
Chapter 8

Graphs

The linked structures that we have studied so far, such as linked lists and binary trees, consist
of nodes that are connected to one another in a strictly specified pattern. But more general struc-
tures, consisting of nodes that can be linked in arbitrary ways, are often useful. These structures
are called graphs. A graph consists of a set of nodes and a set of links that connect them. In the
context of graphs, though, the nodes are called vertices and the links are called edges. An edge
connects a pair of vertices.

Graphs come in two main varieties: directed and undirected. In a directed graph, the connections
between vertices are one-way and can be visualized as arrows linking pairs of vertices:
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This directed graph has six vertices, labeled A through F . We will use the notation
−→
AC to represent

an edge from vertex A to vertex C. More formally, we can consider an edge in a directed graph to
be an ordered pair of vertices,

Definition 8.1. A directed graph, G, consists of a set, V , of vertices and a set, E, of edges,
where each edge is an ordered pair of vertices. We write G = (V,E) to indicate that V is the set of
vertices in G and E is the set of edges in G. If

−→
v1v2 is an edge in a directed graph, then the vertex

v1 is called the tail and v2 is called the head of the edge.

The directed graph shown above can be written as G = (V,E) where the set of vertices is V =

{A,B,C,D,E, F}, and the set of edges is E = {
−→
AC ,

−→
BA,

−→
BB,

−→
BC,

−→
BD,

−→
CA,

−→
CE,

−→
DC,

−→
DE,

−→
EE,

−→
EF }.

71



72 CHAPTER 8. GRAPHS

Note that it is possible for an edge in a directed graph to lead from a vertex back to the same

vertex. That is, the head and the tail of the edge can be the same vertex. The edges
−→
BB and

−→
EE

are examples of this in the above graph. Also, for a given pair of vertices, it is possible for the

graph to contain two edges that connect the two vertices. The edges
−→
AC and

−→
CA are an example

of this in the above graph.

In an undirected graph, an edge is a two-way connection linking a pair of vertices. An edge
does not have a direction and therefore does not have a head or tail. Edges are visualized as lines
rather than arrows:
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Formally, an edge in an undirected graph is a set of two vertices, rather than an ordered pair. We
will denote the edge connecting vertices A and B as AB, but you should be careful to note that
AB and BA represent the same edge.

Definition 8.2. An undirected graph, G, consists of a set, V , of vertices and a set, E, of edges,
where each edge is a set of two vertices. If v1v2 is an edge, then the vertices v1 and v2 are called
the endpoints of the edge.

The undirected graph shown above has vertex set V = {A,B,C,D,E, F,G} and edge set
E = {AB,AC,BC,BG,CE,CF ,CG,DF , FG}.

Note that an edge in an undirected graph must have two distinct endpoints. That is, we do not
allow an edge in an undirected graph to connect a vertex to itself.

It should be clear that an undirected graph can be considered to be equivalent to a directed
graph that has the same set of vertices and in which each edge uv in the undirected graph is
replaced by two edges,

−→
uv and

−→
vu , in the directed graph.

There are many basic definitions related to graphs. A path in a graph (directed or undirected)
is a sequence of vertices v0v1 . . . vn such that for each i = 1, 2, . . . , n, there is an edge in the graph
from vi−1 to vi. The length of this path is n. That is, the length of a path is the number of
edges in the path. A path is said to be closed if the starting and ending vertex of the path are
the same. The path v0v1 . . . vn is said to be simple if there are no repeated vertices in the path,
except possibly that the starting vertex v0 can be equal to the ending vertex vn. A simple closed
path is called a cycle. A graph that contains no cycles is said to be acyclic. A directed acyclic
graph, that is, a directed graph that contains no cycles, is referred to as a dag.

If u and v are vertices in a graph, then v is said to be reachable from u if either u = v or there
is a path in the graph from u to v. An undirected graph is said to be connected if any vertex in
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the graph is reachable from any other vertex. The undirected graph shown above is connected, but
the following graph is not:

However, this graph is clearly made up of three connected “pieces.” These pieces are called the
connected components of the graph. In an undirected graph, each vertex, v, is contained in some
connected component, which is the largest connected subgraph that contains v. This connected
component can also be described as the set of vertices that can be reached from v, together with all
edges whose endpoints lie in that set. Connectivity is a little more complicated in directed graphs,
because the fact that vertex v is reachable from vertex u does not imply that u is reachable from
v. We say that a directed graph is strongly connected if for any pair of vertices u and v, there is
both a path from u to v and a path from v to u in the graph. The directed graph at the beginning
of this chapter is not strongly connected.

