CPSC 229, Spring 2021 Sample Answers for Homework #6

1. [10 points] Consider the alphabet ¥ = {a,b,c}. Let K, L, and M be the languages over M
given by:
K ={e,a,b,c} L = {aa,ab} M = {c, cb, cbb, cbbb, cbbbb, . .. }
Find the following languages. In each case, specify the elements of the language using set
notatoin, or give a clear description in words of the set of strings that make up the language.
You do not have to justify your answers, but an explanation might get you some partial credit
for an incorrect answer.

a) KUL b) L? c) K* d) M? e) ME
f) KL g) LM h) K* i) L* j) M*
Answer:

a) KUL ={¢,a,b,c,aa,ab}
b) L? = LL = {aaaa, aaab, abaa, abab}

c) K? = KK = {¢,a,b,¢,aa, ab, ac, ba, bb, be, ca, cb, cc} — For example, b € KK because
it can be written b, and ¢ € K K because it can be written ee.

d) M? is the set of strings of b’s and ¢’s that start with ¢ and contain exactly two c’s.
e) M = {c, bc,bbe, bbbe, bbbbe, . . . }

f) KL = {aa,bd, aaa, aab, baa, bab, caa, cab}

g) LM is the set of strings that begin with aac or abe, followed by any number of b’s.
h) K* contains all strings made up of a’s, b’s, and ¢’s.

i) L* contains all strings made up of pairs of letters, where each pair is either aa or ab.
(Jonathan had a better answer: Strings of a’s and b’s that have even length and a b
can only occur in an even-numbered position.)

j) M* contains all strings of b’s and ¢’s that begin with a ¢, plus the empty string. Since
every string in M starts with a ¢, every non-empty string in M* starts with a ¢. To
see that every string of b’s and ¢’s that starts with ¢ is in M*, we can break the string
into pieces that come from M. For example, cbbecebebbbbb = (cbb)(c)(c)(cb)(cbbbb).

2. [2 points] True or False, if true, give a proof; if false, give a counterexample: Let L be a
language over an alphabet . If L¥ = L, then every string in L is a palindrome. (A palindrome
is a string, x, such that 2 = x.)

Answer:

This is false. As a counterexample, consider the language L = {ab,ba}. Neither of the
strings in L is a palindrome, but L® = {(ab)%, (ba)®} = {ba,ab} = {ab,ba} = L. (Note that
as long as ¥ has at least two symbols, then L — ¥* is also a counterexample.)

3. [6 points] Let 3 = {a,b}. Consider the languages that are generated by the following regular
expressions over Y. Give clear descriptions in words of the set of strings in each language. You
need to make it clear how the languages differ. (Note that the following is not an acceptable
sort of answer: Any number of a’s, then a b, than any number of a’s, then a b, then any number
of a’s, then a b, then any number of a’s. Give simple characterizations of the strings that are
generated.)

a) a*(bbb)a* b) (alb)*bbb(a|b)*
c) a*ba*ba*ba* d) a*(ble)a*(ble)a™(ble)a”
Answer:

a) Strings of a’s and b’s that contain the substring bbb, and no other b’s.

b) Strings of a’s and b’s that contain the substring bbb, but can also contain any number
of additional b’s, anywhere in the string.

c¢) Strings of a’s and b’s that contain exactly three b’s. There can be any number of a’s
before, after, and in between the b’s.

d) Strings of a’s and b’s that contain at most three b’s, with any number of a’s in any
positions. (The subexpression ble generates either a b or nothing at all, so the string
can contain three b’s, but each b is optional. Note that this language can also be
generated without using &: a*|a*ba*|a*ba*ba*|a*ba*ba*ba*.)

4. [4 points] Let ¥ = {a,b}. Consider the languages that are generated by the following regular
expressions over X. Give clear descriptions in words of the set of strings in each language.

a) ab(a|blc)*ba | aba b) (b|c|ablac)*(ale)

Answer:

[Note that there is an error in the statement of this problem. 3 has to be {a,b,c}, not
just {a,b} for the question to makes sense. The regular expressions in this problem are regular
expressions over the alphabet {a, b, c}.]

a) All strings of a’s and b’s that begin with ab and end with ba. Note that aba satisfies
this description but is not generated by ab(a|b|c)*ba, so it has to be added as a special
case.

b) All strings of a’s and b’s that do not contain the substring aa. The expression
(b|c|ablac)* can generate b’s and ¢’s in any order, but the only way to add an a to
the string is if the a is as part of ab or ac, so any a is immediately followed by a b or
by a c. In particular, it’s not possible to add two a’s in a row to the string. Note that
the string generated by (b|c|ablac)* is either empty or ends with b or ¢, so we don’t get
any strings that end with a, The (ale) at the end of the regular expression makes it
possible to add an a at the end of the string.

5. [10 points] For each of the following languages, give a regular expression that generates that
language. Justify your answers by explaining why the regular expression generates the strings
of the language. Be careful to note the alphabet in each case, and be careful to account for all
of the strings that satisfy the given condition.

a) Ly = {z € {a,b}* | the first and last characters in x are different }

b) Ly = {z € {a,b}* | x the number of b’s in z is an even number }

c) Ly ={x € {a,b,c}* | x contains at least one ¢, and there are no a’s before that c}
d) Ly = {z € {a,b,c}* | x contains at least one of the substrings aaa or bbb }

e) Ly = {x € {a,b,c}* | x contains both of the substrings aaa and bbb }
Answer:

a) (a(alb)*b) | (b(alb)*a) — We want strings that start with one letter and end with
the other. A string generated by this regular expression matches either (a(a|b)*b) or
(b(a|b)*a). The first part gives strings that begin with a and end with b, and the second
gives strings that begin with b and end with a. Between the first and last character,
(alb)* can generate any sequence of a’s and b’s.

b) (a*ba*b)*a* — The b’s in the string are generated in pairs, since the pattern a*ba*b
can’t generate a b without generating a second b. The fact that a*ba*b can be repeated
zero or more times means that the total number of b’s can be any even number. Any
number of a’s can occur between the b’s. The a* at the end allows any number of a’s
to follow the last b, or, if there are no b’s at all, it allows for a string that only contains
a’s.

c) b*c(alblc)* — The first ¢ in this expression forces any string that it can generate to
contain at least one c. Only b’s can occur before the first c¢. After the first ¢, the rest
of the string can be any string of a’s, b’s, and ¢’s.

d) (a|blc)*(aaalbbb)(alb|c)* — The subexpression aaa|bbb forces any string that this can
generate to contain either aaa or bbb as a substring. The substring can be preceded or
followed by arbitrary strings of a’s, b’s, and c’s.

e) ((alblc)*aaa(alblc)*bbb(alblc)*) | ((a|blc)*bbb(alb|c)*aaa(alb|c)*) — The key here is that
the two substrings aaa and bbb can occur in either order, so the regular expression must
account for that. The first half of the expression generates strings that contain aaa
followed at some point later in the string by bbb; any string can occur before, between,
and after those substrings. The second half of the expression is similar, except that
the aaa substring occurs somewhere after the bbb substring. Another expression for
the same language is (a|b|c)* (aaa(a|b|c)*bbb | bbb(a|b|c)*aaa)(a|blc)*.

