
CPSC 327, 12 April 2013 Second Test, Take-home Part

This is a test. You should not work on the test or discuss it with other people

in the class. You can use your textbook and notes, but you should not use other

books or resources, including the Internet. You can ask the Professor for hints or

clarification. There will be time to do that in class on Monday so that everyone

can hear the answers. The test is due in class next Wednesday, April 17.

1. (5 points) Quicksort is not an in-place algorithm. The textbook notes,
“It requires a stack to store parameters of subarrays that are yet to be
sorted. [. . . ] the size of this stack can be made to be in O(log n) by al-
ways sorting first the smaller of two subarrays obtained by partitioning.”
What is the space efficiency of the usual Quicksort algorithm, without
the optimization mentioned by the textbook? Explain your answer. The
usual algorithm is given by

static void quicksort(double[] A, int low, int high) {

if (high <= low)

return;

int mid = partition(A, low, high);

quicksort(A, low, mid - 1 );

quicksort(A, mid + 1, high );

}

2. (7 points) When applying binary search to a list of n items, you look
at the n

2
-th item to decide whether to continue the search in the first

half or in the second half of the list. Consider a ternary search in which
you look at the n

3
-th and (possibly) the 2n

3
-th items to decide whether

to continue the search in the first third, second third, or third third of
the list.

a) Write a clear and complete algorithm for ternary search of an
array. You can write either a recursive or a non-recursive version.

b) Do you think that ternary search is an improvement on binary
search? Why or why not?

3. (9 points) The operations on a priority queue are to add an item to
the queue and to remove the largest item. Sometimes, it is required
to be able to change the priority of an item in the queue. (This does
not really apply to a priority queue of numbers. It applies when the
queue holds complex objects and the priority is only one property of the
objects. For example, consider a priority queue of jobs waiting for run
time on a computer. The priority of a job might change while it is in
the queue.)



a) Suppose that the priority queue is implemented as an unsorted
list. How would a changePriority operation be implemented in that
case? (This is trivial.)

b) Suppose that the priority queue is implemented as a sorted list,
sorted by priority. How would a changePriority operation be imple-
mented in that case?

c) Now suppose that the priority queue is implemented by a heap—
which it should be, of course, for efficiency. If you simply change the
priority of an item in the heap, the resulting data structure might not
satisfy the heap property. Explain how to implement a changePriority

operation for a priority queue implemented as a heap. Give a clear and
complete explanation!

4. (9 points) The algorithms that we looked at for inserting items into
a heap and deleting items from a heap involved repeatedly swapping
a child with its parent. An improved algorithm for insertion would go
something like: increase the size of the heap by one. Starting with the
new node, move items down the tree until you have a space where the
new item can be placed where it will satisfy the heap property. A similar
algorithm can be used for deletion.
a) Write Java subroutines to implement improved algorithms that

follow this plan. Assume that the heap contains values of type double

stored in an array of type double[].
b) What sort of improvement in run time do you expect to see from

this change? Why?

5. (9 points) Develop a dynamic programming algorithm that will find
the length of the longest path in a weighted directed acyclic graph.
You can present the algorithm in clearly written and fully commented
pseudocode. Hint: Do a topological sort and then work backwards from
the end.

(Note: This problem is applicable in the following context. The
graph represents some task that must be performed. Each edge in the
graph represents a subtask. The weight of an edge is the time that it
takes to perform the subtask. Vertices in the graph represent prerequi-
sites; that is, before the task represented by an edge leaving the vertex
can be started, all the tasks represented by edges entering the vertex
must be completed. Then the length of the longest path in the graph is
the minimum time in which the overall task can be completed.)


