
CPSC 327, Spring 2019 Sample Answers to Homework #3

1. 6.4-1. The illustration that is given as a model only shows the second phase of heapsort, after
the heap is already built, so it is not required to show the steps in building the heap. However,
here are the steps. The gray nodes are the ones that are already heapified.

7

8

5

13 2

25 17 20

4

7

8

5

13 20

25 17 2

4

7

8

5

25 20

13 17 2

4

7

5

25

13 20

8 17 2

4

The original array Gray nodes have been heapi ed.

The rst node to move is the 2,

which is swapped with the 20. Next, the 13 moves down.

Finally, the 5 bubbles down.

7

5

25

13 20

8 17 2

4

The array rearranged into a heap.

And here is the illustration that shows nodes being removed one-by-one from the heap, using
removeMax ():

7

5

20

13 17

8 4 2

25

7

20

17

13 5

8 4 2

25

7

20

13

8 5

2 4 17

25

4

20

8

7 5

2 13 17

25

8

20

7

4 5

2 13 17

25

8

20

5

4 2

7 13 17

25

8

20

4

2 5

7 13 17

25

8

20

2

4 5

7 13 17

25

2,4,5,7,8,13,17,20,25

The final sorted array

6.4-5. Initialization: Before the loop starts, i = 0, and the first subarray mentioned in the loop
invariant is empty (an so is a heap containing the smallest 0 elements of A), and the second
subarray is the entire array, which therefor contains the (n − 0) largest elements of A. So the
loop invariant is true at the start. Maintenance: An iteration of the loop removes the largest

element from the first subarray and adds it to front of the second subarray. Since that element
was in the first subarray, it is (according to the loop invariant) smaller than (or equal to) all the
elements of the second subarray. So that subarray remains sorted, and since the element that
was moved was the largest one in the heap, all of the elements in the heap are still less than or
equal to all the elements in the second subarray. Termination: In the end, the first subarray is
empty, the second contains every element, and the heap invariant says that those elements are
in sorted order. So, heapsort has successfully sorted the array.

6.4-3. The running time will still be Θ(n ∗ log(n)), in both cases. That is both the best case
and the worst case running time for Heapsort, as long as all the elements in the array are
different. (The heap can be built in Θ(n) time, but then calls to removeMax () always move
a small element to the top of the heap, and that element has to bubble down the heap. On
the other hand heapsort applied to an array in which all elements are the same only takes time
Θ(n), since no element ever has to bubble up or down.)

6.5-2. The 10 is added at the bottom of the heap and bubbles up. Here is an illustration:

12

4

15

13 9

5 8 7

0 46 2 1

12

4

15

13 10

5 9 7

0 46 2 1 810

The original heap, with the new

node that has to be added,

shown in gray.

The 10 is attached to the tree,

then it bubbles up, changing places

with the 8 and the 9.

2. a) In one approach, the array is divided into three sections. A[0..i-1] contains only 1’s,
A[i..j-1] contains only 2’s, and A[j..n-1] contains elements that have not yet been checked.
In each iteration of the loop, we examine one new element, A[j]. If that element is a 2, nothing
has to move. But if A[j] is a 1, it has to be moved into the first section of the array; we can do
that by swapping A[j] with A[i]:

i = j = 0; // All elements start out in the third section

while (j < n) {

if (A[j] == 1) {

temp = A[j];

A[j] = A[i];

A[i] = temp;

i++;

}

j++;

}

b) We now need 4 sections in the array: A[0..i-1] contains only ones, A[i..j-1] contains
only 2’s, A[j..k-1] contains elements that have not yet been checked, and A[k..n-1] contains
only 3’s. One iteration of the loop moves A[j] into appropriate section of the array (dending
on whether it’s a 1, a 2, or a 3). Note that in each iteration of the loop, either j is incremented
or k is decremented, but not both:

i = j = 0; // All elements start out in the third section

k = n;

while (j < k) { // Done when 3rd section has zero elements

if (A[j] == 1) { // Move it to first section

temp = A[j];

A[j] = A[i];

A[i] = temp;

i++;

j++;

}

else if (A[j] == 2) {

j++;

}

else if (A[j] == 3) { // Move it to fourth section

k--;

temp = A[j];

A[j] = A[k];

A[k] = temp;

}

}

3. Answers will depend on the details of the programs. As an example, here are the times from
my program for an array of one million items, with the just-in-time compiler disabled:

Array size is 1000000

Time to sort with Arrays.sort: 607,875,959 nanoseconds.

Time to sort with heapsort: 1,873,054,614 nanoseconds.

Time to sort with funkyHeapsort: 1,565,402,095 nanoseconds.

Time to sort with quicksort 772,393,976 nanoseconds.

