like to say is something like "While there are more names to process, get
the next name and address, and print the label." A loop can be used in a
program to express such repetition.

Large programs are so complex that it would be almost impossible to write
them if there were not some way to break them up into manageable "chunks."
Subroutines provide one way to do this. A subroutine
consists of the instructions for performing some
task, grouped together as a unit and given a name. That name can then be used
as a substitute for the whole set of instructions. For example, suppose that
one of the tasks that your program needs to perform is to draw a house on the
screen. You can take the necessary instructions, make them into a subroutine,
and give that subroutine some appropriate name -- say, "drawHouse()". Then
anyplace in your program where you need to draw a house, you can do so with the
single command:

drawHouse();

This will have the same effect as repeating all the house-drawing
instructions in each place.

The advantage here is not just that you save typing. Organizing your program
into subroutines also helps you organize your thinking and your program design
effort. While writing the house-drawing subroutine, you can concentrate on the
problem of drawing a house without worrying for the moment about the rest of
the program. And once the subroutine is written, you can forget about the
details of drawing houses -- that problem is solved, since you have a
subroutine to do it for you. A subroutine becomes just like a built-in part of
the language which you can use without thinking about the details of what goes
on "inside" the subroutine.

Variables, types, loops, branches, and subroutines are the basis of what
might be called "traditional programming." However, as programs become larger,
additional structure is needed to help deal with their complexity. One of the
most effective tools that has been found is object-oriented programming, which
is discussed in the next section.

