
CPSC 327, Spring 2019 Homework #3

Problems 1 and 2 are due at the start of class on Friday, February 15. Problem 3 can
be turned in either on paper with Problems 1 and 2, or it can be added as a comment in
the main program file for Problem 4. Your work for the programming assignment, Prob-
lem 4, should be submitted by copying it into your homework folder inside the directory
/classes/cs327/homework. The program should be turned in by 3:00 PM on Friday, Febru-
ary 15. I will print out every .java file in your homework folder.

1. Do the following exercises from Chapter 6 of the textbook:

6.4-1: Using Figure 6.4 [shown on reverse] as a model, illustrate the operation of Heapsort
on the array A = {5, 13, 2, 25, 7, 17, 20, 8, 4}.

6.4-5: Argue the correctness of Heapsort using the following loop invariant for the second
for loop in the algorithm (after the array has been heapified): “At the start of each iteration
of the for loop, the subarary A[0 .. i-1] is a max-heap containing the i smallest elements
of the original array, and the subarray A[i .. n-1] contains the n − i largest elements of
the original array in sorted order.

6.4-3: What is the running time of Heapsort on an array A of length n that is already
sorted into increasing order? What about decreasing order? (Why?)

6.5-2: Illustrate the operation of max heap insert(A,10) on the following max-heap:
A = {15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1}. [We talked about how insertion is done, but I did not
give the code in class. You don’t need the code to do this exercise, but note that you will
implement this routine as part of your programming assignment].

2. Here are two algorithm-development problems that can be solved using ideas from the parti-
tioning algorithm used in Quicksort. Find algorithms that are in-place and that solve these
problems with linear run time, Θ(n). The first problem is easy, the second is harder.

a) Sort an array containing only (many copies of) the numbers 1 and 2.

b) Sort an array containing only (many copies of) the numbers 1, 2, and 3.

3. Write up and turn in the results from the timing experiments that you do with the program
that you turn in for Problem 4. Do not just list the times!! Give an analysis of the results.
What do they say about the various sorting algorithms and their run times?

4. Write a class, MaxHeap, to implement a max-heap of values of type double. (You can either use
an ArrayList to represent the heap, or use an array and be prepared to grow the array. The
array implementation will probably be more efficient. (Maybe you should try both!))

Next, write three sorting methods: One should use the heapsort algorithm as covered in
class. A second should sort the array by inserting all the elements from the array into a heap
defined by your MaxHeap class, and then removing all the items from the heap and putting them
back into the array in order. Finally, the third sorting method should be an optimized version
of quicksort that is as efficient as you can make it. You will probably want to use randomized



quicksort. You might want to switch to insertion sort on very small subarrays. You might even
consider using a stack instead of recursion.

Finally, you should write a main program that does timing experiments on your three sorting
methods plus the built-in sorting method, Arrays.sort(A). It is probably best to apply all four
algorithms to identical arrays. Remember that you can easily make a copy of an array, A, by
calling A.clone(). Use arrays filled with random numbers. You will need to use fairly large
arrays to get useful time measurements. Use System.nanoTime() to do the time measurements.
Consider turing off the Java just-in-time compiler to get more accurate comparisons. To do
that, run the program with the javac option -Xint.

Note that your grade for this assignment is based partly on your design of the timing exper-
iments.

Possible term projects: (1) InsertionSort should be faster than Quicksort and other sorting
methods on an “almost sorted” array. Investigate this idea and devise programming experiments
to test it. Exactly how “deranged” does an array have to be, for Quicksort to be better than
InsertionSort? (2) Java has a built-in PriorityQueue class. Investigate what it does and how it is
used and, using timing experiments, how efficient it is for various types of heap elements.


