
CS431, Fall 2016 Homework #2

This homework is due in class on Friday, October 28. The problems are mostly
from Modern Operating Systems, by Andrew Tannenbaum (1992). Questions ba-
sically cover part 2 of our textbook: synchronization, deadlock, and scheduling.
You can discuss the questions with other people in the class, but you should write
up your own answers. Some of the questions do not have definite, unambiguous
answers. In all cases, justify and explain your answers!

1. (From Tannenbaum, p. 71.) Synchronization with condition variables uses the opera-
tions WAIT and SIGNAL. A more general form of synchronization would be to have a
single primitive WAITUNTIL that takes an arbitrary boolean predicate as parameter.
Thus, one could say, for example

WAITUNTIL x < 0 or y+z < n

The SIGNAL primitive would no longer be needed. This scheme is clearly more gen-
eral, but it is not used. Why not?

2. (From Tannenbaum, p. 72.) Round-robin schedulers normally maintain a list of all
runnable threads, with each thread occurring exactly once in the list. What would
happen if a thread occurred twice in the list? Can you think of any reason for allowing
this?

3. (From Tannenbaum, p. 73.) Most round-robin schedulers use a fixed-size quantum
[time-slice]. Give an argument in favor of a small quantum. Now give an argument in
favor of a large quantum.

4. Can you see any problem with combining MFLQ scheduling with “busy waiting” of
the form “while (! condition) thread yield();” ? (Explain.)

5. According to Tannenbaum, the Ostrich Algorithm for dealing with deadlock is, “stick
your head in the sand and pretend there is no problem at all.” Discuss this “algotithm.”
Is a good solution? Always? In some circumstances? (Keep in mind that avoiding,
detecting, and breaking deadlocks can be difficult.)

6. (From Tannenbaum, p. 263.) In an electronic funds transfer system, there are hun-
dreds of identical processes that work as follows: Each process reads a line specifying
an amount of money, the account to be credited, and the account to be debited. Then
it locks both accounts and transfers the money, releasing the locks when done. With
many processes, there is a very real possibility of deadlock. How could you avoid
deadlocks in this system? Does your solution avoid starvation? (A good answer will
discuss several possibilities.)

7. (From Tannenbaum, p. 73.) A classic problem is Lamport’s (1974) bakery problem.
In this problem, a bakery has a fixed number of salespeople. Every entering customer
takes a number. Until the number is called, the customer waits. Whenever a sales-
person is free, the next number is called. Give pseudocode for a procedure for the
salespersons to execute and one for the customers to executed. Assume that there
is a function serve(customer) that a server can call to handle the interaction with a
customer. Be clear about what synchronization mechanisms you are using!

