This relatively short homework is due in class on Wednesday, October 8, but there will also be a programming assignment this week that you will be due sometime after the 8-th. Class on Friday, October 3, will be in the Math/CS computer lab, Lansing 310, and you will get started on the programming assignment then.

1. Let A be the set of prime numbers. Let B be the set of positive even integers. Let C be the set $C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Let D be the set $D = \{3, 6, 9, 12, 15, 18, 21\}$. Find each of the following sets:

a) $A \cap B$	b) $C \smallsetminus B$	c) $B \smallsetminus C$	d) $C \cup D$
e) $A \cap C$	f) $A \cap D$	g) $C \smallsetminus D$	h) $C \cap D$

- **2.** Let S be the set $S = \{ \emptyset, r, \{r\} \}$. Find the powerset, $\mathcal{P}(S)$. (Note that S has three elements.)
- **3.** Consider the two 32-bit integers n and m shown below. Compute the three 32-bit integers \tilde{n} , and n & m, and $n \mid m$. What subset of $\{0, 1, 2, \ldots, 31\}$ does each of the integers n, m, \tilde{n} , n & m, and $n \mid m$ correspond to?

 $n = 0011 \ 0111 \ 1000 \ 0010 \ 1001 \ 1101 \ 1111 \ 0101$ $m = 0111 \ 0001 \ 0011 \ 1100 \ 0111 \ 1001 \ 1100 \ 0111$

- 4. (Exercise 2.1.7 from the textbook.) In the English sentence, "She likes men who are tall, dark, and handsome," does she like an intersection or a union of sets of men? How about in the sentence, "She likes men who are tall, men who are dark, and men who are handsome"? Explain.
- 5. Suppose that A and B are subsets of some universal set U. Identify the set

$$(A \cap B) \cup (A \cap \overline{B})$$

Explain your answer. You do not need to provide a rigorous proof, but you can do so if you prefer.

6. Prove that for any sets A and $B, A \cup (A \cap B) = A$.