This lab is to be turned in at next week's lab period, on November 16. Present your responses fully and clearly. Reminder: There is a test coming up next week, on Friday, November 19.

1. Consider the simple cubic polynomial function $f(x)=x^{3}-3 x^{2}-9 x+2$. Find the critical points of f. Find the intervals on which f is increasing and on which it is decreasing. Find any local maxima and local minima of f. Find the intervals on which f is concave up and on which it is concave down. Find any inflection points of f.
2. Consider a quadratic polynomial function $f(x)=a x^{2}+b x+c($ where $a \neq 0)$.
a) Show that f has one critical point and find it.
b) What can you say about the concavity of $f(x)$?
c) The critical point can be an absolute maximum or an absolute minimum. For which values of a is it a maximum point? For which values of a is it a minimum point? Why?
d) Suppose that the equation $a x^{2}+b x+c=0$ has two solutions, x_{1} and x_{2}. Verify that the critical point of f is $\left(x_{1}+x_{2}\right) / 2$; that is, the critical point lies halfway between the two roots.
3. For this problem, you should investigate the maxima and minima of the functions $x^{n} e^{-x}$, for all positive integers n. Present your results as a short essay, with equations, calculations, and drawings included as appropriate. You can use a graphing calculator to look at some graphs, if you want.

Start by finding the critical points of $x^{n} e^{-x}$. Each of these functions has a local maximum. Find that maximum. For which values of n is the local maximum an absolute maximum? Discuss the pattern in words. (How does the maximum point depend on $n ?$)

Some of the functions-about half of them-also have an absolute minimum point. For which values of n does the function have a minimum, and where is the minimum point?

Draw the graph of $y=x^{n} e^{-x}$ for a few representative values of n. (Note: all of these functions have the property that $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$. We will be able to prove that after Section 4.7.)
4. For this problem, you should investigate the graphs $f(x)=m x+\sin (x)$, where m is a constant and $m>0$. Present your results as a short essay, with equations, calculations, and drawings included as appropriate. You can use a graphing calculator to look at some graphs, if you want.

Describe how this function is created by adding a line to a sine function. Find the x-values where f has inflection points. Find any critical points of f. For which values of m do critical points exist? For which values of m does the function have local minima and maxima? For which one (positive) value of m does $f(x)$ have critical points that do not correspond to local minima and maxima? (Hint: For that value of m, the function is strictly increasing, but it "flattens out" and has inflection points at the critical points.) Sketch the graph for that value of m and for a couple other typical values.

