This homework, on Sections 3.1 and 3.2, is due on Monday, October 19. (There will be a test in class on Wednesday, October 21.)

- 1. Show that every subset of a countably infinite set is either finite or countably infinite.
- **2.** Use a proof by contradition to prove the following: Suppose X is a countably infinite set and A is a finite subset of X. Then $X \setminus A$ is countably infinite. (You will need the result from the previous problem.)
- **3.** We know that subsets of the set $\{0, 1, ..., n-1\}$ correspond to sets of *n*-bit binary numbers. This is a one-to-one correspondence between the power set of $\{0, 1, ..., n-1\}$ and the set of *n*-bit binary numbers.

Consider the power set of the set of natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$, and let B be the set of all non-negative (binary) integers. (Yes, B and \mathbb{N} are really the same set, but it's useful to have two different names.) We can define a function $f: B \to \mathcal{P}(\mathbb{N})$ in the same way that we do in the finite case. That is, for $b \in B$, we define f(b) to be the subset of \mathbb{N} which contains exactly those numbers whose corresponding bit position in B contains a 1. For example, $f(10110001001_2) = \{0, 3, 7, 8, 10\}.$

- a) f is not a one-to-one correspondence. Why not? Exactly which subsets of \mathbb{N} are of the form f(b) for some $b \in B$, and which are not of that form? Why? (Hint: Read part **b**.)
- **b)** What does this say about the size of the set of *finite* subsets of \mathbb{N} ? What does it say about the size of the set of *infinite* subsets of \mathbb{N} ? Why?
- 4. Suppose that L and M are languages over the alphabet $\Sigma = \{a, b\}$, defined as follows:

$$L = \{a, aa\} \qquad M = \{w \in \Sigma^* \mid w \text{ ends with } b\}$$

Identify the following languages. (Write the language out as a set, or give a clear English description of the language; explain your reasoning if the answer is not obvious.)

- a) $L \cap M$ b) $L \cup M$ c) L^3 d) L^* e) MLf) LMg) M^* h) \overline{M} i) M^R j) $M^R M$
- 5. Give an English description of the language generated by each of the following regular expressions over the alphabet $\{a, b\}$, or write out the answer as a set:
 - **a)** bab^* **b)** $b(ab)^*$ **c)** $(a|b)^*bbb(a|b)^*$
 - d) $a^*ba^*ba^*$ e) $a^*(b|\varepsilon)a^*(b|\varepsilon)a^*(b|\varepsilon)a^*$
- 6. Find a regular expression that generates each of the following languages over the alphabet $\{0, 1\}$, and explain in words how your regular expression works.
 - a) $\{w \in \Sigma^* \mid |w| \ge 2 \text{ and } w \text{ starts and ends with the same symbol} \}$
 - **b**) $\{w \in \Sigma^* \mid \text{ every 1 in } w \text{ is immediately followed by a 0}\}$
 - c) $\{w \in \Sigma^* \mid |w| \text{ is an even number}\}$
- 7. Find a regular expression that generates each of the following languages over the alphabet $\Sigma = \{a, b, c\}$, and explain in words how your regular expression works.
 - a) $\{w \in \Sigma^* \mid n_a(w) \text{ is an odd number} \}$
 - **b**) $\{w \in \Sigma^* \mid w \text{ contains the string } ab\}$
 - c) $\{w \in \Sigma^* \mid w \text{ does not contain the string } ab\}$