Chapter 1
Asymptotic Analysis

THE FUNDAMENTAL OBJECT OF STUDY in computer science is the algorithm. An algorithm is a
definite, step-by-step procedure for performing some task. In general, an algorithm takes some sort
of input and produces some sort of output. Usually, it is required that an algorithm is guaranteed
to terminate after a finite amount of time. All algorithms that we study in this course will have
this property. Note that an algorithm is not the same as a program. A program is just a specific
implementation of an algorithm. Most often, we will think of an algorithm as being a function,
such as a function in C++ or Java, where the input to the algorithm is passed as one or more
parameters to the function. The output can be given either as the return value of the function or
as modifications made to the input parameters.

Here, for example is the well known algorithm selection sort, written as a C++ function. The
purpose of this algorithm is to sort a list of integers into non-decreasing order:

1. void selection_sort(int[] list, int n) {
2 for (int top = n - 1; top > 0; top——) {
3 int max = 0;

4, for (int 1 = 1; i <= top; i++) {
5. if (list[i] > list[max])

6 max = ij;

7 }

8 int temp = list[top];

9. list[top] = list[max];

10. list[max] = temp;

11. }

12. }

In this algorithm, the input is a list of integers. The second parameter to the function gives the
number of items in the list. The output is the same list, with its elements rearranged into sorted
order. The body of the function specifies the procedure performed by the algorithm. Note that
the algorithm is this detailed procedure, not just the general idea of “sorting a list of integers.”

2 CHAPTER 1. ASYMPTOTIC ANALYSIS

There are many different algorithms that can be used to sort a list of integers. Selection sort is the
algorithm that sorts the list in this particular way.

When we discuss algorithms, we often need a way of talking about the efficiency of the algorithm,
that is, what sort of resources will be required to execute the algorithm. The resource in question can
be time—how long will the algorithm run—or space—how much memory will the algorithm require.
In practice, we will mostly be concerned with the run-time efficiency of the algorithm, but many
of the same ideas apply to space efficiency. In general, of course, the running time of an algorithm
will depend on a lot of things. Different inputs will almost always require different processing times.
Implementing an algorithm in a slightly different way or in a different programming language will
change the running time. And, of course, running the program on a faster computer will decrease
the amount of time it takes for the algorithm to run. We need some way of talking about run-time
efficiency without getting bogged down in these details.

First of all, instead of looking at the run time for a specific input, we concentrate on the size
of the input. In the case of selection sort, for example, we could ask, How long does selection sort
take to sort a list of n items? That is, the size of the input is the number of items in the list. In
general, we expect that the larger the input, the longer the running time will be. In fact, the time
will depend on the actual input, not just the size, but there are at least three specific times that
we could consider: The worst-case running time, which refers to the longest running time of
the algorithm for any input of size n; the best-case running time, which refers to the shortest
running time for any input of size n; and the average-case running time, which refers to the
average running time where the average is taken over all possible inputs of size n.

These various running times still depend on a specific implementation of the algorithm and on
the specific computer on which the implementation is executed. Once these detailes are specified,
the worst-case, best-case, and average-case running times become functions of the input size, n.
It turns out that it is useful to look at a property of these functions that doesn’t depend on the
details, the so-called growth rate of the functions. The growth rate of a function has to do with
the rate at which the value of the function changes as the size of its input increases. The growth
rate gives the general shape of the function, rather than its specific value. The growth rate is
most useful for comparing two functions. It will give us a way to compare the efficiency of two
algorithms without worrying about the specific implementations or computers that we are using.
We begin by looking at the growth rates of functions in the abstract; later, we apply what we learn
to algorithms.

1.1 Growth Rates of Functions

Suppose that f(n) and g(n) are two functions, defined for non-negative integers n and with values
in the set of real numbers. What would it mean to compare the “rates of growth” of the two
functions? First of all, we are interested in what happens to the values of the functions as the
input, n, gets larger and larger. So, for any given integer ng, we can ignore the values of f(n) and
g(n) for n < ng. Furthermore, we want to ignore constant multiples; the functions f(n), 1000 f(n),
and 0.0001 % f(n) are all considered to have the same rate of growth. (If the function gives the

1.2. APPLICATION TO ALGORITHMS 3

running time of an algorithm, multiplying the function by a constant corresponds to running the
algorithm on a faster or slower computer—a detail that we want to ignore.)