My program actually runs two sets of experiments. The first gives the just-in-time compiler a
chance to work (assuming that it’s enabled). The second gives the results for the sort methods
as optimized by the just-in-time compiler. Here are the results from the second set of tests in a
program with the JIT compiler enabled. The JIT compiler has sped up the code by a factor of
six or more:

Array size is 1000000

Time to sort with Arrays.sort: 92,822,641 nanoseconds.

Time to sort with heapsort: 194,145,195 nanoseconds.

Time to sort with funkyHeapsort: 222,883,725 nanoseconds.

Time to sort with quicksort 113,776,180 nanoseconds.

4. My programs are attached

1 import java.util.Arrays;
2

3

4 /**
5 * A program to measure sorting times for various sorting methogs.
6 */
7 public class SortTimes {
8

9

10 /**
11 * Run the sorting methods on arrays of size 1000, 10000, 100000, and 1000000.
12 * The experiments are run twice. The first set gives the just−in−time compiler
13 * a chance to work on the code (if the just−in−time compiler is enabled); the
14 * second set of experiments will then give more accurate results.
15 */
16 public static void main(String[] args) {
17 for (int size = 1000; size <= 1000000; size *= 10)
18 runExperiment(size);
19 System.out.println();
20 System.out.println("−−");
21 for (int size = 1000; size <= 1000000; size *= 10)
22 runExperiment(size);
23 }
24

25

26 /**
27 * Apply four sorting algorithms to the same random array, and report the times.
28 */
29 private static void runExperiment(int arraySize) {
30 double[] A = new double[arraySize];
31 for (int i = 0; i < arraySize; i++)
32 A[i] = Math.random();
33 double[] B = A.clone();
34 double[] C = A.clone();
35 double[] D = A.clone();
36 long time;
37 System.out.println();
38 System.out.println("Array size is " + arraySize);
39 time = builtInSort(A);
40 System.out.printf(" Time to sort with Arrays.sort: %,d nanoseconds.%n", time);
41 time = heapsort(B);
42 System.out.printf(" Time to sort with heapsort: %,d nanoseconds.%n", time);
43 time = funkyHeapSort(C);
44 System.out.printf(" Time to sort with funkyHeapsort: %,d nanoseconds.%n", time);
45 time = quicksort(D);
46 System.out.printf(" Time to sort with quicksort %,d nanoseconds.%n", time);
47

48 // for testing, make sure my sorts give the same result as Arrays.sort...
49

50 // System.out.println();
51 // boolean ok;
52 // ok = true;
53 // for (int i = 0; i < arraySize; i++) {
54 // if (B[i] != A[i]) {
55 // System.out.println("heapsort failed at index " + i);
56 // ok = false;
57 // break;
58 // }
59 // }
60 // if (ok)
61 // System.out.println("heapsort worked");
62 //
63 // ok = true;
64 // for (int i = 0; i < arraySize; i++) {
65 // if (C[i] != A[i]) {
66 // System.out.println("funkyHeapSort failed at index " + i);
67 // ok = false;
68 // break;
69 // }
70 // }
71 // if (ok)
72 // System.out.println("funkyHeapsort worked");
73 //
74 // ok = true;
75 // for (int i = 0; i < arraySize; i++) {
76 // if (D[i] != A[i]) {
77 // System.out.println("quicksort failed at index " + i);
78 // ok = false;

Feb 14, 19 9:01 Page 1/3SortTimes.java
Printed by David J. Eck

Thursday February 14, 2019 1/3

79 // break;
80 // }
81 // }
82 // if (ok)
83 // System.out.println("quicksort worked");
84 }
85

86

87 /**
88 * Sorts the array using Array.sort().
89 * @param A the array to be sorted.
90 * @return The number of nanoseconds that it took to do the sort.
91 */
92 private static long builtInSort(double[] A) {
93 long start, end;
94 start = System.nanoTime();
95 Arrays.sort(A);
96 end = System.nanoTime();
97 return (end−start);
98 }
99

100

101 /**
102 * Sorts the array using the heapsort algorithm.
103 * @param A the array to be sorted.
104 * @return The number of nanoseconds that it took to do the sort.
105 */
106 private static long heapsort(double[] A) {
107 long start, end;
108 start = System.nanoTime();
109 for (int root = (A.length−1)/2; root >= 0; root−−) {
110 heapify(A,root,A.length);
111 }
112 for (int i = A.length−1; i > 0; i−−) {
113 double temp = A[i];
114 A[i] = A[0];
115 A[0] = temp;
116 heapify(A,0,i);
117 }
118 end = System.nanoTime();
119 return (end−start);
120 }
121

122 /* subroutine for use in heapsort */
123 private static void heapify(double[] heap, int root, int size) {
124 while (true) {
125 if (2*root+1 >= size)
126 break;
127 int big = (2*root+2);
128 if (big >= size || heap[2*root+1] > heap[big])
129 big = (2*root+1);
130 if (heap[big] < heap[root])
131 break;
132 double temp = heap[big];
133 heap[big] = heap[root];
134 heap[root] = temp;
135 root = big;
136 }
137 }
138

