1. Use a proof by induction to show that the following method correctly finds the sum of array elements A[0], A[1], ..., A[N-1] for all  $N \ge 1$ .

```
int recursive_sum( int[] A, int N ) {
    if (N == 1)
        return A[0];
    else {
        return A[N-1] + recursive_sum( A, N-1 );
}
```

- **2.** Let  $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ ;  $B = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$ ;  $C = \{n \in \mathbb{Z} \mid -5 \le n \le 5\}$ . Find the following sets. (For this exercise, you do **not** need to justify your answers.)
  - a)  $A \cup B$
- b)  $A \cap B$
- c)  $A \setminus B$
- d)  $B \setminus A$

- e)  $A \cap C$
- f)  $\mathbb{N} \cup C$
- g)  $\mathbb{N} \setminus C$  h)  $\mathbb{Z} \setminus A$

(Recall that  $\mathbb{N}$  is the set of natural numbers and  $\mathbb{Z}$  is the set of integers.)

- **3.** Let S be the set  $S = \{\emptyset, s, \{s\}\}$ . Write out the power set,  $\mathcal{P}(S)$ . (You do not have to justify your answer.)
- **4.** True or false: For any sets A and B, if  $A \subseteq B$ , then  $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ . Justify your answer.
- **5.** Prove that for any sets A and B,  $A \cap B \subseteq A$ , using the definitions of  $\cap$  and  $\subseteq$ .
- **6.** (Exercise 2.1.7 from the textbook.) In the English sentence, "She likes men who are tall, dark, and handsome," does she like an intersection or a union of sets of men? How about in the sentence, "She likes men who are tall, men who are dark, and men who are handsome"? Explain.
- 7. Let k, n, and m be values of type int given as hexadecimal numbers in Java as

$$k = 0xFF00$$

$$m = 0xAB24$$

n = 0x77

Find the values of the following Java expressions, writing the answers as hexadecimal numbers.

- a) k >> 4
- b) (k & m) | n
- c) (m << 16) |k| n
- d) m & n
- 8. Consider the two 16-bit integers n and m shown below. Compute the three 16-bit integers n, and n & m, and  $n \mid m$ . What subset of  $\{0, 1, 2, \dots, 15\}$  does each of the integers  $n, m, \tilde{n}$ n & m, and  $n \mid m$  correspond to? (Write out each set in full.)

```
n = 1001 \ 1101 \ 1000 \ 0101
m = 0101 \ 1001 \ 1100 \ 0111
```

**9.** What is computed by the following method? (Hint: Write N in binary.) Explain your answer.

```
int countSomething( int N ) {
    int ct = 0;
    for (int i = 0; i \le 31; i++) {
        if ( (N & 1) == 1 ) {
            ct++;
        N = N \gg 1;
    }
    return ct;
}
```