
Chapter 2

Abstract Data Types

The second idea at the core of computer science, along with algorithms, is data. In a
modern computer, data consists fundamentally of binary bits, but meaningful data is organized
into primitive data types such as integer, real, and boolean and into more complex data structures
such as arrays and binary trees. These data types and data structures always come along with
associated operations that can be done on the data. For example, the 32-bit int data type is
defined both by the fact that a value of type int consists of 32 binary bits but also by the fact
that two int values can be added, subtracted, multiplied, compared, and so on. An array is defined
both by the fact that it is a sequence of data items of the same basic type, but also by the fact
that it is possible to directly access each of the positions in the list based on its numerical index.
So the idea of a data type includes a specification of the possible values of that type together with
the operations that can be performed on those values.

An algorithm is an abstract idea, and a program is an implementation of an algorithm. Similarly,
it is useful to be able to work with the abstract idea behind a data type or data structure, without
getting bogged down in the implementation details. The abstraction in this case is called an
“abstract data type.” An abstract data type specifies the values of the type, but not how those
values are represented as collections of bits, and it specifies operations on those values in terms of
their inputs, outputs, and effects rather than as particular algorithms or program code.

Definition 2.1. An Abstract Data Type, or ADT, consists of (a) a specification of the possible
values of the data type and (b) a specification of the operations that can be performed on those
values in terms of the operations’ inputs, outputs, and effects.

We are all used to dealing with the primitive data types as abstract data types. It is quite likely
that you don’t know the details of how values of type double are represented as sequences of bits.
The details are, in fact, rather complicated. However, you know how to work with double values
by adding them, multiplying them, truncating them to values of type int, inputting and outputting
them, and so on. To work with values of type double, you only need to know how to use these
operations and what they do. You don’t need to know how they are implemented.

When you create your own new data types—stacks, queues, trees, and even more complicated
structures—you are necessarily deeply involved in the data representation and in the implemen-

11



12 CHAPTER 2. ABSTRACT DATA TYPES

tation of the operations. However, when you use these data types, you don’t want to have to
worry about the implementation. You want to be able to use them the way you use the built-in
primitive types, as abstract data types. This is in conformance with one of the central principles of
software engineering: encapsulation, also known as information hiding, modularity, and separation
of interface from implementation.

2.1 Stacks and Queues

Let’s consider two familiar data structures, stacks and queues. Generally, a stack or queue is
designed to contain items of some specified type. For example, we can have stacks of integers or
queues of strings. The type of the items contained in a stack or queue is called its base type.

A possible value of a stack—the data that the stack contains at a given time—is a sequence of
items belonging to its base type. A possible value of a stack of integers is a sequence of integers.
Exactly the same thing could be said about a queue of integers. So, what’s the difference between a
stack and a queue? The difference is the set of operations defined for the data type. In particular,
the difference is in the meaning of the operation that removes one item from the data structure: A
stack’s pop operation removes the item that has been on the stack for the shortest amount of time,
while a queue’s dequeue operation removes the item that has been on the queue the longest.

A stack is a last in, first out (LIFO) data structure. The item that is in line to be the next one
removed from the stack is the one that was added last, that is most recently. The operations on a
stack include adding and removing items. Typically, we also specify operations for making a stack
empty and for testing whether it is empty. Since we consider a stack to be a stack of items of some
specified base type, the base type is also part of the definition. Formally, we get a different stack
ADT for each different base type. So, we define the ADT “stack of BaseType” where BaseType

could be integer, string, or any other data type.

Definition 2.2. For any data type, BaseType, we define an abstract data type Stack of Base-
Type. The possible values of this type are sequences of items of type BaseType (including the
sequence of length zero). The operations of the ADT are:

push(x): Adds an item, x, of type BaseType to the stack; that is, modifies the value of the
stack by appending x to the sequence of items that is already on the stack. No return value.

pop: Removes an item from the stack and returns that item. The item removed is the one
that was added most recently by the push operation. It is an error to apply this operation
to an empty stack.

makeEmpty: Removes all items from the stack. No return value.

isEmpty: Returns a value of type boolean, which is true if the stack contains no items and
is false if there is at least one item on the stack.

