This homework is due in class on Friday, November 7.

1. A DFA, M, can be specified as a list of five things: $M = (Q, \Sigma, s, \delta, F)$. Consider the DFA that has the following transition diagram:

For this DFA, give the values of Q, Σ , s and F, and make a table for the transition function δ .

- 2. Write a regular expression for each of the following languages:
 - a) $L_1 = \{w \in \{a, b\}^* \mid w \text{ begins with } ab \text{ and ends with } ba\}$
 - **b)** $L_2 = \{w \in \{a, b, c\}^* \mid w \text{ contains a } b \text{ and there are no } c's \text{ before the first } b \text{ in } w\}$
 - c) $L_3 = \{ w \in \{0,1\}^* \mid n_1(w) \text{ is a multiple of } 3 \}$
 - d) $L_4 = \{ w \in \{0, 1\}^* | n_1(w) \text{ is not a multiple of } 3 \}$
- 3. For each of the following languages, draw a DFA that accepts that language.
 - a) $L_2 = \{w \in \{a, b, c\}^* \mid w \text{ contains a } b \text{ and there are no } c's \text{ before the first } b \text{ in } w\}$
 - **b)** $L_3 = \{ w \in \{0,1\}^* | n_1(w) \text{ is a multiple of } 3 \}$
 - c) $L_4 = \{ w \in \{0,1\}^* | n_1(w) \text{ is not a multiple of } 3 \}$
- 4. Suppose that M_1 and M_2 are DFAs over the same alphabet, Σ , where $M_1 = (Q, \Sigma, s, \gamma, F)$ and $M_2 = (P, \Sigma, t, \eta, E)$. Define the DFA M by $M = (Q \times P, \Sigma, (s, t), \delta, F \times E)$, where $\delta: (Q \times P) \times \Sigma \to (Q \times P)$ is given by $\delta((q, p), \sigma) = (\gamma(q, \sigma), \eta(p, \sigma))$. Note that states in M are ordered pairs (q, p) where q is a state in M_1 and p is a state in M_2 , and that the start state of M is (s, t), where s is the start state of M_1 and t is the start state of M_2 . What happens when M reads a string $w \in \Sigma^*$? Explain why M is essentially just " M_1 and M_2 running in parallel." Explain why $L(M) = L(M_1) \cap L(M_2)$. (You can give a formal proof of this if you want. It's actually not hard. Just consider $\delta^*((s, t), \sigma)$, which is used to define L(M).)
- 5. Draw two DFAs, one for the language $M_1 = \{w \in \{a, b\}^* \mid w \text{ begins with } ab\}$ and another for the language $M_2 = \{w \in \{a, b\}^* \mid w \text{ ends with } ba\}$. Label the states in M_1 as p_0, p_1, \ldots , and label the states in M_2 as q_0, q_1, \ldots Then combine them into a DFA M constructed as in the previous problem, with states that are ordered pairs of states from M_1 and M_2 . Label each state in M with an ordered pair (p_i, q_j) . What language is accepted by M?