139

140 /**
141 * Sorts the array using a MaxHeap.
142 * @param A the array to be sorted.
143 * @return The number of nanoseconds that it took to do the sort.
144 */
145 private static long funkyHeapSort(double[] A) {
146 long start,end;
147 start = System.nanoTime();
148 MaxHeap heap = new MaxHeap();
149 for (int i = 0; i < A.length; i++)
150 heap.insert(A[i]);
151 for (int j = A.length−1; j>= 0; j−−)
152 A[j] = heap.removeMax();
153 end = System.nanoTime();
154 return end−start;
155 }
156

Feb 14, 19 9:01 Page 2/3SortTimes.java
Printed by David J. Eck

2/3 Thursday February 14, 2019

157

158 /**
159 * The Quicksort partitioning algorithm.
160 * @param A array in which a subarray is to be partitioned
161 * @param low the start index of the subarray
162 * @param high the end index of the subarray
163 * @return the index of the pivot element after the partitioning
164 */
165 private static int partition(double[] A, int low, int high) {
166 double pivot = A[low];
167 int j = low;
168 for (int i = low+1; i <= high; i++) {
169 if (A[i] < pivot) {
170 A[j] = A[i];
171 A[i] = A[j+1];
172 j++;
173 }
174 }
175 A[j] = pivot;
176 return j;
177 }
178

179 /**
180 * Apply quicksort to the entire array A, and return how long it took
181 * to do the sort, in nanoseconds. This is just the most basic recursive
182 * version of quicksort.
183 */
184 private static long quicksort(double[] A) {
185 long start, end;
186 start = System.nanoTime();
187 quicksort(A,0,A.length−1);
188 end = System.nanoTime();
189 return (end−start);
190 }
191

192 /**
193 * Apply quicksort recursively to a subarray in A.
194 */
195 private static void quicksort(double[] A, int low, int high) {
196 if (high > low) {
197 int mid = partition(A,low,high);
198 quicksort(A,low,mid−1);
199 quicksort(A,mid+1,high);
200 }
201 }
202

203

204 }

Feb 14, 19 9:01 Page 3/3SortTimes.java
Printed by David J. Eck

Thursday February 14, 2019 3/3

1

2 /**
3 * An object of this class represents a max−heap of doubles.
4 * The heap has operations insert(x) and removeMax(), and it
5 * can be used as a max−priority−queue.
6 */
7 public class MaxHeap {
8

9 private double[] heap = new double[8];
10 private int size = 0;
11

12 /**
13 * Returns the number of items on the heap.
14 */
15 public int size() {
16 return size;
17 }
18

19 /**
20 * Test whether the heap is empty.
21 */
22 public boolean isEmpty() {
23 return size == 0;
24 }
25

26 /**
27 * Remove and return the largest element from the heap.
28 */
29 public double removeMax() {
30 if (size == 0)
31 throw new IllegalStateException("Attempt to delete from an empty heap.");
32 double max = heap[0];
33 heap[0] = heap[size−1];
34 size−−;
35 heapify(heap,0,size);
36 return max;
37 }
38

39 /* subroutine for use in removeMax() */
40 private void heapify(double[] heap, int root, int size) {
41 while (true) {
42 if (2*root+1 >= size)
43 break;
44 int big = (2*root+2);
45 if (big >= size || heap[2*root+1] > heap[big])
46 big = (2*root+1);
47 if (heap[big] < heap[root])
48 break;
49 double temp = heap[big];
50 heap[big] = heap[root];
51 heap[root] = temp;
52 root = big;
53 }
54 }
55

56 /**
57 * Adds an item to the heap.
58 * @param x the number to be added.
59 */
60 public void insert(double x) {
61 if (size == heap.length) {
62 double[] temp = new double[heap.length*2];
63 for (int i = 0; i < heap.length; i++)
64 temp[i] = heap[i];
65 heap = temp;
66 }
67 int i = size;
68 while (i > 0 && heap[(i−1)/2] < x) {
69 heap[i] = heap[(i−1)/2];
70 i = (i−1)/2;
71 }
72 heap[i] = x;
73 size++;
74 }
75

76 // private void isHeap() { // This was used during testing.
77 // for (int i = 1; i < size; i++) {
78 // if (heap[i] > heap[(i−1)/2])

Feb 14, 19 9:01 Page 1/2MaxHeap.java
Printed by David J. Eck

Thursday February 14, 2019 1/2

79 // throw new IllegalStateException("not a heap ");
80 // }
81 // }
82

83 }

Feb 14, 19 9:01 Page 2/2MaxHeap.java
Printed by David J. Eck

2/2 Thursday February 14, 2019

	hw3-answers
	SortTimes
	MaxHeap

