The third test for this course will be given in class on Friday, November 19. The test will cover Sections 3.7 through 4.3 .

You will not need a calculator for the test. A basic non-graphing calculator will be provided to you, and you will be permitted to use only the calculator that is provided. Scrap paper will also be provided. All you need is a pencil (or pen).

In addition to my usual office hours this week, I will be available in my office on Thursday from 10:00 to 11:00 AM and from 1:30 to 4:00 PM.

Derivative Rules

You should know the basic rules for differentiation: the constant multiple rule, the sum and difference rules, the quotient rule, the product rule, and the chain rule. You should also be able to use implicit differentiation and logarithmic differentiation. You do not need to know the derivative of every basic function, but you should have memorized the following rules:

$$
\begin{array}{ll}
\frac{d}{d x} x^{k}=k x^{k-1} \text { for a constant } k & \frac{d}{d x} e^{x}=e^{x} \\
\frac{d}{d x} b^{x}=\ln (b) b^{x}, \text { for a constant } b & \frac{d}{d x} \tan (x)=\sec ^{2}(x) \\
\frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \cos (x)=-\sin (x) \\
\frac{d}{d x} \ln (x)=\frac{1}{x} & \frac{d}{d x} \ln (|x|)=\frac{1}{x} \\
\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{x^{2}+1}
\end{array}
$$

Here are some terms and ideas that you should be familiar with for the test:
implicit function
implicit differentiation
finding the slope of a tangent line using implicit differentiation
using implicit differentiation of $y^{n}=x$ to prove that $\frac{d}{d x} x^{\frac{1}{n}}=\frac{1}{n} x^{\frac{1}{n}-1}$
normal lines [exercises 59-64 in Section 3.7]
using implicit differentiation of $e^{y}=x$ to prove that $\frac{d}{d x} \ln (x)=\frac{1}{x}$
logarithmic differentiation
finding derivatives of functions of the form $f(x)^{g(x)}$, such as x^{x} or $\sin (x)^{x^{2}+1}$
the inverse trigonometric functions $\sin ^{-1}(x)$ and $\tan ^{-1}(x)$ and their domains and ranges related rates problems
finding rate relationships by differentiating a formula with respect to t
extreme values (extrema); minima and maxima
absolute minimum; absolute maximum
local minimum; local maximum
if f has a local minimum or maximum at $x=c$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$
critical points
local minima and maxima can occur only at critical points
absolute minima and maxima can occur only at critical points and endpoints
Extreme Value Theorem:
A continuous function on a closed interval has an absolute minimum and an absolute maximum on that interval.
increasing function on an interval; decreasing function on an interval
if $f^{\prime}(x)$ exists for all x in an interval I and $f^{\prime}(x)>0$ for all x in I, then f is increasing on I
if $f^{\prime}(x)$ exists for all x in an interval I and $f^{\prime}(x)<0$ for all x in I, then f is decreasing on I
concavity; concave up; concave down
inflection point
if $f^{\prime \prime}(x)$ exists for all x in an interval I and $f^{\prime \prime}(x)>0$ for all x in I, then f is concave up on I
if $f^{\prime \prime}(x)$ exists for all x in an interval I and $f^{\prime \prime}(x)<0$ for all x in I, then f is concave down on I

First Derivative Test
Second Derivative Test
techniques for graphing functions

- vertical asymptotes, horizontal asymptotes, and end behavior
- intercepts and other values of the function and its derivatives
- the first derivative, increasing/decreasing, and local maxima and minima
- the second derivative, concave up/down, and inflection points
- special features: cusps, corners, vertical tangent lines, slant asymptotes

