
Chapter 9

Graph Algorithms

The previous chapter introduced graphs and the basic traversal algorithms, depth-first search
and breadth-first search. In this chapter, we will look at several useful graph algorithms, starting
with two applications of search.

In our analysis of these algorithms, we will use the notation |A| to represent the number of
elements of a set A. For an algorithms operating on a graph G = (V,E), we will analyze the run
time of the algorithm in terms of |V |, the number of vertices, and |E|, the number of edges.

9.1 Connected Components

Recall that an undirected graph is connected if for every pair of vertices, there is a path in the graph
between those vertices. A connected component of an undirected graph is a maximal connected
subgraph of the graph. Every vertex of the graph lies in a connected component that consists of
all the vertices that can be reached from that vertex, together with all the edges that join those
vertices. If an undirected graph is connected, there is only one connected component.

We can use a traversal algorithm, either depth-first or breadth-first, to find the connected
components of an undirected graph. If we do a traversal starting from a vertex v, then we will visit
all the vertices that can be reached from v. These are the vertices in the connected component
that contains v. If there are other connected components, then there will still be unvisited vertices
after the traversal is complete. We can do a traversal starting from one of those vertices to find
another connected component. If we continue in this way until all vertices have been visited, then
we will have discovered all the connected components.

In the following algorithm, we count the connected components and print out the vertices in
each component. We use breadth-first search to do the traversal, but depth-first search would work
just as well. The algorithm is given in pseudocode that can be adapted to either an adjacency
matrix or edge-list representation of the graph.

for (int i = 0; i < |V|; i++)

visited[i] = false; // Mark all nodes as unvisited.

81

82 CHAPTER 9. GRAPH ALGORITHMS

int compNum = 0; // For counting connected components.

for (int v = 0; v < |V|; v++) {

// If v is not yet visited, it’s the start of a newly

// discovered connected component containing v.

if (! visited[v]) { // Process the component that contains v.

compNum++;

cout << "Component " << compNum << ": ";

IntQueue q; // For implementing a breadth-first traversal.

q.enqueue(v); // Start the traversal from vertex v.

visited[v] = true;

while (! q.isEmpty()) {

int w = q.dequeue(); // w is a node in this component.

cout << w << " ";

for each edge from w to some vertex k { // ***

if (! visited[k]) {

// We’ve found another node in this component.

visited[k] = true;

q.enque(k);

}

}

}

cout << endl << endl;

}

}

if (compNum == 1)

cout << "The graph is connected.";

else

cout << "There are " << compNum << " connected components.";

The for loop marked *** will be executed exactly once for each vertex in the graph. That is, it is
executed |V | times. If an adjacency list representation is used, the for loop will run for w from 0
to |V | each time it is executed, so the run time for the adjacency list representation is Θ(|V |2).

For an edge-list representation, the for loop is really a traversal of an edge list, and the body of
the for loop is executed twice for each edge in the graph—twice, because an edge in an undirected
graph occurs in two edge lists, one for each of its endpoints. So, the body of the for loop is executed
2 ∗ |E| times, and the total run time for the algorithm is Θ(|V | + |E|).

9.2. TOPOLOGICAL SORT 83

9.2 Topological Sort

In a dag (Directed Acyclic Graph), it is possible to arrange the vertices of the graph in a linear
order v0, v1, v2, . . . such that for any edge

−→
vivj in the graph, we will have that i < j. Such an

ordering is called a topological sort of the dag and the vertices are said to be in topological

order. If we visualize the vertices laid out in a line in topological order, then all the edges of the
graph go from left to right:

E I H C A F B G J D

Note that a topological sort is not unique; that is, a given dag will generally have many differ-
ent topological orderings. In the graph shown above, for example, the vertices C,A, F could be
reordered as A,C, F or A,F,C, and the graph would still be topologically sorted.

Theorem 9.1. A directed graph can be topologically sorted if and only if it is acyclic.

Proof. If a graph is not acyclic, then it contains a cycle of vertices, and there is no way to order
the vertices in that cycle so that all edges will go from left to right.