Taking this into consideration, we say that f has the same growth rate as g if there is a
positive integer ng and two positive real constants ¢; and co such that for any integer n > ny,
c1*|g(n)] < |f(n)] < cax|g(n)|. Note that we don’t require f(n) to be a constant multiple of g(n);
we just require that it be bounded above and below by constant multiples of g(n). In practice, all
the functions that we will be interested in have positive values, at least for large values of n, so we
can drop the absolute values from the above condition.

Symbolically, we express the fact that f(n) and g(n) have the same rate of growth by saying
that f(n) is ©(g(n)). The notation ©(g(n)) is read “Big-Theta of g(n).” Sometimes we will abuse
notation, as is the custom, and write this as f(n) = ©(g(n)). The equal sign here does not represent
a true equality, since the thing on the right-hand side is not a function; it is merely a notation that
represents a certain property of f(n).!

Looking at growth rates in this way is sometimes called asymptotic analysis, where the term
“asymptotic” carries the connotation of “for large values of n.” In the same way, we say that a
property of a function f(n) is asymptotically true if there is some number n(such that the property
holds for all n > ng. For example, we say that the function f(n) is asymptotically positive if
there is an integer ng such that f(n) > 0 for all n > ng. All the functions that we will be looking
at will be asymptotically positive. So, we have the following formal definition:

Definition 1.1. Let f(n) and g(n) be two asymptotically positive real-valued functions. We say
that f(n) is ©(g(n)) if there is an integer no and positive real constants ¢; and ¢z such that
c1xg(n) < f(n) < cgxg(n) for all n > ny.

For example, suppose that f(n) = 3 * n? + 7n — 5. Intuitively, for large values of n, Tn — 5
is insignificant compared to 3n?, so we would expect that f(n) is ©(3n?). In fact, since constant
multiples are not significant, we expect that f(n) is ©(n?). Proving this is not terribly informative:
We could note that for n > 1, 7n — 5 > 0 and so 3n?2 + 7Tn — 5 > 3n%. And we could note that
forn > 7,302+ —5 < 3n2 +7n < 3n%2 + n? < 4n%. So we have, taking g(n) = n?, that
3xg(n) < f(n) <4xg(n) for all n > 7. Taking nop =7, ¢; = 3, and c2 = 4 in the definition, we
have proved that f(n) is ©(n?).

In practice, we will almost always work informally, using the two rules that a constant multiple
can be ignored and that lower order terms in a summation can be ignored. Using these rules, we
can say immediately, for example, that 7n’ — 2n3 + 18n? is ©(n®).

1.2 Application to Algorithms

As a more practical example, we can do an asymptotic analysis of the running time of the selection
sort algorithm. The total time it takes to run this algorithm can be computed by considering how
many times each line in the algorithm is executed and how long it takes to run each line. For

'To be mathematically rigorous, we would define ©(g(n)) to be the set of all functions that satisfy the property.
That is ©(g(n)) = {f(n) | Ine 31 Iz (Yr > no, c1 * |g(n)| < |f(n)| < cax|g(n)|)}. In that case, it would be proper
to write f(n) € ©(g(n)).

4 CHAPTER 1. ASYMPTOTIC ANALYSIS

example, note that line 3 in the algorithm is in a loop that is executed n — 1 times, where n is the
size of the input list. So this line is executed n — 1 times. If it takes c3 seconds to execute the line,
then it contributes a total of ¢g * (n — 1) seconds to the running time of the algorithm. Here, c3 is
a constant that depends, for example, on the speed of the computer on which the algorithm is run.
Since c3 is a constant multiple, its value won’t, in the end, make any difference to the asymptotic
analysis. Similarly, lines 8, 9, and 10, as well as the decrement and test operations in the for loop
in line 2, are executed n — 1 times and contribute terms of the form ¢ (n — 1) to the run time. We
see that the run time for these lines is O(n).