Note that the definition of the ADT does not just list the operations. It specifies their meaning,
including their effects on the value of the stack. It also specifies the possible errors that can occur
when operations are applied. Errors are a particularly difficult thing to deal with in an abstract
way. Ideally, we should know what will happen if the error occurs, but in practice this often depends



2.2. CONCRETE DATA TYPES 13

on a particular implementation of the ADT. So, in the specification of an ADT, we generally won’t
specify the effect of using an operation incorrectly. If we are imagining an implementation in Java
or C++, we chould specify that the error will throw an exception of some specified type. This
would allow users of the ADT to design error-handling strategies for their programs.

We will use this definition of the stack ADT, but it is not the only possible definition. In some
variations, for example, the pop operation removes an item from the stack but does not return
it, and there is a separate top operation that tells you the item on the top of the stack without
removing it. Some implementations of stacks have a fixed maximum size. These stacks can become
“full,” and it is an error to try to push an item onto a full stack. Such stacks should have an isFull

operation to test whether the stack is full. However, this operation would be useless (it would
always return the value true) for stack implementations that don’t impose a maximum size. On
the whole, it seems better to leave it out of the general definition.

The definition of the queue ADT is very similar, with operations named enqueue and dequeue

replacing push and pop:

Definition 2.3. For any data type, BaseType, we define an abstract data type Queue of Base-
Type. The possible values of this type are sequences of items of type BaseType (including the
sequence of length zero). The operations of the ADT are:

enqueue(x): Adds an item, x, of type BaseType to the queue; that is, modifies the value of
the queue by appending x to the sequence of items that is already on the queue. No return
value.

dequeue: Removes an item from the queue and returns that item. The item removed is
the one that has been in the queue the longest. It is an error to apply this operation to an
empty queue.

makeEmpty: Removes all items from the queue. No return value.

isEmpty: Returns a value of type boolean, which is true if the queue contains no items and
is false if there is at least one item in the queue.

A queue is a first in, first out (FIFO) data structure. The item that is next in line is the one
that arrived first in the queue and that has been waiting in the queue the longest.

2.2 Concrete Data Types

An abstract data type is not something that can be used directly in a program. For that, you need
an actual implementation of the ADT, a “concrete” data type that says exactly how the data of
the ADT are represented and how the operations are coded. In Java or C++, and ADT can be
implemented as a class. Here, for example, is an implementation of the Stack of int ADT in C++.
Typically in C++, a class is defined in two files, a header (or “.h”) file and an implementation (or
“cc”) file:

// The header file, intstack.h



14 CHAPTER 2. ABSTRACT DATA TYPES

class IntStack {

public:

IntStack(); // A constructor for this class.

void push(int x); // The operations of the Stack ADT.

int pop();

void makeEmpty();

bool isEmpty();

private:

int data[100]; // Contains the items on the stack.

int top; // Number of items on the stack.

};

// The file intstack.cc

#include "intstack.h"

IntStack::IntStack() {

top = 0; // A stack is empty when it is first created.

}

void IntStack::push(int x) {

if (top == 100) // ERROR; throw an exception.

throw "Attempt to push onto a full stack";

data[top] = x;

top++;

}

int IntStack::pop() {

if (top == 0) // ERROR; throw an exception

throw "Attempt to pop from an empty stack";

top--;

return data[top];

}

void IntStack::makeEmpty() {

top = 0;

}



2.2. CONCRETE DATA TYPES 15

bool IntStack::isEmpty() {

return (top == 0);

}

Note that the data for the stack is stored in the private part of the class. This prevents code
that uses the class from making any use of the specific representation of the data—that data is
simply inaccessible. This ensures that if the data representation is changed, code that uses the
class will not have to be modified.1

Although it would be perfectly adequate in many applications, this is not a particularly good
implementation. First of all, it does not implement the ADT exactly as we defined it, because an
IntStack as defined here can hold no more than 100 items. The possible values of an IntStack are
sequences of 100 or fewer items, rather than completely general sequences. As for programming
style, throwing an exception of type char*, as is done here in the push and pop methods, is not
considered good style.