Finally, we consider one more variation on graphs. A weighted graph is a graph in which each
edge is labeled with a number. The number associated with an edge is called the weight of that
edge. In a weighted graph, the length of a path refers to the sum of the weights of all the edges in
that path. This terminology is a little inconsistent with the previous definition of the length of a
path in an unweighted graph, but it makes sense if we think of an unweighted graph as equivalent
to a weighted graph in which every edge has weight one. Here is an example of a weighted directed
graph:
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8.1 Representations of Graphs

When graphs are used in computer programs, they must be represented by data structures. The
simplest representation for a graph is an adjacency matrix. A matrix is simply a two-dimensional
array. An adjacency matrix for a graph is a two-dimensional array of boolean values in which the
number of rows and the number of columns are both equal to the number of vertices in the graph.
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Note that the vertices of a graph are not listed in any particular order as far as the graph itself
goes. However, in order to represent the graph as an adjacency matrix, we must assign some order
to the vertices. Suppose that the graph is G = (V,E). Let’s say that there are n vertices and that
the set of vertices is V = {v0, v1, . . . , vn−1}. Then we define the adjacency matrix representation
of G to be an n-by-n array, A, of boolean values such that A[i][j] is true if and only if there is an
edge in E from vi to vj . We will write the boolean values in adjacency matrices as 0 and 1 rather
than as false and true.

Note that we can use adjacency matrices to represent both directed and undirected graphs. The
adjacency matrix for an undirected graph is symmetric; that is, A[i][j] = A[j][i] for all i and j.
Furthermore, the adjacency matrix for an undirected graph satisfies the condition that A[i][i] = 0
for all i, since an undirected graph cannot contain an edge from a vertex to itself.

We can also use a variation of adjacency matrices to represent weighted graphs. The adjacency
matrix for a weighted graph is a two-dimensional array of numbers. Suppose A is such a matrix for
a weighted graph and that there is an edge from vertex vi to vertex vj in that graph. Then A[i][j]
is the weight of the edge from vi to vj . In the case where there is no edge from vi to vj, we take
the value of A[i][j] to be ∞, even though we might not be able to represent an infinite value in a
program.

As an example, consider the adjacency matrix for the directed graph at the beginning of this
chapter. If we assume that the vertices are ordered in the obvious way (A, B, C, D, E, F ), then
the adjacency matrix is the following 6-by-6 array of boolean values:

















0 0 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
0 0 1 0 1 0
0 0 0 0 1 1
0 0 0 0 0 0

















And an adjacency matrix for the weighted graph on the previous page is:













∞ 12 5 ∞ ∞
4 ∞ ∞ 2 ∞
∞ ∞ ∞ 7 12
∞ ∞ 3 ∞ ∞
∞ ∞ ∞ 5 ∞













The adjacency matrix representation is easy to use, but it is not appropriate for sparse graphs.
A graph is said to be sparse if the number of edges in the graph is a small fraction of the maximum
possible number of edges. In practice, sparse graphs are very common, and it is worthwhile to have
a representation designed especially for them.

An alternative representation for graphs is the edge list representation. There are several
variations on this representation. In the simplest variation, a single array of linked lists is used to
store the graph’s edges. The array contains one linked list for each vertex. The linked list for vertex
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number k contains a list of edges that leave vertex number k. The data for each edge includes the
identity of the other endpoint of the edge. For a weighted graph, it also includes the weight of that
edge. The edge list representation of the directed graph from the beginning of this section can be
visualized like this:
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Here, the labels (A through F ) of the vertices are shown in the array. The edge list for vertex A

contains a single node, since there is a single edge with tail A in the graph. The 2 in this node
indicates that the head of this edge is vertex number 2, that is, C. Thus, this node represents the

edge
−→
AC . Similarly, the vertex list for vertex B contains four nodes representing the four edges

that have B as their tail:
−→
BA,

−→
BB,

−→
BC, and

−→
BD. The edge list for vertex F is empty because

there are no edges that exit vertex F .

The adjacency matrix representation of a sparse graph will consist almost entirely of zeros.
The edge list representation will contain only a few list nodes for each vertex. Thus, the edge list
representation of a sparse graph will use less memory than an adjacency matrix. In many cases, it
can also be processed more efficiently.

For some applications, it’s useful to have more information in the edge list representation. For
example, the node that represents an edge can contain both the head and tail vertices of that edge.
Similarly, more information about the vertices, such as the vertex labels in the above example, can
be stored in the array along with the pointers to the edge lists. Sometimes, in addition to having
a list of edges that leave each vertex, it is convenient to have a separate list of edges that enter the
vertex.