On the other hand, line 5 is nested inside a second for loop and so is executed more often. The
inner for loop is executed top times, where the value of the variable top is n — 1 the first time the
loop is executed, n — 2 the second time, n — 3 the third time, and so on. It follows that the total
number of times that line 5 is executed is (n— 1)+ (n—2)+4---+2+1. The value of this summation
"("271), or n? — in, and so the total running time contributed by line 5 is co *n?
¢ is some constant. Since we can ignore constant multiples and lower order terms, we can say that
the total running time for line 5 is ©(n?). Similarly, the for loop operations in line 4 contribute a

term of the form c * n?, plus lower order terms, to the running time.

is — ¢9 *n, where

Line 6 is a little more interesting since it might or might not be executed in a particular case,
depending on the result of the test in line 5. However, it cannot be executed any more times than
line 5 is executed. In the best case, its contribution to running time is 0, and in the worst case, its
contribution is ©(n?). Adding this to the run time for the rest of the nested for loop gives a total
that is ©(n?) in both the best and worse case. Since the rest of the algorithm has a run time that
is ©(n) and n is of lower order than n?, we see that the running time of selection sort is ©(n?).
This is true for the best case running time, the worst case running time, and also the average case
running time.

We can do the same analysis much more simply by noting that line 5 in the selection sort
algorithm is executed ©(n?) times and that other lines are executed an equal or smaller number
of times. Also, the time it takes to execute this line once is a constant. Since we can ignore lower
order terms and constant multiples, it follows immediately that the total running time is ©(n?).

As a second example, we consider another common sorting method, the insertion sort algorithm.
This algorithm can be expressed by the following function:

1. void insertion_sort(int[] list, int n) {

2 for (int next = 1; next < n; next++) {

3 int value = list[next];

4. int pos = next;

5. while (pos > 0 && list[pos-1] > value) {
6 list[pos] = list[pos-1];

7 pos——;

8 }

9. list[pos] = value;

10. }
11. }

1.2. APPLICATION TO ALGORITHMS)

Here, as in selection sort, the main for loop is executed n — 1 times, so that lines 2, 3, 4, and
9 contribute terms of order ©(n) to the running time. However, the while loop in lines 5 through
8 can be executed anywhere between zero and next times, depending on the particular numbers
in the list. We see that the best case running time for insertion sort occurs when the while loop
is executed zero times, giving a total running time that is ©(n). You can check that this happens
when the algorithm is applied to a list that is already sorted into non-decreasing order. In the
worst case, the condition “list[pos-1] > value” in the while loop is always true. You can check
that this will happen if the list is originally in strictly decreasing order. In this worst case, the
while loop is executed (n —1) + (n —2) +---+1, or ”(”2_1), times. This is ©(n?).

So for insertion sort, the best case and worst case running times have different orders, ©(n) and
©(n?) respectively. What about the average case running time? It is not necessarily true in a given
case that the average case running time for an algorithm is the simple average of the best case and
the worst case. The average must be taken over all possible inputs, and this requires a separate
analysis which is often more difficult than the best and worst cases. For example, if running time
for the large majority of cases is close to the best case running time, then the average running time
will be very close to the best case running time. For insertion sort, it turns out that the average
case running time is ©(n?). The proof of this is not trivial, but it is based on the intuitive fact that
on the average, the while loop test “list [pos-1] > value” is true about half the time, so that on
average, the number of executions of the while loop is one-half of the maximum number. Since the

maximum number is n(nT_l), the average number of executions of the while loop is @, which is
still ©(n?).