On the other hand, if the graph is acyclic, then it must have at least one vertex that has no
incoming edges. To see this, let u1u2 . . . um be a path of maximal length in the graph. Since the
graph is acyclic, no vertex can occur more than once in any path. I claim that u1 has no incoming
edges. For if

−→
u0u1 were an edge, then u0u1u2 . . . um would be a path in the graph with length

greater than the length of u1u2 . . . um, which contradicts the fact that this path has maximal length.
So, suppose that G is a directed acyclic graph. Let v0 be a vertex in G that has no incoming

edges. Then we can let v0 be the first vertex in a topological sort of G. Now, consider the graph
G1 obtained by deleting from G vertex v0 and all the edges that exit v0. G1 is a dag and so has a
vertex v1 that has no incoming edges in G1. We can let v1 be the second vertex in the topological
sort of G. Next, we let G2 be the graph obtained by deleting from G1 v1 and all edges that exit v1.
The next vertex, v2, in the topological sort of G is selected as a vertex in G2 that has no incoming
edges in G2. Continuing in the same way, we obtain a complete topological sort of G.1

The last paragraph in this proof is actually an outline of an algorithm for finding a topological
sort of a dag. However, this algorithm is not very efficient, and we can do better. We can use a
version of recursive depth-first search to do topological sorting in run time Θ(|V | + |E|) (for an
edge-list representation of the graph).

In a topological ordering of the vertices of a dag, all the descendents of a given vertex must
come after that vertex. A recursive depth-first search starting from a vertex v first visits v and then
recursively visits all the descendents of v. If we list the vertices in the order in which they are visited,

1This proof should really be phrased as a proof by mathematical induction.

84 CHAPTER 9. GRAPH ALGORITHMS

they will be in topological order, since every vertex will be listed before its descendents. A single
traversal, starting from a given vertex, will not necessarily visit every vertex in the graph (only the
descendents of the starting vertex). To obtain a topological sort of all vertices, if there are unvisited
vertices after the first traversal, we must do another traversal starting from an unvisited vertex and
visiting only vertices that were not already visited in the first traversal. In the topological order,
all vertices encountered during the second traversal precede all vertices encountered during the first
traversal. Further traversals will be needed if there are still unvisited vertices. The topological sort
at the beginning of this section could be generated by a traversal starting from vertex A, followed
by a traversal starting from vertex C followed by a traversal starting from vertex E.

To implement this algorithm, we can use the following global variables, where N = |V |:

bool visited[N]; // Keep track of which vertices are visited.

int topoOrder[N]; // List vertices in topological order.

int count; // Number of vertices placed in topoOrder.

We modify the recursive DFS procedure so that it places vertices into the topoOrder array. It
is convenient to fill the array in reverse order, dropping each vertex into the array after all its
descendents have been processed. This will allow successive traversals to place the vertices that
they encounter into the array in the correct order.

void topoSortDFS(int v) { // Do a DFS starting from v.

if (! visited[v]) {

visited[v] = true;

for each edge from v to another vertex w { // Pseudocode!

topoSortDFS(w);

}

count++;

topoOrder[N-count] = v;

}

}

Finally, to implement the topological sort algorithm, we must first mark all vertices as unvisited
and then do a series of traversals until all vertices have been visited:

for (int v = 0; v < N; v++)

visited[v] = false;

count = 0; // Start with no vertices in the topoOrder array

for (int v = 0; v < N; v++)

topoSortDFS(v);

If this algorithm is applied to a directed acyclic graph, the result will be that the N vertices of the
graph are stored in the array topoOrder in topological order.

9.3. MINIMAL SPANNING TREES 85

9.3 Minimal Spanning Trees

In this section, we will be working with connected, weighted, undirected graphs. We assume
throughout this section that all the weights are positive numbers. In many such graphs, the weight
of an edge often represents a cost or distance. Let G = (V,E) be such a graph. Suppose that we
want to find a set of edges that connect all the vertices in the graph for the minimum possible cost.
That is, we want to find a subset T of E such that the subgraph G′ = (V, T) is still connected and
the sum of the weights of all the edges in T is as small as possible. We can note first of all that
T must be acyclic. For suppose v1v2 . . . vn is a cycle in T , and let e be any edge in this cycle. If
we remove e from the graph G′, it is clear that the resulting graph is still connected, and the total
weight of all the edges in the resulting graph is less that the total weight of the edges in T . But
this contradicts the minimality of T .

A connected, acyclic, undirected graph is called a free tree. If G = (V,E) is a connected
undirected graph, a spanning tree for G is a subgraph that is a tree and that includes all the
vertices of G. If G is weighted, then we can look for a minimal spanning tree, that is, a spanning
tree in which the total weight of all the edges is as small as possible. In this section, we will first
consider some of the general properties of free trees. We will then look at an efficient algorithm for
finding minimal spanning trees.

