This homework Monday, November 16.

There is a test on Wednesday, November 18.

For problems 1 and 2, consider the following grammars. In each case, the start symbol is S:

a)
$$S \longrightarrow Tb$$
 b) $S \longrightarrow TR$ c) $S \longrightarrow SS$ d) $S \longrightarrow TaT$ $S \longrightarrow Tbb$ $T \longrightarrow aTb$ $S \longrightarrow bSA$ $T \longrightarrow bTa$ $T \longrightarrow \varepsilon$ $S \longrightarrow bSA$ $T \longrightarrow bTa$ $T \longrightarrow TT$ $T \longrightarrow \varepsilon$ $S \longrightarrow \varepsilon$ $T \longrightarrow TT$ $T \longrightarrow \varepsilon$ $S \longrightarrow \varepsilon$ $T \longrightarrow TT$

- 1. For this problem you will find derivations of some strings from the above grammars
 - a) Write a derivation for the string aabbb using grammar a).
 - **b)** Write a derivation for the string *abcccdd* using grammar **b)**.
 - c) Write a derivation for the string baabbb using grammar c).
 - **d)** Write a derivation for the string *aabbbaa* using grammar **d)**.
- 2. For each of the four Context-Free Grammars shown above, find the language generated by the grammar. Briefly justify your answers.
- 3. For each of the following languages, create a Context-Free Grammar that generates that language. Explain in words why your grammar works.

a)
$$\{a^n b a^m \mid m = n\}$$

b)
$$\{a^n b^m \mid n \neq m\}$$

c)
$$\{a^n b^m c^k d^l \mid m = k \text{ and } n = l\}$$
 d) $\{a^n b^m c^k d^l \mid n + m = k + l\}$

d)
$$\{a^n b^m c^k d^l \mid n+m=k+l\}$$

4. Given the following (very incomplete) BNF grammar for "names" in Java, write down six "names" generated by this grammar. Your examples should demonstrate all the possibilities represented in the rules.

$$\langle name \rangle ::= \langle object_ref \rangle \ [\ "." \ \langle identifier \rangle \]$$

$$\langle object_ref \rangle ::= \langle identifier \rangle \ | \ \langle method_call \rangle$$

$$\langle identifier \rangle ::= \ "a" \ | \ "x" \ | \ "y" \ | \ "z"$$

$$\langle method_call \rangle ::= \langle identfier \rangle \ "(" \ \langle name \rangle \ [\ "," \ \langle name \rangle \]...")"$$

5. Suppose that L is a context-free language. Suppose that L is generated by the CFG G, where $G = (V, \Sigma, P, S)$. Show how to construct from G a CFG that generates the language L^* . Explain why your construction works; you do not have to give a proof. (This shows that for any contextfree language L, L^* is also context-free.)