For the edge list representation of an undirected graph, it is common to represent an edge uv

with two nodes, one in the edge list for vertex u and one in the edge list for vertex v. This is
consistent with viewing each edge in an undirected graph as being equivalent two two edges in a
directed graph.
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8.2 Recursive Depth-First Search

Most of the things that we want to do with graphs involve “visiting” the various vertices or edges in
the graph, presumably for the purpose of processing them in some way. This is called traversing

the graph. In this section, we will look at several methods for traversing the graph by starting at
one vertex and following edges in the graph to reach other vertices. We will discuss these graph
traversal algorithms in terms of directed graphs, but they also apply to undirected graphs, keeping
in mind that an edge in an undirected graph can be traversed in both directions.

The basic problem is, giving a starting vertex, to visit all the vertices that can be reached from
that vertex. That is, we want to explore all the paths that begin at the starting vertex. However,
we can’t just keep following paths blindly, or we will end up going around in circles! A graph can
contain cycles, and we have to be careful not to travel around the same cycle over and over. The
solution is to “mark” each vertex as we visit it, so that if we encounter the same vertex again during
our exploration of the graph, we can tell that we have already been there. For this purpose, we
use an array of boolean values, visited [i], where the length of the array is equal to the number of
vertices. Before starting a graph traversal, we set visited [i] = false for each i. When we encounter
vertex number k during the traversal, we set visited [k] = true to indicate that vertex k has been
visited.

The first traversal algorithm that we consider is recursive depth-first search. The term
“depth-first” means that we explore a path as far (that is, as deeply) as we can. Only when we
reach a point where we cannot continue do we double back and explore alternative paths. The
recursive version of this algorithm can be expressed in pseudocode as:

Algorithm RecursiveDFS( Vertex v ):

if v has already been visited:

return

else:

mark v as visited

process( v )

for each edge e that leaves v:

let u be the other endpoint of e

call RecursiveDFS( u )

This algorithm will visit and process every vertex that can be reached from v and that has not
already been visited. It does this by following each edge that leaves v and applying the same
procedure recursively to the other endpoint of the edge. On the first level of the recursion, it visits
vertices that can be reached from v in one step; on the second level, it visits vertices that can be
reached from v in two steps; and so on. To see that the algorithm implements a depth-first search,
consider what happens when there are several edges

−→
vu1 ,

−→
vu2 , . . . , leaving vertex v. The algorithm

will call RecursiveDFS (u1), then RecursiveDFS (u2), and so on. The call to RecursiveDFS (u1) visits
u1 and all vertices that can be reached from u1. It only when this exploration is complete that the
algorithm doubles back to call RecursiveDFS (u2).
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In order to use RecursiveDFS, all vertices should first be marked as unvisited. Then the al-
gorithm should be called with some starting vertex as its parameter. The algorithm will visit all
vertices that can be reached from that starting vertex.

The coding of the algorithm into C++ depends on the representation that is used for the graphs.
Let’s look at the two possibilities, the adjacency matrix and the edge-list representation. For either
representation, we will also need the visited array. To represent a graph with N vertices as an
adjacency matrix, we can use the declarations:

bool edgeExists[N][N];

bool visited[N];

Let’s assume that these are global variables and that edgeExists has already been filled with values
to represent the edges of the graph. Assuming that there is a function named process that we want
to call for each edge, we can code RecursiveDFS as follows:

void RecursiveDFS( int v ) {

if ( visited[v] ) { // Vertex has already been processed.

return;

}

visited[v] = true; // Mark this vertex as visited.

process( v ); // Process this vertex.

for (int u = 0; u < N; u++) {

if ( edgeExists[v][u] ) {

// There is an edge from vertex v to vertex u,

// so call this function for vertex u.

RecursiveDFS( u );

}

}

}

To apply this function to, say, vertex number 0 as the starting vertex, we would say:

for (int i = 0; i < N; i++)

visited[i] = false; // Mark all nodes as unvisited.

RecursiveDFS( 0 );

It’s interesting to analyze the run time of this algorithm. The body of the function includes a
recursive call to the same function. This means that we can’t simply add up the run times for each
line in RecursiveDFS—to do that, we would already have to know the run time! In general, it can
be difficult to analyze recursive algorithms, but in this case, we can note that in all the recursive
calls to RecursiveDFS, the for loop is encountered at most once for each vertex in the graph. Since
there are N steps in the for loop and N vertices in the graph, we can see that the run time of the
algorithm is O(N 2), where N is the number of vertices.
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Now, let’s consider the edge-list representation. For this representation, we need an array of
linked lists, where each node in a list represents an edge. We can use the following C++ data
structures (although in practice, we might want to store more data in the nodes):

struct EdgeNode {

int head; // Vertex number of the far endpoint of this edge.

EdgeNode *next; // Pointer to next edge in the list.