We turn next to the problem of searching a list for a specified item. The obvious way to do this
is to examine each item in the list in turn until the desired item is found. This is the linear search
algorithm, which can be expressed as the function:

1 int linear_search(int item, int[] list, int n) {
2 for (int index = 0; index < n; index++) {

3 if (list[index] == item)

4. return index;

5 }

6 return -1;

7 }

In this function, the first parameter, item, is the item that we want to find. The number of
items in the list is n. If the item is found in the list, then the return value of the function is its
position in the list; if the item does not occur in the list, then the return value is —1. We take the
size of the input to be n, the length of the list, and we investigate the best, worst, and average case
running time as functions of n.

The best case occurs when the item occurs as the first item in the list. In that case, only a
small, constant amount of work is done. We can say that the best case running time is ©(1).? The

2To say that a function f(n) is ©(1) means technically that there are constants c¢1 and ¢z and an integer ng such
that ¢1 < f(n) < e2 for all n > ng. That is, the function is bounded above and below by constants. In this case, the
best case running time is actually constant, which is a stronger than saying that it is ©(1).

6 CHAPTER 1. ASYMPTOTIC ANALYSIS

worst case occurs when the item is not in the list. In that case, the for loop executes n times, so
the worst case running time is ©(n). If we assume that each item in the list has an equal chance
of being searched for, then the for loop is executed an average of n/2 times for items in the list,
giving an average case running time of O(n) for items in the list. Allowing for items that are not
in the list would raise the average running time, but the average would still be ©(n).

If we assume that the list is sorted into non-decreasing order, we can improve on this running
time by using the binary search algorithm instead of linear search. The idea of binary search is
this: Examine the item in the middle of the list. If that item is the item that you are searching
for, return the position of the item. Otherwise, if the item in the middle of the list is greater than
the item you are searching for, then apply the same search procedure to the first half of the list.
And if the the item in the middle of the list is less than item you are searching for, then apply the
same search procedure to the second half of the list. Continue in this way until you have found the
item or reduced the size of the list to zero. Although the description of this algorithm is recursive,
it can be implemented in an iterative version:

1 int binary_search(int item, int[] sorted_list, int n) {
2 int low = 0; // minimum possible position of item
3 int high = n-1; // maximum possible position of item
4. while (high >= lo) {

5. int middle = (high + lo) / 2;

6 if (sorted_list[middle] == item)

7 return middle;

8 else if (sorted_list[middle] > item)

9. high = middle - 1;

10. else

11. low = middle + 1;
12. }

13. return -1;

14. }

In the best case, of course, the item is found immediately, and the amount of work that is done
is constant. So, the best case running time is ©(1). The worst case occurs when the item is not
in the list. How many times is the while loop executed in this worst case? Each time through the
loop, the difference between high and low is reduced to a little less than half its previous value.
(The exact new value is (int)((high — low — 1)/2).) When this difference is reduced to zero, the
loop ends. Initially, high — low is n. The question is, how many times do we divide this value by
2 before the answer becomes zero? Mathematically, the answer to this question is given by the
integer part of the function logy(n), the logarithm of n to the base 2. So, in the worst case, the
while loop is executed about log,(n) times, and the worst case running time is ©(logy(n)). For all
but very small values of n, logy(n) is much smaller than n, which means that binary search is much
more efficient than linear search at least for sufficiently large lists.

1.3. GROWTH RATES OF COMMON FUNCTIONS 7

1.3 Growth Rates of Common Functions

I've just said that an algorithm with run time ©(log,(n)) is “more efficient” than one with run time
©(n), at least for large values of the input size, n. Remember that for a given function f(n), there
are many different functions that are ©(f(n)). These functions can differ by constant multiples and
by lower order terms, for example. However, if 7(n) is any function that is ©(logy(n)) and s(n)
is any function that is ©(n), s(n) will be bigger than r(n) for sufficiently large values of n. This
is true because n grows so much faster than log(n) as n gets bigger and bigger.> We have to be
a little careful: When we find that one algorithm is more efficient than another, at least for large
values of n, the result could theoretically hold only for very large values of n. So, it’s conceivable
that an algorithm with ©(n) run time is actually faster than one with ©(logy(n)) run time for all
practical values of n, even though the ©(log,(n)) algorithm would be faster for large enough n.
Nevertheless, as a general rule, a ©(logy(n)) algorithm is generally preferable to a ©(n) algorithm.

