
This homework, on the remainder of Chapter 3, is due on Wednesday, November 11.

1. For each of the following NFAs, use the NFA-to-DFA conversion algorithm to find a DFA that accepts the same language as the NFA.



- 2. For each of the following regular expressions, use the regular-expression-to-NFA conversion algorithm to find an NFA that accepts the language that is generated by the NFA. Do not simply give an NFA that accepts the same language; show the NFA that is constructed by the algorithm.
  - a)  $a^*bc^*$
- **b)**  $(a|b)^*(aaa|bbb)$
- c)  $(aa|bb)c^*(a|b|c)$
- **3.** Consider the following regular expression over the alphabet  $\{a,b,c\}$ :  $(a|b)c^*a^*$ . And let L be the language generated by this regular expression.
  - a) Use the regular-expression-to-NFA conversion algorithm to a construct an NFA that accepts the same language, L.
  - b) Use the NFA-to-DFA conversion algorithm to construct a DFA that accepts L.
  - c) Find a DFA that accepts the *complement* language,  $\overline{L}$ .
  - d) Find an NFA or DFA that accepts the reverse language,  $L^R$ .
- **4.** For each of the following languages, use the Pumping Lemma for Regular Languages to prove that the language is **not** regular.

**a)** 
$$L_1 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

**b)** 
$$L_2 = \{a^n b^m c^k \mid n, m, k \in \mathbb{N} \text{ and } k = n + m\}$$

c) 
$$L_3 = \{a^n b^m c^k \mid n, m, k \in \mathbb{N} \text{ and } k > n + m\}$$