};

EdgeNode *edgeList[N]; // Array of pointers to edge lists,

// edgeList[i] contains edges that

// leave vertex number i.

bool visited[N];

Again, assuming that these are global variables and that the edges lists have already been con-
structed to represent a graph, we can code RecursiveDFS as:

void RecursiveDFS( int v ) {

if ( visited[v] )

return;

visited[v] = true;

process( v );

EdgeNode *runner; // For traversing the edge list.

runner = edgeList[v];

while ( runner ) {

RecursiveDFS( runner->head );

runner = runner->next;

}

}

For this version of the algorithm, the function RecursiveDFS is called at most once for each edge in
the graph. It follows that the run time is O(M), where M is the number of edges. The maximum
number of edges in an N -vertex graph is N 2, so we know that M < N 2 and O(M) is no worse
than O(N 2). However, for a sparse graph, M is much smaller than N 2 and the edge-list version of
RecursiveDFS is more efficient than the adjacency matrix version.

8.3 Breadth-First Search

An alternative to depth-first search is breadth-first search. In depth-first search, vertices that
are many steps away from the starting vertex can be processed before some of the vertices that
are very close. In breadth-first search, vertices that are one step away from the starting vertex
are all processed before any vertices that are two steps away; vertices that are two steps from the
starting vertex are processed before those that are three steps away; and so on. That is, vertices are



8.3. BREADTH-FIRST SEARCH 79

processed in order of their distances from the starting vertex, where the distance from one vertex
to another means the length of the shortest path that leads from one vertex to the other.

Breadth-first search can be implemented using a queue. You should think of it as a queue of
vertices, but since the vertices are numbered, we can in fact use a queue of integers and put vertex
numbers on the queue. Using the adjacency matrix representation, and assuming that the number
of vertices is N , breadth-first search can be written like this:

void BFS( int startingVetex ) {

IntQueue queue; // Start with an empty queue of integers.

for (int i = 0; i < N; i++) {

visited[i] = false; // Mark all vertices unvisited.

}

visited[ startingVertex ] = true;

queue.enqueue( startingVertex );

while ( ! queue.isEmpty() ) {

int v = queue.dequeue(); // Get next vertex from queue.

process( v ); // Process the vertex.

for (int u = 0; u < N; u++) {

if ( edgeExists[v][u] && visited[u] == false ) {

// We have an edge from v to an unvisited vertex;

// mark it as visited and add it to the queue.

visited[u] = true;

queue.enqueue( u );

}

}

}

}

In this function, each vertex that is “encountered” is marked as visited and placed on the queue.
It is processed when it comes off the queue. If it is encountered a second time (through an alternate
path from the starting vertex), it has already been marked as visited and so is not placed on the
queue again. Since no vertex is placed on the queue more than once, the while loop is executed at
most N times, so it is easy to see that the run time for this algorithm is O(N 2), where N is the
number of vertices. If we were to rewrite the algorithm in terms of the edge-list representation, the
run time would be O(M), where M is the number of edges in the graph.

To see that this algorithm does, in fact, implement breadth-first search, consider the order in
which the vertices are processed. The first vertex on the queue is the starting vertex. When the
starting vertex is removed from the queue, all vertices that are connected to the starting vertex by
a single edge are located and are placed on the queue. These are the vertices at distance one from
the starting vertex. As these vertices are removed from the queue, the vertices to which they are
directly connected are added to the queue. These are the vertices at distance two from the starting
vertex, and they follow all the distance-one vertices on the queue. As the distance-two vertices are
processed, the distance three vertices are encountered and are added to queue, following all the
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distance-two vertices. And so on. Vertices are added to the queue in order of their distance from
the starting vertex. That is, they are added in breadth-first order.

It is not possible to write breadth-first search as a recursive function. However, it is possible to
write a depth-first search function without using recursion. All that is necessary is to replace the
queue used in breadth-first search with a stack:

void DFS( int startingVetex ) {

IntStack stack; // Start with an empty stack of integers.

for (int i = 0; i < N; i++) {

visited[i] = false; // Mark all vertices unvisited.

}

visited[ startingVertex ] = true;

stack.push( startingVertex );

while ( ! stack.isEmpty() ) {

int v = stack.pop(); // Get next vertex from stack.

process( v ); // Process the vertex.

for (int u = 0; u < N; u++) {

if ( edgeExists[v][u] && visited[u] == false ) {

// We have an edge from v to an unvisited vertex;

// mark it as visited and add it to the stack.

visited[u] = true;

stack.push( u );

}

}

}

}

This algorithm does not visit the vertices in exactly the same order as RecursiveDFS. Can you see
what the difference is and how to modify DFS to make the order exactly the same?