If we want a reusable class that can be used in a variety of programs, we should fix these
problems. We can eliminate the maximum size limitation by using a dynamic array to store the
stack data and increasing the size of the array when the stack becomes full. If we are worried about
handling exceptions neatly, we could also define a class specifically to represent errors that can be
generated when using a stack. One way to do this is to make this a nested class inside the IntStack

class:

// The header file, intstack.h, VERSION 2

class IntStack {

public:

class Error { // Nested class to represent stack errors.

// This class contains no data -- the existence

// of the object is the only information we need

// about it, since there is only one type of stack error.

};

IntStack(); // A constructor for this class.

~IntStack(); // Destructor.

void push(int x); // The operations of the Stack ADT.

1Unfortunately, that code will have to be recompiled. Even though the code does not refer to the data repre-

sentation directly, the compiler does make use of the data representation when it compiles the code. For example,

the compiler needs to know how much space to leave for a variable of type IntStack. This size is encoded into the

compiled code. If the data representation changes, the size of an IntStack variable will change and the compiled code

will have to be different.



16 CHAPTER 2. ABSTRACT DATA TYPES

int pop();

void makeEmpty();

bool isEmpty();

private:

int *data; // Pointer to a dynamic array that contains

// the items on the stack.

int size; // Current size of the dynamic array.

int top; // Number of items on the stack.

// Technical point: disallow copy constructor and

// assignment operator by making them private. The

// defaults would cause problems, and I don’t need them.

IntStack(const IntStack& x);

IntStack& operator=(const IntStack& x);

};

// The file intstack.cc, VERSION 2

#include "intstack.h"

IntStack::IntStack() {

data = new int[10]; // Start, arbitrarily, with space for 10 items.

size = 10;

top = 0; // A stack is empty when it is first created.

}

IntStack::~IntStack() {

delete[] data; // To avoid a memory leak, we need a destructor

} // to delete the dynamic array.

void IntStack::push(int x) {

if (top == size) { // Array is full, so make a new, bigger array.

int *temp = new int[2*size];

for (int i = 0; i < size; i++)

temp[i] = data[i];

delete[] data;

data = temp;

size = 2*size;

}

data[top] = x;



2.3. THE STANDARD TEMPLATE LIBRARY 17

top++;

}

int IntStack::pop() {

if (top == 0)

throw Error(); // Throw an exception of type IntStack::Error.

top--;

return data[top];

}

void IntStack::makeEmpty() {

top = 0;

}

bool IntStack::isEmpty() {

return (top == 0);

}

When we implement an ADT, we should also consider its efficiency. For example, we could
apply the type of asymptotic analysis that was covered in Chapter 1 to the operations of the ADT.
In our implementation of the Stack ADT, the member functions are instance methods in a class.
This implies that the stack itself is an implicit input to the operations, even though it is not listed
in the parameter lists. We can therefor ask how the run time of the operation depends on the size
of the stack.

Most of the instance methods in the IntStack are clearly Θ(1); that is, they run in constant
time independent of the size of the stack. The exception is push. This method runs in constant
time when top < size. However, when top is equal to size, a new array is created and the elements
in the old array are copied to the new array. This clearly has a run time that is Θ(n), where n is
the size of the stack. So push has a best-case run time that is Θ(1) and a worst case run time that
is Θ(n).

2.3 The Standard Template Library

For any given type BaseType, there is a Stack of BaseType ADT. The code for implementing these
various ADT’s would be almost identical to the IntStack class. It would only be necessary to change
the type int to BaseType wherever it appears. It seems silly to have to do this very mechanical
process by hand. The C++ language provides templates as a way of automating the process. It
is possible to define a single Stack template that can then be used to create stacks with any given
base type. A Stack template is much more reusable than a stack class for a single base type.