In order to make this kind of judgment, we need to have some idea of the relative growth rates
of the functions involved. Fortunately, we will encounter only a few general classes of functions.

A power function is one of the form n®, where a is a positive constant. For example, n?, n'7,
and n'87 are power functions. The function n is a power function since n = n'. The square root
function, /n, is a power function since v/n = n'/2. Similarly, n\/n is the power function n3/2.
The rule for power functions is that whenever a > b > 0, the function n® has a higher growth rate
than n’. For example, an algorithm with run time ©(y/n) will run more slowly than one with run
time ©(n), for all sufficiently large values of n. Also, /n is a “lower order term” when compared
to n, so that the function 3n + 17/n can immediately be seen to be O(n).

An exponential function is one of the form b™, where b is a positive constant. We will only be
interested in exponential functions where b > 1. For example, 2", 10", and 1.7" are exponential
functions. The rule for exponential functions is that whenever @ > b > 0, the function a™ has
higher growth rate than b™. Furthermore, if b > 1, then the function ™ has a higher growth rate
than any power function. For example, an algorithm with a run time that is ©(n?) is faster than
an algorithm with run time ©(1.001™) for all sufficiently large values of n. And we can say that
the function 2" + 3" + n? + n3 is ©(3").

A logarithmic function is one of the form logy(n), where b is a positive constant. We will only
be interested in logarithmic functions where b > 1. As it turns out, for any numbers a and b, both
greater than 1, the functions log,(n) and log,(n) have exactly the same rate of growth. This follows
from the mathematical identity log,(n) = @ -logy(n). That is, the function log,(n) is just a
constant multiple of the function log,(n). So, for the purposes of analyzing growth rates, we only
need one logarithmic functions. In computer science, it is natural to use logs(n), the logarithm to
the base 2, which is defined by the fact that logs(2¥) = z for any x > 0. In the future, the notation
log(n) will always mean log,(n). However, remember that any other logarithm function could be
used instead. As for rates of growth, the logarithm function has a smaller rate of growth than any
power function (and hence also of course a smaller rater of growth than any exponential function).

3More technically, for any positive constants a and b, there exists an integer no such that a * n > b* log,(n) for
any n > ng. (This is true even if a is very small and b is very large.) To prove this, you need to know some math; it
follows from the fact that lim —=— = 0.
n— oo 1082(1)

8 CHAPTER 1. ASYMPTOTIC ANALYSIS

For example, log(n) grows more slowly than y/n. Even though log(n) grows very slowly, it has
a higher growth rate than the constant function. Occasionally, we might encounter the iterated
logarithm function, log(log(n)), which has an even smaller rate of growth than log(n).

In addition to these basic functions, we can consider products and quotients of these functions.
For example, the function nlog(n) often turns up in the analysis of algorithms. This function has
a higher growth rate than n but a much lower growth rate than n?. In fact, it has a lower growth
rate than n'*¢ for any positive number e. Similarly, n/log(n) has a lower growth rate than n and
a higher growth rate than n'~¢ for any positive number &.

In summary, here is a list of some typical common functions that we might encounter in this
course, arranged in order of increasing growth rate:

1 log(log(n)) log(n) +n n nlog(n) n? n’log(n) n® 2" n2" 3"

1.4 Upper and Lower Bounds

To say that a function, f(n), is ©(g(n)) is to say that for sufficiently large values of n, f(n) is
bounded above and below by constant multiples of g(n). Sometime, it’s useful to work separately
with upper and lower bounds. For example, we might be able to show that the running time of a
certain algorithm is less than some constant times n?, for large enough values of n, without being
able to show that it is greater than some other constant times n2. In this case, we will say that the
running time is O(n?). The notation O is pronounced “Big-Oh.” It indicates that we have found
an upper bound but not necessarily a lower bound. It leaves open the possibility that the growth
rate of the running time is actually strictly less than n?. For example, the function nlog(n) is
O(n?) but is not O(n?).# Formally, we have the following definition:

Definition 1.2. Let f(n) and g(n) be two asymptotically positive real-valued functions. We say
that f(n) is O(g(n)) if there is an integer ng and a positive real constant ¢ such that f(n) < c¢*xg(n)
for all n > ny.