Free trees have several useful properties. Let G = (V, T) be a free tree, and let u and v be
two vertices in V . Then there is a unique simple path in G from u to v. We know that there is
at least one simple path, since G is connected. Suppose that there were two distinct simple paths
u1u2 . . . un and v1v2 . . . vm with u1 = v1 = u and un = vm = v. Then there would be a cycle in the
graph, contradicting the fact that the graph is acyclic. (To find the cycle, let ui be the first vertex
in the first path for which ui 6= vi, and let uk be the first vertex in the first path such that k > i
and uk = vj for some vj in the second path. We know k exists since un = v is in the second path.
Then the cycle is ui−1ui . . . ukvj−1vj−2 . . . vi−1, which is a path since uk = vj and is a cycle since
ui−1 = vi−1.)

A free tree is called “free” because it has no root. However, if v is any vertex in a free tree, we
can select v to be a root and any other vertex, u, becomes a descendent of v via the unique simple
path from v to u. This gives the free tree an ordinary, rooted tree structure. From now on in this
section, we will refer to a free tree simply as a tree.

Suppose that G = (V, T) is a tree, that is, a connected, acyclic, undirected graph. Then
|T | = |V | − 1. That is, in a tree, the number of edges is one less than the number of vertices.
To prove this, let v0 be any vertex. Let V ′ be the set obtained by removing v0 from V . Then
|V ′| = |V | − 1. To prove that |T | = |V | − 1, we define a one-to-one correspondence f : V ′ → T . Let
u ∈ V ′. We know that there is a unique simple path in G from v0 to u. Since v0 6= u, this path
contains at least one edge. Let e be the last edge in the simple path from v0 to u. Then we define
f(u) to be e. f is well-defined because there is only one simple path from v0 to u. Note that u is
one of the vertices of the edge f(u), and it is endpoint of this edge that is farther from the root.
This implies that f is one-to-one, because for any edge, there is only one vertex that satisfies this
condition. f is onto because an edge e = u1u2 must be the final edge in the simple path from v0 to
either u1 or to u2. (Let v0v1 . . . vn be the simple path where vn = u1. If e is not the final edge in

86 CHAPTER 9. GRAPH ALGORITHMS

this path, then it is the final edge in the path v0v1 . . . vnu2.)

Note that this implies that all spanning trees for any connected undirected graph contain the
same number of edges, since the number of edges in any spanning tree is one less than the number
of vertices in the graph.

Now suppose that G = (V,E) is a weighted, connected, undirected graph, and assume that
all the weights are positive numbers. One algorithm for finding a minimal spanning tree for G is
Kruskal’s algorithm. This algorithm builds a minimal spanning tree by adding edges one at a
time. The edges of G are considered in order of increasing weight. For each edge, that edge is
added to the tree if and only if doing so will not introduce a cycle into the tree. The process is
finished when all the vertices of G are contained in the tree. For example, in the following graph

B
C

D
F

G

H

A 3

1

6

E

2

4

5

7

9

the edges are considered in the order B,G,A, F,H,E,C,D. The first four edges in this list can be
added to the tree without creating a cycle. Adding H would create the cycle ABFH, so it is not
added to the tree. Adding E would create the cycle BFGE, so it is not added. C can be added
without creating a cycle, and this completes the tree since all vertices are now part of the tree. The
resulting tree is a minimal spanning tree. The edges of the tree are shown in the graph as thick
lines.

Kruskal’s algorithm is simple in concept, but we still need a procedure for checking whether
adding an edge will introduce a cycle. One way to do this would be as follows: When considering
an edge uv for inclusion in the tree, do a search starting from u, following only edges that are
already in the tree. If this search visits vertex v, then there is already a path in the tree from u
to v and adding the edge uv would introduce a cycle in the tree. There are more efficient ways to
check for cycles, but I will not cover them here. Using one of the alternative methods for checking
for cycles, it is possible to implement Kruskal’s algorithm with a running time of Θ(|E| ∗ log(|E|)).

Note that Kruskal’s algorithm does not produce a uniquely determined result in the case where
several edges have the same weight. Edges of the same weight can be considered in any order, and
different orders can produce different trees. However, all the different spanning trees that can be
produced by Kruskal’s algorithm will have the same weight, and they will all be minimal spanning
trees.