In fact, C++ already comes with a variety of templates that implement some common ADT’s,
including stacks and queues. This collection of templates is called the Standard Template Li-
brary, or STL. The STL stack and queue templates differ significantly from the ADT’s that we



18 CHAPTER 2. ABSTRACT DATA TYPES

defined above, but the essential functionality is there.

To use an STL stack, you should put the line “#include <stack>” at the beginning of your
source code file. You can then declare stacks of any base type. The template syntax for the type
“Stack of BaseType” is stack<BaseType>. For example, to use a stack of int, you can simply
declare a variable

stack<int> nums;

and for a stack of C++ strings, you would say

stack<string> words;

If s is one of these stacks, of any base type, then several operations are defined. First, s.push(x),
where the type of x is the base type of the stack, pushes x onto the stack, as you would expect.
The operation s.pop() removes the top element of the stack. Note that in contrast to our pop

operation, it does not return a value. The function s.top() returns the top item on the stack,
but it does not remove this item. So, calling s.top() followed by s.pop() is equivalent to the pop

operation as we defined it above.2 Finally, the function s.empty() returns a bool value that tells
whether the stack is empty. This is what we called isEmpty in our ADT. The STL stack does not
have an operation equivalent to our makeEmpty.

Similarly, to use an STL queue, you need “#include <queue>” at the start of your file. You
can then declare variables such as “queue<Customer> theLine;”. The STL queue uses the terms
“push” and “pop” rather than “enqueue” and “dequeue,” and just as with stacks, pop removes
an item without returning it. The operation for determining the value of the item at the front of
the queue is called front. So, if q is a variable of type queue<BaseType>, then: q.push(x) adds x
to the back of the queue, q.pop() deletes the next item from the front of the queue, q.front()
returns the value of the front item without removing it from the queue, and q.empty() returns a
bool value that tells you whether the queue is empty.

A C++ programmer should ordinarily use the STL versions of common data structures rather
than re-implementing them. Of course, when you do this, you lose the control of knowing the exact
implementation that is used, but you should probably trust the designers of the STL to provide
implementations that will be as efficient as possible in a wide variety of applications.

2.4 Lists

Both stacks and queues are essentially lists of items, but they are restricted in that only certain
positions in the list are accessible for adding, deleting, and retrieving items. Often, we need to
work with lists that don’t have these restrictions. By a list, we will mean a sequence of items
of a given base type, where items can be added, deleted, and retrieved from any position in the
list. A list can be implemented as an array, or as a dynamic array to avoid imposing a maximum
size. An alternative implementation is a linked list, where the items are stored in nodes that are

2Many people, including Bjarne Stroustrup, the original inventor of C++, don’t like the STL definition of pop.



2.4. LISTS 19

linked together with pointers. These two implementations have very different characteristics; some
operations that are efficient (Θ(1)) for one of the implementations are much less efficient (Θ(n))
for the other.

It is difficult to specify a single list ADT that covers both arrays and linked lists. One problem
is the representation of a position in the list. Array positions are naturally represented by integer
indices; linked list positions are naturally represented by pointers. The Standard Template Library
finesses this difficulty by introducing another abstraction: the iterator. An iterator is a data
type whose values represent positions in a list or other data structure. Iterators greatly increase
the generality of the STL, but they are also one of the main reasons behind its reputation for
complexity. Here, we will look at a possible list ADT that uses the concept of “position” in a list,
without trying for the same level of generality that is achieved in the STL.

