CPSC 229, Fall 2010 Programming Assignment #1

This programming assignment is about working with sets in Java. It should be
finished and turned in by Friday, October 8, the last day of classes before Fall break.
Programming assignments differ from homework assignments in that you should
work on the programs on your own. Furthermore, you should not use code from
the Internet or other sources. You should develop and write the program yourself.
You can, of course, ask me for help. Submit your programs to your homework
folder in the directory /classes/f10/cs229/homework.

The Sieve of Eratosthenes is a classic algorithm for finding all the prime numbers less
than or equal to some given integer N. It can be stated very simply in pseudocode: To
construct the set of prime numbers less than or equal to MAX_N:

Let primes be the empty set.
for (int n = 2; n <= MAX_N; n++)
add n to primes
for (int p = 2; p <= MAX_N/2; p++) {
if (p is in primes) {
for (int n = 2%p; n <= MAX_N; n += p)
remove n from primes [if it’s in primes]

}

When this algorithm has finished, the integers that remain in the set primes are all the prime
numbers less than or equal to MAX_N.

For this assignment, you will write four implementations of the Sieve, using different repre-
sentations for sets of integers. The goal is really to learn about sets in Java, not to find prime
numbers.

The set representations that you should use are: (1) Use the type TreeSet<Integer>. (2) Use
an array of boolean. (3) Use the type BitSet. (4) Use an array of int, using just one bit for each
potential member of the set. In each program, you should use a constant or an input number to
represent the upper limit MAX_N. The program should run the Sieve algorithm, timing how long it
takes, and output the number of seconds. It should then output the number of primes less than or
equal to MAX_N; this is just the number of integers in the set at the end of the algorithm. As a check
on correctness, it should also output a list of the first few elements of the set (say, the elements
that are less than 100).

For representation (4), it is possible to make MAX_N larger than 23!, provided that it is declared
to be of type long. This will require some type-casts to int later in the program, since the length
of an array and an index for an array must be of type int. For some extra credit, you can write a
program that can be run with MAX_N equal to ten billion. You should turn in a statement of the
number of primes less than ten billion and how long it took for your program to find them. (My
program took 616 seconds on my home computer.)

The Java class Sieve.class in the directory /classes/£10/cs229 is one implementation. You
can run it to see how the program should behave. In this version, MAX_N is of type int, and so
cannot be larger than about two billion.

Here is some additional information on each version of the program:



1. To use the data type TreeSet<Integer>, your program should import java.util.TreeSet.
If primes is a variable of type TreeSet<Integer>, you can create an initially empty set with a call
to the constructor
primes = new TreeSet<Integer>();

To add an integer x to the set, call primes.add(x). To remove x from the set (if present), use
primes.remove(x). To test if = is in the set, call the boolean-valued function primes.contains(x).
The number of elements of the set is returned by the function primes.size().

TreeSet<Integer> is a natural representation for sets of integers. It has methods that directly
implement the common set operations that you need for this program. However it uses a lot of
memory and is less efficient than more direct methods. Don’t expect to use use extremely large
values of MAX_N with this representation.

2. A boolean array is a less direct, but still fairly easy, way to represent a set. For a set of
integers in the range 0 to MAX_N, use an array, primes, of MAX_N+1 booleans. In this representation,
primes[x] is true if and only if = is in the set. The implementation of the Sieve algorithm is
straightforward, except that there is no built-in method for finding the number of elements in the
set.

Although one bit should suffice to represent a boolean value, a boolean array actually uses one
byte of memory for each element of the array. Still, with gigabytes of memory to play with, the
real limitation is that an array index must be an int. This limits MAX_N to no more than 23, or
about two billion.

3. The BitSet class represents sets of integers in a way that uses only one bit per possible
element, so it is more memory efficient than using boolean arrays. To use it in your program, you
should import java.util.BitSet. If primes is a variable of type BitSet, you can create an object
to represent sets of natural numbers less than MAX_N with

primes = new BitSet (MAXN);

To add an integer z to the set, call primes.set(x). (There is a more efficient way to add a lot of
elements at once; see the API.) Use primes.clear(x) to remove x from the set. To test whether
x is the set, use the boolean-valued function primes.get (x), which returns true if x is in the set.
The number of elements of the set can be determined by calling primes.cardinality().

With all these methods, it’s easy to implement the Sieve of Eratosthenes with a BitSet. However,
the elements of the set are limited by the BitSet API to be of type int, so you are still limited to
numbers no larger than 23

4. For the final representation, you have to implement sets by hand, in essentially the same
way that it is done in a BitSet, that is, using just one bit for each possible element of the set. For
this representation, you can use an array of int. You will need to use the bitwise operators that
are discussed in Section 2.3 of the textbook.

Each int in the array has 32 bits and can be used to represent 32 potential elements of the
set. Given a potential element z, the array index for x can be computed as x / 32 or, better, as
x >> 5. This gives you an int, but you still need the correct bit position for x within that int.
That can be computed as x % 32 or, better, as x & 31.

To perform the operations of adding and removing elements and to test whether an element is
in the set, you will have to use Java’s bitwise operations. This is certainly the most challenging
part of the assignment.



