Mathematical theorems and proofs are more informal than the arguments and formal proofs that we studied previously, but they are still based on logic. A theorem has *hypotheses*, which are like premises, and a truly complete proof would consist of a series of statements where each statement is known to be true either because it is an hypothesis, an axiom, a definition, or a previously proved result, or because it follows logically from previous statements in the proof. This handout lists some possible approaches to proving statements with some common logical forms. | To Prove: | Try this: | |----------------------------------|---| | $\forall x P(x)$ | Let a be arbitrary (in the domain of discourse).
Prove $P(a)$. | | $\forall x \forall y P(x,y)$ | Let a and b be arbitrary (in the domain of discourse).
Prove $P(a,b)$. | | $\exists x P(x)$ | Existence proof: Exhibit a specific a (in the domain of discourse). Prove $P(a)$. | | $\neg \forall x P(x)$ | Prove $\exists x (\neg P(x))$. | | $\neg \exists x P(x)$ | Prove $\forall x (\neg P(x))$. | | $p \rightarrow q$ | Assume p . (That is, take it as an additional premise.)
Prove q (based on the assumption that p is true). | | $p \rightarrow q$ | Prove the contrapositive, $\neg q \rightarrow \neg p$.
That is, assume $\neg q$, and prove $\neg p$. | | $p \leftrightarrow q$ | Prove $p \to q$; and prove $q \to p$. | | $p \leftrightarrow q$ | Find a sequence of propositions r_1, r_2, \ldots, r_k such that p iff r_1 iff r_2 iff \cdots iff r_k iff q | | $p \lor q$ | Assume $\neg p$. Prove q . | | p | Proof by contradiction: Assume $\neg p$. Prove some r , where r is a contradiction (that is, $r \equiv \mathbb{F}$). | | p | Proof by cases: Consider cases r_1, r_2, \ldots, r_k that exhaust all possibilities; that is, $r_1 \vee r_2 \vee \cdots \vee r_k$ is a tautology. (A common possibility is to use q and $\neg q$ for some propostion q .) Prove $r_1 \to p, r_2 \to p, \ldots$, and $r_k \to p$. | | $\forall n \ (n \ge K \to P(n))$ | Proof by Mathematical Induction. (Here, the domain of discourse is integers.) Prove $P(K)$. Prove for all $n \geq K$, $P(n) \rightarrow P(n+1)$. | ## Some General Proof Moves: - Apply an assumption/hypothesis/premise! - Apply a definition! - Apply a previously proved (or known) fact.