Definition 2.4. For any data type, BaseType, we define an abstract data type List of BaseType.
The possible values of this type are sequences of items of type BaseType (including the sequence
of length zero). We assume that there is an associated type position. A value belonging to the
position type specifies a position in a particular list. There is one position value for each item in
the list, plus a position value that represents a position at the end of the list, just after the last
item. The operations of the ADT are:

begin(): Returns a position at the beginning of the list.

end(): Returns a position at the end of the list. Note that there is no item at this position,
but adding an item at this position will append an item onto the end of the list.

next(p), where p is a position: Returns the position that follows p. It is an error to call this
for the end position of the list.

prev(p), where p is a position: Returns the position that precedes p. It is an error to call
this for the beginning position of the list.

get(p), where p is a position: Returns the item of type BaseType at position p. It is an
error if p is the end of the list.

set(p,x), where p is a position and x is of type BaseType: Replaces the item at position p
with x. It is an error if p is the end of the list.

insert(p,x), where p is a position and x is of type BaseType: Inserts x into the list at
position p. Note that if p is the beginning of the list, x becomes the first item in the list, and
if p is the end of the list, then x becomes the last item. This operation increases the length
of the list by one.

remove(p), where p is a position: Deletes the item at position p. It is an error if p is the
end position of the list. This operation decreases the length of the list by one.

find(x), where x is of type BaseType: Returns the position of the first occurrence of x in
the list. If x does not occur in the list, then the end position of the list is returned.

nth(k), where k is an integer: Returns a value of type position that specifies the k th position
in the list. If there is no such position in the list, the end position is returned.

length(): Returns an integer value giving the number of items in the list.



20 CHAPTER 2. ABSTRACT DATA TYPES

Most of the things that we might want to do with lists can be defined in terms of these operations.
Most applications will only use a few of them. There is no implementation of this ADT in which
all the operations are efficient, so the choice of implementation should depend on which operations
are needed for a given application.

The main choice is between arrays and linked lists. In the case of an array with n elements, a
“position” is simply an integer in the range from 0 to n. Note that the operation nth(k) is trivial
for this representation, since it simply returns k, as long as k is in the legal range. In a linked
list representation, a position can be a pointer to one of the nodes in the list, but there are some
subtleties involved that we will look at later

For an array, the insert, remove, and find operations have worst-case run time that is Θ(n),
where n is the size of the list. All the other operations are Θ(1). Insert and remove are inefficient
for arrays because they can involve moving a lot of array elements. When an item is inserted at a
given position in an array, all the array elements that follow that position must be moved down one
space in the array to make room for the new element. This can mean moving up to n items, if the
position is at the beginning of the array. Similarly, deleting an item from a given position means
moving all the items that follow that position up one space in the array. The find operation might
require looking at every item in the array (but this will be true no matter what implementation is
used). If an application of lists does not require insertion and deletion, or uses them only rarely,
then it is probably most appropriate to use an array implementation.

For linked lists, insert and remove can be done efficiently, in constant time. However, linked
lists do not support “random access.” Given an integer k, there is no way to go directly to the k th

item in the list. The only way to get there is to start at the beginning of the list and follow k links.
This operation has a Θ(n) run time. In terms of our ADT, this means that the operation nth(k) is
not efficient for linked lists. But in applications where random access to list elements is not needed
and where insert and delete are common operations, a linked list implementation of lists might be
preferable to an array implementation. The decision is not automatic, though: A linked list uses
more memory than an array, since it requires extra space to store pointers, and some constant-time
operations on lists, such as next, are a little more complicated than the same operations on arrays.

The term “linked list” does not fully define a data structure. There are several variations on the
linked list idea. A simple linked list consists of a set of nodes. Each node contains one of the items
in the list, and it contains a pointer to the next node in the list. The list as a whole is represented
as a pointer variable that points to the first node in the list, or is NULL if the list is empty.

Unfortunately, a simple linked list is a very poor choice to represent the List ADT! For example,
the list operation end is a Θ(n) operation for simple linked lists, since the only way to find the end
of a simple linked list is to start at the beginning and follow the entire chain of links to the end.
Similarly, the prev operation is inefficient for a simple linked list because there is no easy way to
move from a node in a simple linked list back to the previous node. And as a matter of fact, it’s
not even clear how to represent a “position” in a linked list—just using a pointer to a node won’t
quite work, since for a list of length n, there are n + 1 positions but only n different pointers to
nodes.

