The second test in this course will take place in class on Wednesday, October 29. It covers Chapter 2, Sections 1 through 6 and Chapter 3, Sections 1 and 2. The following list contains some of the terms and concepts that you should be familiar with.

Sets

Elements of a set, and the notation $x \in A$

Subset of a set, and the notation $A \subseteq B$

The empty set

A set can be a member of another set

Union, intersection, and set difference; $A \cup B$, $A \cap B$, and $A \setminus B$

Definitions of set operations in terms of logic

Universal set and the complement of a set, \overline{X}

Power set of a set

Boolean algebra for sets

Commutative, associative, and idempotent laws for sets

DeMorgan's law for sets

Using a 32-bit int to represent a subset of $\{0, 1, 2, \dots, 31\}$

The bitwise logical operators &, I, and ~ in C++ and Java

Hexadecimal numbers

Ordered pairs, (a, b)

Cartesian product of sets, $A \times B$

Functions

The notation $f: A \to B$

One-to-one and onto functions

Bijections (one-to-one correspondences)

Counting

Finite, infinite, countably infinite, countable, and uncountable sets

Cardinality of a finite set, |A|

Cardinality facts: $|A \times B| = |A| \cdot |B|$, $|A \cup B| = |A| + |B| - |A \cap B|$, $|\mathcal{P}(A)| = 2^{|A|}$

Diagonalization argument

Proof that \mathbb{R} is uncountable

Proof that $\mathcal{P}(\mathbb{N})$ is uncountable

Alphabets, strings, Σ^* , and languages

The empty string, ε

Operations on strings: length (|w|), concatenation (xy), reverse (x^R)

The number of different languages over an alphabet Σ is uncountable

Operations on languages: $L \cap M$, $L \cup M$, \overline{L} , L^R , L^n , L^*

Regular expressions and regular languages

The language L(r) generated by a regular expression r

Finding regular expressions for languages and vice-versa