Similarly, we might have only a lower bound on the rate of growth. The is indicated by the
notation Q(g(n)). The notation 2 is pronounced “Big-Omega”’. We have the definition:

Definition 1.3. Let f(n) and g(n) be two asymptotically positive real-valued functions. We say
that f(n) is Q(g(n)) if there is an integer ng and a positive real constant ¢ such that f(n) > c¢xg(n)
for all n > nyg.

For example, if we say that the running time of an algorithm is Q(nlog(n)), we are claiming
that the running time is at least as big as a constant times n log(n) for all sufficiently large values
of n. This leaves open the possibility that it is, in fact, much bigger.

Note that a function f(n) is O(g(n)) if and only if f(n) is both O(g(n)) and Q(g(n)). A
Big-Theta bound gives more information than either a Big-Oh or a Big-Omega bound, but O and
Q are still useful. Informally, a O bound on the running time of an algorithm gives you some idea
about the maximum amount of time that you will need to run the algorithm while a €2 bound gives
you some idea about the minimum amount of time needed.

“You should be aware that the notation O(f(n)) is used by some people to mean what I am calling ©(f(n)).

1.5. OTHER APPROACHES 9

1.5 Other Approaches

Asymptotic analysis (0, O, and) gives some idea about the running time of an algorithm, but
there are other approaches to the analysis of algorithms. For example, aside from some bookkeeping,
sorting and search algorithms are often built from two basic operations: comparing two items and
copying an item from one location to another. Counting the number of comparisons and/or copies
used by the algorithm can often give a better idea of the efficiency of the algorithm than a simple
Big-Theta analysis. And sometimes the best approach is empirical. That is, test the algorithm
by executing it on a variety of inputs and measuring its performance. Throughout the course, we
will use other approaches whenever they are appropriate, but asymptotic analysis will remain our
primary tool.

Exercises

1. We have looked at selection sort and insertion sort. Another common sorting algorithm is bubble sort,
which can be expressed as follows:

1 void bubble_sort(int[] list, int n) {
2 for (int top = n-1; top > 0; top——) {
3 boolean swapped = false;

4. for (int i = 0; i < top; i++) {
5. if (list[i] > list[i+1]) {
6 swapped = true;

7 int temp = list[i];

8. list[i] = list[i+1];

9. list[i+1] = temp;

10. X

11. }

12. if (swapped == false)

13. break;

15. }

Give a Big-Theta analysis of the best case, worst case, and average case running times of the bubble sort
algorithm. You should explain your reasoning, but you do not have to give formal proofs of your answers.

2. In mathematics, a matriz is a two-dimensional array of numbers. An n X n matrix is one that has n
rows and n columns. There is an algorithm for multiplying two n x n matrices, giving another n x n
matrix as output. It’s not easy to express this algorithm in C++4, because of the way C+-+ handles
two-dimensional arrays, but it can be expressed in Java as follows:

1 int[J[] multiply(int[J[] A, int[][] B, int n) {
2 int[][] product = new int[n] [n];

3 for (int row = 0; row < n; row++) {

4, for (int col = 0; col < n; col++) {

5 int sum = O;

6 for (int k = 0; k < n; k++) {

10

CHAPTER 1. ASYMPTOTIC ANALYSIS
7. sum = sum + A[row] [k] * B[k] [coll;
8. }
9. product [row] [col] = sum;
10. }
11. }
12. return product;
13. }

Because there are no if statements in this algorithm, its best case, worst case, and average case running
times are identical. Give a Big-Theta analysis of the running time of this algorithm as a function of the
array size n. Explain your reasoning.

