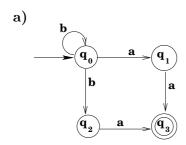
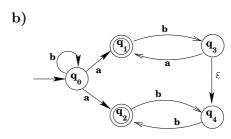

This homework is due in class on Friday, November 9.


1. Consider the following DFA, whose input alphabet is $\Sigma = \{a, b, c\}$:



- a) Based on this diagram, give a table for the transition function of this DFA.
- b) For each of the following strings, what state is this DFA in after reading the string? Which strings are accepted by this DFA?

 $a, b, abc, aabaab, cccaaa, bbaabb, abac, \varepsilon$

- 2. Find a DFA that accepts each of the following languages. Give your answers as state diagrams. Briefly explain in English how each DFA works.
 - a) $L_1 = \{ w \in \{a, b\}^* \mid w \text{ begins and ends with the same symbol } \}$
 - **b)** $L_2 = \{w \in \{0,1\}^* \mid \text{the length of } w \text{ is a multiple of } 3 \}$
 - c) $L_3 = \{w \in \{a, b\}^* \mid w \text{ contains the substring } abab \ \}$
- **3.** Using the algorithm from Section 3.5, convert each of the following NFA's into a DFA that accepts the same language.

- **4.** For each of the following regular expressions over the alphabet $\{a,b\}$, find an NFA that accepts the same language that is generated by the regular expression. Use the algorithm from Section 3.6.
 - **a)** $(aa + bb)^*$
- **b)** $(a+b)aa(a+b)^*$
- 5. Let L be any regular language over an alphabet Σ . Give an argument to show that L^R is also a regular language.