Please hand in your responses to the following exercises at the beginning of next Tuesday's lab, September 21. You should work on these problems in a group of three or four students. The questions on this lab are related to material in Sections 2.4 and 2.7. In particular, the last four problems use the "epsilon-delta" definition of limits that is covered in Section 2.7.

1. Use the technique of "rationalizing the numerator" or "rationalizing the denominator" to evaluate each of the following limits.
a) $\lim _{x \rightarrow 1} \frac{\sqrt{2-x}-x}{x-1}$
b) $\lim _{x \rightarrow 0} \frac{x}{\sqrt{3 x+9}-\sqrt{x+9}}$
2. Find values of $a$ and $b$, if possible, so that $\lim _{x \rightarrow c} f(x)$ exists for all numbers $c$, where $f(x)$ is the function $f(x)= \begin{cases}x+2, & \text { if } x<0 \\ a x+b, & \text { if } 0 \leq x \leq 1 \\ x^{2}-2, & \text { if } x>1\end{cases}$
3. In this exercise, you will use the Squeeze Theorem to prove that $\lim _{x \rightarrow 0}\left(x \sin \left(\frac{1}{x}\right)\right)=0$.
a) Show that $-|x| \leq\left(x \sin \left(\frac{1}{x}\right)\right) \leq|x|$ for all $x \neq 0$. You will have to consider the cases $x>0$ and $x<0$ separately.
b) Show that $\lim _{x \rightarrow 0}|x|=0$. (Hint: Find the limit from the left and the limit from the right, as $x$ approaches 0.)
c) Apply the Squeeze Theorem.
4. Discuss and explain. Suppose that $f(x)$ and $g(x)$ are functions that are defined for all $x$. Suppose that $\lim _{x \rightarrow 1} g(x)=2$ and $\lim _{x \rightarrow 2} f(x)=3$. What can you say about of $\lim _{x \rightarrow 1}(f \circ g)(x)$ ? You do not have to give a very rigorous answer.
5. Use the epsilon-delta definition of limits to prove directly that $\lim _{x \rightarrow 3}(7 x+3)=21$. (You have to find a specific formula for $\delta$, and show that it works.)
6. Use the epsilon-delta definition of limits to prove directly that $\lim _{x \rightarrow 2}\left(x^{2}\right)=4$. In your proof, use $\delta=\min \left(1, \frac{\varepsilon}{5}\right)$, so that you have both $\delta \leq 1$ and $\delta \leq \frac{\varepsilon}{5}$. You will need to use the fact that $|x-2|<\delta$ implies $|x|<3$, and you should explain why that is true; the explanation can be based on the interpretation of $|x-2|$ as the distance of $x$ from 2 .
7. Consider the function $f(x)= \begin{cases}3 & \text { if } x<1 \\ 2 & \text { if } x>1\end{cases}$
a) Apply the epsilon-delta definition of limits to show that $\lim _{x \rightarrow 1} f(x) \neq 3$. To do this, let $\varepsilon=1$. Explain why no matter how small $\delta$ is chosen, there will be values of $x$ that satisfy $0<|x-1|<\delta$, but for which $|f(x)-3| \geq \varepsilon$. (And explain why that fact does the trick!) A picture would be helpful.
b) Apply the epsilon-delta definition of limits to show that $\lim _{x \rightarrow 1} f(x) \neq 2 \frac{1}{2}$. To do this, let $\varepsilon=\frac{1}{2}$. Explain why no matter how small $\delta$ is chosen, there will be values of $x$ that satisfy $0<|x-1|<\delta$, but for which $\left|f(x)-2 \frac{1}{2}\right| \geq \varepsilon$.
c) Discuss in your own words why there is no number $L$ such that $\lim _{x \rightarrow 1} f(x)=L$, based on the epsilon-delta definition of limits.
8. Consider the Dirichlet function $g(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{array}\right.$. Using the epsilon-delta definition of limits, explain why $\lim _{x \rightarrow a} g(x)$ does not exist for any $a$.