There are several modifications that can be made to simple linked lists to fix some of these
problems. These are common features that are found in linked lists in many real applications:



2.4. LISTS 21

Header node: A header node is an extra node at the beginning of the list that does not
contain a list item. It contains a pointer to the first item in the list, if there is one. An empty
list contains only the header node. The list as a whole is represented by a pointer to the header
node, and this value is never NULL since the header node always exists. With a header node, a
list of n items contains n+ 1 nodes, so it is possible to use pointers to represent n+ 1 different
positions in the list.3

Tail pointer: A tail pointer is a pointer to the last node in the list. By maintaining a
tail pointer, it becomes possible to go directly to the end of the list, instead of traversing the
list from the beginning. For an empty list, the tail pointer points to the header node, if one is
used.

Doubly linked list: In a doubly-linked list, each node contains two pointers. One points
to the next node in the list, and the second one points to the previous node. In a doubly
linked list, the prev operation becomes efficient, since it only requires following a pointer. On
the other hand, maintaining the extra pointers adds a bit to the run time of several other
operations, so doubly-linked lists should be avoided in applications where the prev operation
is not needed.

We can give an efficient linked list implementation of the List ADT using lists that have all
three of these features. A simple modification that uses singly linked lists instead of doubly linked
lists would also be possible. There is one more subtle point: we represent the position of an item
in a list by a pointer to the node that precedes the node that actually contains the item—even
though it might seem more natural to use a pointer to the node that actually contains the item.
For example, a pointer to the header node represents the position of the first item in the list, which
is actually stored in the node that follows the header node. The tail pointer points to the last
node in the list, but as a position, it does not represent the position of the last item in the list; it
represents a position that is past the end of the list, following all the items.

If we didn’t do this, it wouldn’t be easy to represent the n + 1 positions in an n-element list.
Furthermore, to do a remove operation on a linked list, we need to have a pointer to the node
that precedes the one that we want to remove. By representing the “position” of the item that we
want to remove by a pointer to the preceding node, we already have our hands on the pointer that
we will need when we perform the operation. In a singly linked list there would otherwise be no
efficient way to get this pointer. A similar comment applies to the insert operator.

Here, then, is a complete C++ implementation of the List ADT using doubly linked lists with
header nodes and tail pointers:

// The header file, intlist.h:

#include <string>

class ListError { // A class to represent errors in list operations.

3The use of a header node also happens to make insert and delete a little more efficient, since they no longer have

to treat insertion or deletion at the start of the list as a special case



22 CHAPTER 2. ABSTRACT DATA TYPES

public:

std::string message;

ListError(std::string str) {

message = str;

}

};

class ListNode; // Define a type named "position"

typedef ListNode *position; // that is a synonym for ListNode*.

// The actual ListNode class is defined

// in the .cc file.

class IntList {

public:

IntList(); // Constructor for making an empty list.

~IntList(); // Destructor, needed to avoid a memory leak.

position begin(); // The operations of the List ADT

position end();

position next(position p);

position prev(position p);

int get(position p);

void set(position p, int x);

void insert(position p, int x);

void remove(position p);

position find(int x);

position nth(int n);

int length();

private:

position head, tail; // Head and tail pointers.

// Technical point: disallow copy constructor and

// assignment operator by making them private. The

// defaults would cause problems, and I don’t need them.

