This homework is due in class on Wednesday, December 10. (This is the final homework of the semester.)

1. Consider the following grammar over the alphabet $\Sigma = \{a, b\}$, which generates the language $\{a^{2^n} \mid n \in \mathbb{N}\}$:

$$\begin{array}{c} S \longrightarrow TaE \\ T \longrightarrow TD \\ T \longrightarrow F \\ Da \longrightarrow aaD \\ DE \longrightarrow E \\ Fa \longrightarrow aF \\ FE \longrightarrow \varepsilon \end{array}$$

- a) Find a derivation for the string a, using this grammar. (a is a^{2^n} for n=0)
- **b)** Find a derivation for the string aa, using this grammar. $(aa \text{ is } a^{2^n} \text{ for } n=1)$
- c) Find a derivation for the string aaaa, using this grammar. (aaaa is a^{2^n} for n=2)
- **d)** Explain in words how this grammar works and how the string a^{2^n} can be generated for any $n \in \mathbb{N}$.
- **2.** Find a grammar for the language $\{a^{3^n+1} | n \in \mathbb{N}\}$. (Hint: Use a simple modification of the grammar from the preceding problem.)
- 3. Find a grammar for the language $\{ww \mid w \in \{a,b,c\}^*\}$. Explain your plan for the grammar: What are the stages in the construction of a string in the language, and how do the rules in your grammar carry out the construction? (Hint: Along the way to making abbcaccabbcacc, you can make aAbBbBcCaAcCcC (with an extra character or two at the beginning and/or end).) Then show a derivation of the string cbcb using your grammar.
- **4.** Find a grammar for the language $\{a^nb^{2n}c^{3n} \mid n \in \mathbb{N}\}$. Explain how your grammar works.
- **5.** Find a grammar for the language $\{a^kb^n \mid k, n \in \mathbb{N} \text{ and } n \text{ is a multiple of } k\}$. Explain how your grammar works. (Hint: This language is similar to $\{a^nb^nc^{nm} \mid n, m \in \mathbb{N}\}$ without the b's.)
- **6.** Draw a transition diagram for a Turing Machine that decides the language $\{w \in \{a,b\}^* \mid n_a(w) \text{ is an even number }\}.$
- 7. Let $\Sigma = \{a, b\}$. Draw a transition diagram for a Turing machine that computes the function $f \colon \Sigma^* \to \Sigma^*$ defined by $f(w) = w^R$.