
CPSC 229, Fall 2015 Third Test Info

The third test for this course will be given in class on Wednesday, November 18.
It covers material from Sections 3.4 through Section 4.1. However, this material
depends heavily on Sections 3.1 and 3.2; although there will not be specific questions
on those sections, you still need to know the things that are covered in those section.
Note there there will be no questions on regular expressions on the computer (Section
3.3) or on Backus-Naur form (Section 4.2).

The format will be similar to previous tests, with a mix of definitions, longer
essays, and problems. You can expect to apply the NFA-to-DFA conversion algorithm.
There might also be a problem using the regular-expression-to-NFA algorithm. And
you can expect to use the Pumping Lemma to prove that a language is not regular.
There will not be any other formal proofs, but you might need to be familiar with
certain results and the general idea of their proofs, such as the fact that the complement
of a regular language is regular.

Here are some terms and ideas that you should be familiar with for the test:

FSA (Finite-State Automaton) — this is just a general term for NFA or DFA

DFA (Deterministic Finite Automaton)

transition diagram [the usual picture] of a DFA

state (in a finite-state automaton)

start state

accepting state (also known as final state)

definition of a DFA as a list of five things, (Q,Σ, qo, δ, F ) — and what each thing means

transition function, δ : Q× Σ→ Q, of a DFA

transition table for a DFA

the function δ∗ : Q× Σ∗ → Q

how a DFA computes (that is, what it does when it reads and processes a string)

what it means for a DFA to accept a language

the language accepted by a DFA, M = (Q,Σ, qo, δ, F ): L(M) = {w ∈ Σ∗ | δ∗(qo, w) ∈ F}
NFA (Non-deterministic Finite Automaton)

nondeterminism

the differences between NFAs and DFAs

ε-transitions

what it means for an NFA to accept a string

the language, L(M), accepted by an NFA, M

algorithm for converting an NFA to an equivalent DFA

algorithm for converting a regular expression to an equivalent NFA

DFAs, NFAs, and regular expressions all define the same class of languages

operations (L1∪L2, L1∩L2, LM , L∗, LR) on regular languages produce regular languages

how to get a DFA for the complement, L, of a regular language L



how to get a DFA for the intersection of two regular languages

the Pumping Lemma for Regular Languages

using the pumping lemma to show that certain specific languages are not regular

CFGs (Context-Free Grammars)

production rules

non-terminal and terminal symbols

start symbol

definition of a CFG as a 4-tuple G = (V,Σ, P, S)

the relations =⇒ and =⇒∗

derivation (of a string from the start symbol of a CFG)

the language generated by a CFG G = (V,Σ, P, S): L(G) = {w ∈ Σ∗ |S =⇒∗ w }
context-free language

finding a CFG for a given language and vice versa

if L and M are context-free languages, then so are L ∪M , LM , and L∗

every regular language is context-free

examples of languages that are not regular, such as:

{anbn |n ∈ N}
{anbmck | k = n+m}
{w ∈ {a, b}∗ |w = wR}
{w ∈ {a, b}∗ |na(w) < nb(w)}
{ww |w ∈ {a, b}∗}
{anbncn |n ∈ N}
{an2 |n ∈ N}
{www |w ∈ {a, b}∗}

examples of languages that are context-free but not regular, such as:

the first four languages in the previous list

examples of languages that are not context-free, such as:

the last four languages in the previous list

some of the tasks that you could be asked to perform:

finding a regular expression for a given language

finding a DFA or NFA for a given language

finding a regular expression for an NFA or DFA

converting an NFA into an equivalent DFA, using the algorithm

converting a regular expression into an equivalent NFA, using the algorithm

determining whether a given string is accepted by an NFA or DFA

prove that a language is not regular, using the Pumping Lemma

finding a derivation for a given string from a given CFG

finding a CFG for a given language

finding the language generated by a give CFG