It is not obvious that the spanning trees produced by Kruskal’s algorithm do in fact have
minimal weight. I will not prove this fact here.

Prim’s algorithm is another well-known algorithm for finding minimal spanning trees. In Prim’s
algorithm, as in Kruskal’s, the tree is grown one edge at a time. In Kruskal’s algorithm, the set of

9.4. SHORTEST PATHS 87

edges that have been added at a given step can form a disconnected graph. In Prim’s algorithm,
the set of edges that have been added is always connected.

For Prim’s algorithm, we need to keep track of the set of vertices that have been added so far
to the tree. Let P be this set. We start by adding an arbitrary vertex v0 to the tree. Then we
repeat the following procedure until the tree is complete: Choose the shortest edge e = uv such
that u ∈ P and v /∈ P ; add e to the tree, and add v to P . The result is a minimal spanning
tree, although I will not prove this here, and I will not explain how to implement the selection of
e efficiently. Prim’s algorithm is similar to Dijkstra’s shortest path algorithm, which we look at in
the next section.

9.4 Shortest Paths

In this section, we consider directed weighted graphs in which all the weights are positive numbers.
Given two vertices u and v in such a graph, we can try to find a minimal-cost path from u to v.
That is, we want a path from u to v such that the sum of the weights of the edges in the path is
as small as possible. Of course, we are not guaranteed that any path from u to v exists, but we
observe that if there is a path, then the path of minimal weight will be a simple path.

We will consider the shortest path algorithm known as Dijkstra’s algorithm. Given a vertex v0,
Dijkstra’s algorithm will find a minimal weight path from v0 to each vertex in the graph that is
reachable from v0. Although we will work with directed graphs, Dijkstra’s algorithm also applies to
undirected graphs. We just have to treat each edge uv in the undirected graph as a pair of directed
edges

−→
uv and

−→
vu with the same weight.

If v0v1 . . . vn is a minimal weight path from v0 to vn, it must also be true that v0v1 . . . vi is a
minimal weight path from v0 to vi for i = 0, 1, . . . , n − 1. This follows because if there is a shorter
path from v0 to vi, then we could replace v0v1 . . . vi in the path v0v1 . . . vn to obtain a shorter path
from v0 to vn.

If you look at all the shortest paths that start from v0 and lead to other nodes in the graph,
they form a tree. Dijkstra’s algorithm builds up this tree one edge at a time. At each step, it adds
an edge that joins a new vertex onto the tree. The edge that is chosen is the one for which the path
to the newly added vertex is as short as possible. Consider the following graph, where the starting
vertex, v0, is vertex A:

B

A

C D

E F

H I J

G

3

1

5

1

2

4 7

4

3

2
6 3

6

4

5

1

7

2

88 CHAPTER 9. GRAPH ALGORITHMS

We start with vertex A and no edges, and we look at all edges that connect A to other vertices in

the graph. That is, we consider adding
−→
AB ,

−→
AE , or

−→
AH to the tree. We choose the shortest

of these,
−→
AE , to add to the tree. The tree now contains vertices A and E. We look at all edges

that connect one of these vertices to a vertex that is not yet in the tree, that is, at
−→
AB ,

−→
AH,

−→
EC ,

−→
EH, and

−→
EI , and we select the edge that produces the shortest path from A. In this case,

we select
−→
EC which produces the path AEC of length 2, and add it to the tree. The tree now

contains A, E, and I. In the next step, we consider the edges
−→
AB ,

−→
AH,

−→
CD,

−→
CF ,

−→
EH,

−→
EI ,

−→
IH , and

−→
IJ . Two of these edges,

−→
AB and

−→
EH, produce paths of length 3. We can choose to

add either of these edges. Continuing in this way, we eventually get the tree made up of the thick
lines in the graph. This tree contains a minimal weight path from A to every other vertex in the
graph.

