The second test in this course will take place in class on Wednesday, October 29. It covers Chapter 2, Sections 1 through 6 and Chapter 3, Sections 1 and 2. The following list contains some of the terms and concepts that you should be familiar with. Sets Elements of a set, and the notation $x \in A$ Subset of a set, and the notation $A \subseteq B$ The empty set A set can be a member of another set Union, intersection, and set difference; $A \cup B$, $A \cap B$, and $A \setminus B$ Definitions of set operations in terms of logic Universal set and the complement of a set, \overline{X} Power set of a set Boolean algebra for sets Commutative, associative, and idempotent laws for sets DeMorgan's law for sets Using a 32-bit int to represent a subset of $\{0, 1, 2, \dots, 31\}$ The bitwise logical operators &, I, and ~ in C++ and Java Hexadecimal numbers Ordered pairs, (a, b) Cartesian product of sets, $A \times B$ **Functions** The notation $f: A \to B$ One-to-one and onto functions Bijections (one-to-one correspondences) Counting Finite, infinite, countably infinite, countable, and uncountable sets Cardinality of a finite set, |A| Cardinality facts: $|A \times B| = |A| \cdot |B|$, $|A \cup B| = |A| + |B| - |A \cap B|$, $|\mathcal{P}(A)| = 2^{|A|}$ Diagonalization argument Proof that \mathbb{R} is uncountable Proof that $\mathcal{P}(\mathbb{N})$ is uncountable Alphabets, strings, Σ^* , and languages The empty string, ε Operations on strings: length (|w|), concatenation (xy), reverse (x^R) The number of different languages over an alphabet Σ is uncountable Operations on languages: $L \cap M$, $L \cup M$, \overline{L} , L^R , L^n , L^* Regular expressions and regular languages The language L(r) generated by a regular expression r Finding regular expressions for languages and vice-versa