
CPSC 327, Spring 2019 Sample Answers to Homework #2

1. One approach is to look for a statement that is executed at least as many times as other
statements in the code. In part a), we can use the statement B[i] = B[i] + A[j] in the
nested for loop. For each value of i = 0, 1, . . . n − 1, the inner for loop runs for i executions,
and the statement in the inner loop is executed i times. The total number of executions is
0 + 1 + 2 + · · ·+ (n− 1), which we know is Θ(n2). (It is exactly n(n− 1)/2.) The execution of
other statements in the code segment add other constant multiples of n2 or lower order terms,
which does not change the Big-Oh analysis. So the run time for part a) is Θ(n2).

For part b), the statement C[i]=A[i]*B[i] is executed n times and nothing else is executed
more often, so the run time for the for loop is Θ(n). (The first statement, which calls new int[n],
is more problematic. That statement does not actually execute in constant time in all cases.
In fact, it can trigger a garbage collection that can take an undetermined amount of time. In
almost all cases, however, it will not take longer than Θ(n), which does not change the analysis.)

2. a) This algorithm checks whether the array contains any duplicate elements. That is, it
returns true if A[i] = A[j] for some i and j with j > i. (Note that it is essential that the inner
for loop start with j = i+ 1 to avoid comparing A[i] to itself, which would always return a true
result.)

b) In the worst case, A does not contain any duplicates, which means that the test in the if
statement is always false, and the code does not end until the for loops have run completely. In
that case, the comparison is done (n−1)+(n−2)+ · · ·+2+1 times, and the run time is Θ(n2).
The best case occurs when A[0] equals A[1], so the code ends after doing just one comparison,
so that the run time is Θ(1).

c) After the array has been sorted, any pair of duplicate elements will be next to each other
in the array, so we only have to compare each element to the element that immediately follows
it in the array. Using mergeSort to do the sorting, the algorithm is

mergeSort(A);

for (int i = 0; i < n-1; i++) {

if (A[i] == A[i+1])

return false;

}

return true;

The run time for mergeSort is Θ(n ∗ log(n)), and the time for the for loop is O(n). Since n is a
lower-order term compared to n ∗ log(n), the total run time is Θ(n ∗ log(n)) (in all cases).

3. There are many algorithms that will work (including the one that I discussed in class that uses
only n + log2(n) comparisons). Perhaps the most natural one is:

first = A[0]; // this will be the largest element

second = A[1]; // this will be the second-largest element

if (A[1] > A[0]) { // they are in the wrong order, so swap them

temp = A[0];

A[0] = A[1];

A[1] = temp;

}



for ( i = 2; i < N; i++ ) {

if (A[i] > second) { // A[i] becomes first or second largest

if (A[i] < first) { // A[i] is not the first largest

second = A[i];

}

else { // A[i] is first largest

second = first; // The previous first largest moves down

first = A[i];

}

}

}

This algorithm clearly has run time Θ(n), but the question that was asked is how many compar-
isons does it make. There is 1 comparison at the start and at least N −2 comparisons in the for
loop. Depending on how often the first comparison in the loop succeeds or fails, there can be
up to N − 2 additional comparisons. So, the total number of comparisons is in the range N − 1
to 2∗N −3, with an average of about 3

2N . (The best case is when A[0] and A[1] are already the
first and second elements, in which case there are exactly N − 1 comparisons. The worst case is
when the array is in increasing order, in which case there are exactly 2N − 3 comparisons.)

(Note: It is not necessary to modify the array in order to efficiently solve this problem. It is
certainly not necessary to sort the array completely.)

4. If we can find an index p such that A[p] >= X, then, since the array is sorted, we know that
N , the index of X in the array, must be less than or equal to p. Once we have p, we can use
binarySearch(A,0,p) to find N . (Use a version of binary search that returns the index of the
value that is being looked for, not just true or false.) An algorithm that does this is:

p = 1;

while (A[p] < X)

p = 2*p;

return binarySearch(A,0,k);

When the while loop ends, p is the first power of 2 such that N ≤ p. If p = 2k, then k is the
number of times that the while loop has run, and k is approximately log2(N). (It is exactly
dlog2(N)e.) So the run time for the while loop is Θ(log(N)). We know that binary search on the
subarray from 0 to 2k also takes k steps, so the run time for the binary search is also Θ(log(N)).

5. a) When applying the Master Theorem to this recurrence relation, b = 3 and a = 9, so
logb(a) = log3(9) = log3(3

2) = 2. The exponent on the “extra work” function, n2, is also 2, so
this is Case 2 of the Master Theorem, and we get T (n) = Θ(nlogb(a) log(n)) = Θ(n2 log(n)).

b) When applying the Master Theorem to this recurrence relation, b = 3 and a = 9, so
logb(a) = log3(9) = log3(3

2) = 2. The exponent on the “extra work” function, n3, is 3, which is
greater than logb(a), so this is Case 3 of the Master Theorem, and we get that T (n) is the same
as the extra work function, T (n) = Θ(n3).

c) When applying the Master Theorem to this recurrence relation, b = 4 and a = 5, so
logb(a) = log4(5), which is about 1.161. The exponent on the “extra work” function, n, is 1,
which is less than logb(a), so this is Case 1 of the Master Theorem, and we get that T (n) =
Θ(nlogb(a)) = Θ(n1.161).


