
CPSC 327, Spring 2018 Homework #8

This homework is due next Friday, April 13. You should turn in the written part in class and

turn in your program by 3:00 PM on that day.

A note about the take-home part of the final exam: We have decided that the take-home
part of the final exam will actually be a project that you choose, with my approval. The project
can be a research paper or a programming assignment. For one type of research paper, you might
use some existing algorithm implementation and report on what it can do and how you used it.
Group projects are possible, if they are sufficiently ambitious. You might take inspiration from the
large catalog of algorithms in the second part of the textbook. In any case, you should meet with
me no later than Friday, April 20, to get approval for your idea. I strongly advise you to meet with
me earlier than that! The project itself is due on the last day of classes, Monday, April 30.

1. Given an undirected graph G and a positive integer k, a k-coloring of G means that every vertex
of G is assigned one of the integers 1 through k in such a way that for every edge in the graph,
the two vertices of the edge are assigned different values. (Think of the integers 1 through k as
representing k different colors. We are trying to color the vertices so that no edge connects two
vertices that have the same color.)

a) Outline an algorithm for searching for a k-coloring of a graph. The input to the algorithm
is a graph G and the integer k. You can use a recursive algorithm that implements an
exhaustive search for a solution (with lots of pruning).

b) An exhaustive search might not be feasible for a large graph. Pick a heuristic search
technique, either simulated annealing or genetic algorithms, and discuss in general terms
how it could be applied to this particular problem.

2. (Problem 8-7 in the Textbook.) In the United States, coins have denominations 1, 5, 10, 25, and
50 cents. Now, consider a country whose coins have denominations d1, d2, . . . , dk. Let C(n) be
the number of distinct ways for coins to add up to the value n. We want to compute C(n). For
example, in a country whose denominations are {1, 6, 10}, C(5) is 1, C(6) through C(9) are 2.
C(10) is 3, and C(12) is 4.

a) What is C(20), if the denominations are {1, 6, 10}? (Show your work.)

b) Give an efficient [dynamic programming] algorithm to compute C(n). The input to the
algorithm is the set of denominations (d1, d2, . . . , dk) as well as the value of n. (Hint:
Think in terms of computing C(n, j), the number of ways that coins of just the first j
denominations (d1, d2, . . . , dj) can add up to n.)

3. (From Problem 8-1 in the Textbook.) The simple edit distance algorithm assigns a cost of 1 to
an insertion and to a deletion. But another type of edit is to transpose (or swap) two items that
are next to each other in the original sequence. A transposition has a cost of 2 in the original
algorithm, a deletion followed by an insertion. However, it can make sense for a transposition
to have a cost of 1. Explain how to modify the simple edit distance algorithm to make the cost
of a transposition equal to 1 instead of 2.

(Continued on reverse! )



4. This is a fairly short programming assignment. Your program will implement the edit distance
algorithm and apply it to strings read from a file. Furthermore, the version that you implement
should handle transpostions as discussed in the previous problem. That is, insertion, deletion,
and transposition should all have cost equal to 1. The program should read lines from a file.
The file can be specified as a command line argument, or the program can ask the user to input
the path to the file. Each line from the file should be converted to an array of chars (such
as by using “char[] seq = in.nextLine().toCharArray()”); you can store the char arrays in an
ArrayList<char[]>. Then, for each pair of char arrays, you should output the edit distance for
the two arrays.

Your program must be named DNATest.java, and it must be submitted to your
homework folder in /classes/cs327/homework.

You should run your program on the file /classes/cs327/fake-dna.txt. This file contains 20
long sequences that could be similar DNA sequences from several organisms. (That is, they
are random sequences of A, T, G, and C). There are differences between the sequences that
might be due to mutations that occur in the course of evolution. In fact, the data has been
manipulated to make it look like the DNA samples come from several groups of organisms,
where the organisms in a group are more closely related to each other than to the organisms in
the other groups. Can you identify the groups from the edit distance data? Add a comment
to your program saying how many groups there are and which sequences belong to
each group, and why.