IntList(const IntList& x);

IntList& operator=(const IntList& x);

};



2.4. LISTS 23

// The implementation file, intlist_2.cc, using doubly-linked lists:

#include <cstdlib>

#include "intlist.h"

struct ListNode {

int item;

ListNode *next;

ListNode *prev;

};

IntList::IntList() {

head = tail = new ListNode();

head->next = head->prev = NULL;

}

IntList::~IntList() {

while (head != NULL) {

ListNode *save = head;

head = head->next;

delete save;

}

}

position IntList::begin() {

return head;

}

position IntList::end() {

return tail;

}

position IntList::next(position p) {

if (p == tail)

throw ListError("Attempt to move past the end of a list");

return p->next;



24 CHAPTER 2. ABSTRACT DATA TYPES

}

position IntList::prev(position p) {

if (p == head)

throw ListError("Attempt to move past the beginning of a list");

return p->prev;

}

int IntList::get(position p) {

if (p == tail)

throw ListError(

"Attempt to refer to a location past the end of a list");

return p->next->item;

}

void IntList::set(position p, int x) {

if (p == tail)

throw ListError(

"Attempt to refer to a location past the end of a list");

p->next->item = x;

}

void IntList::insert(position p, int x) {

ListNode *newnode = new ListNode();

newnode->item = x;

newnode->next = p->next;

newnode->prev = p;

p->next = newnode;

if (newnode->next != NULL)

newnode->next->prev = newnode;

if (p == tail)

tail = newnode;

}

void IntList::remove(position p) {

if (p == tail)

throw ListError(



2.4. LISTS 25

"Attempt to refer to a location past the end of a list");

ListNode *deletednode = p->next;

if (deletednode->next != NULL)

deletednode->next->prev = deletednode->prev;

p->next = deletednode->next;

if (deletednode == tail)

tail = p;

delete deletednode;

}

position IntList::find(int x) {

ListNode *runner = head;

while (runner != tail && runner->next->item != x)

runner = runner->next;

return runner;

}

position IntList::nth(int n) {

ListNode *runner = head;

for (int i = 0; i < n; i++) {

if (runner == tail)

break;

runner = runner->next;

}

return runner;

}

int IntList::length() {

int n = 0;

ListNode *runner = head;

while (runner != tail) {

n++;

runner = runner->next;

}

return n;

}



26 CHAPTER 2. ABSTRACT DATA TYPES

Exercises

1. Assume that you already have the class IntList which implements the List ADT. Using this class, write
implementation classes for the Stack and Queue ADT’s. Each of your classes should have a private
instance variable of type List that holds the data for the stack or queue.

2. What is the run-time efficiency of the length operator in the IntList class? How would you modify the
the class so that this operation has constant run time?

3. Write an implementation class for the List ADT that uses an array to hold the items in the list. You
can use a static array, and put a maximum size on the lists that can be represented. Or you can be more
ambitious by using a dynamic array and allowing the list to grow to arbitrary size.

4. The find operation for lists uses at most n steps to search a list of n items. We might also ask how many
steps this operation uses on average. We will assume that we will only search for items that are, in fact,
in the list. If all items in the list have an equal probability of being selected, then the average number
of steps to find an item is n/2. But what if some items are more likely to be chosen than others? It
seems like we could improve the average by putting the items that are most likely to be chosen near the
front of the list, so that they will be found quickly. In general, though, we have no way of knowing in
advance which items are more likely to be selected. One approach to the problem is a sort of dynamically
self-optimizing list. The idea is simple: each time you search for an item in the list, move that item to
the beginning of the list. Items that are selected most often will tend to spend more of their time near
the front of the list, where they will be found quickly. A somewhat less drastic approach is to move the
selected item one position towards the front of the list, instead of moving it all the way to the front.

Write a program to implement and test this idea. The program should use the IntList class. First,
create a list that contains the integers from 1 to 100 in a random order. Choose random integers in this
range and search for them in the list—but make some of the integers much more likely to be selected
than others. Count the number of steps it takes to do each search, and find the average number of steps
over a very large number of trials. (Because you need to count the number of steps, you won’t be able to
use the find operation that is already defined in the IntList class; you will have to define your own find
function.) A more ambitious experiment could also find the average numerical position of each integer
in the list over the course of time. In addition to writing the program, write a short paper discussing the
experiment you did and the results that you got.