Dijkstra’s algorithm is actually more clever than this about deciding which edge to add at
each step in the process. For each vertex u, Dijkstra’s algorithm keeps track of the weight of the
“shortest known path” to u. These values are stored in an array, L, with one location for each
vertex. For a vertex vi, that is already in the tree, L[i] is the weight of the minimal weight path
from the starting vertex to that vi. For a vertex not in the tree, L[i] is the weight of the shortest
path that consists of edges in the tree followed by an edge that joins vi to the tree. If no such path
exists, then L[i] is infinity. At each step of the algorithm, the vertex that is chosen to be added to
the tree is the vj that has the smallest value of L[j] among all vertices not in the tree. When the
vertex vj is added to the tree, some of the L[i] values have to be updated. Namely, for any edge
−→
vjvi for which vi is not in the tree, we have to check whether the path to vi that passes through vj

is shorter than the previously shortest known path to vi. The length of the path through vj to vi

is L[j] plus the weight of
−→
vjvi. If this value is less than the current value of L[i], then it replaces

that value.
L[i] is initialized to zero for the starting vertex and to ∞ for all other vertices. At the completion

of the algorithm, L[i] will still be ∞ for any vertex vi that is not reachable from the starting vertex.
For any other vertex, L[i] will be the weight of the minimal weight path from the starting vertex
to vi. Dijkstra’s algorithm can be coded as follows:

bool inTree[N]; // For recording which vertices are in the tree.

double L[N]; // Best known distances from start to i.

int pred[N]; // pred[i] is the node that precedes vertex

// i on the shortest path from the starting

// vertex to i. pred[i] is -1 if no path

// has yet bee found.

for (int i = 0; i < N; i++) {

inTree[i] = false;

L[i] = INFINITY;

pred[i] = -1;

}

int nextVertex = v; // where v is the starting vertex.

9.4. SHORTEST PATHS 89

L[v] = 0; // path length from v to itself.

while (nextVertex != -1) {

// We add nextVertex to the tree and update

// any values of L[i] for which the path from

// nextVertex to i is shorter than the previous

// best value for i. We assume that weight[i][j]

// is the weight of the edge from vertex i to

// vertex j if such an edge exists, or is

// INFINITY if there is no edge from i to j.

// (That is, weight[N][N] is the adjacency matrix

// for the weighted graph.)

inTree[nextVertex] = true;

for each edge from nextVertex to a vertex w { // Pseudocode!

if (! inTree[w])

if (L[nextVertex] + weight[nextVertex][w] < L[i]) {

L[i] = L[nextVertex] + weight[nextVertex][w];

pred[i] = nextVertex; // Predecessor of i on

} // the new shortest path.

}

// Now find the next vertex to be added. We want

// the vertex that has the smallest value of L[i]

// among the vertices that are not in the tree.

// If all vertices are in the tree, we are done.

// Also, if all vertices not in the tree have

// L[i] = INFINITY, then none of the remaining

// vertices are reachable from the starting vertex,

// and we are done in this case also.

nextVertex = -1;

double min = INFINITY;

for (int i = 0; i < N; i++) {

if (! inTree[i] && L[i] < min) {

nextVertex = i;

min = L[i];

}

}

// We are done if nextVertex is still equal to -1.

}

90 CHAPTER 9. GRAPH ALGORITHMS

The array pred is an optional feature of this algorithm. It can be used to recover the actual
minimal weight path from the starting vertex to any other vertex. If L[i] is not ∞ at the completion
of the algorithm, then pred[i] is the index of the vertex that precedes vi on the shortest path from
the starting vertex to vi. We can find the complete path to vi by tracing these predecessor links
backwards from each vertex to its preceding vertex, all the way back to the starting vertex.

The while loop in Dijkstra’s algorithm is executed at most once for each vertex in the graph,
and the body of the first for loop is executed at most once for each edge in the graph. Assuming
that we are using an edge-list representation for the graph, this for loop contributes O(|E|) to the
run time of the algorithm The second for loop, however, takes up Θ(|V |) time each time it is run,
and it is run O(|V |) times, so the total run time for this for loop is O(|V |2). Since |E| is also
O(|V |2), the running time for this algorithm is O(|V |2). It is Θ(|V |2) in the worst case, which
occurs when every vertex in the graph is reachable from the starting vertex, since the while loop
runs |V | times in this case.

(It is possible to improve the worst case running time to Θ(|E| ∗ log(|E|)) by using a better
method for locating the minimum value of L[i]. The improved method stores the vertices in a data
structure that is a variation on a priority queue. The priority of a vertex vi is given by L[i], and we
order the priority queue so that the item with the smallest priority will be the first one removed.
However, this version of the priority queue must support an operation that was not covered in
Chapter 3: We must be able to decrease the priority of an item that is already in the queue.
This capability is used when the value of L[i] is adjusted in the algorithm. This decrease priority

operation can be implemented in Θ(log(n)) time for a priority queue that contains n items.)

