This lab is meant as review for tomorrow's test. It will not be collected. Sample answers will be available at the lab. Note that this is meant to be a general review of the material you should know; however, not every type of problem from this lab will appear on the test and not every problem on the test will be similar to a problem on this lab. Also, remember that you should be able to state important definitions and theorems!

1. Consider the following table that shows some values of a function f(x). Make plausible guesses for whatever limits you can, based on the information in the table, including one-sided limits and limits at infinity. (Limits at infinity were covered on a previous lab but will not be on the test.)

x	f(x)	x	f(x)	x	f(x)
-1000	9.002	0.75	2.470	2.1	1.7
-100	9.15	0.9	2.284	2.01	16.25
-10	9.2	0.99	2.2512	2.001	1581
-1.1	3.207	0.999	2.2501	10	7
-1.01	3.065	1	2.25	100	7.1
-1.001	3.013	1.001	2.2495	1000	6.94
-1.0001	3.002	1.01	2.238	10000	7.002
-1	2	1.1	2.225	100000	6.999

2. Draw a graph of a function y = h(x) that satisfies all of the following:

a) For all values of a not mentioned, h(a) and $\lim h(x)$ are both defined and are equal

- b) h(1) = 4c) $\lim_{x \to 1^{-}} h(x) = 2$ d) $\lim_{x \to 1^{+}} h(x) = 2$ e) $\lim_{x \to 3^{-}} h(x) = +\infty$ f) $\lim_{x \to 3^{+}} h(x) = -\infty$ g) $\lim_{x \to -2} h(x) = +\infty$ h) h(0) = 2i) $\lim_{x \to 0^{-}} h(x) = 2$ j) $\lim_{x \to 0^{+}} h(x) = -1$
- **3.** For each of the following functions, investigate the behavior of limits of the function at x = -2 and x = 2. Also determine whether the function is continuous at x = -2 and at x = 2.

(1 m ²	if m < 0		-4(x+1),	$ \begin{array}{l} \text{if } \leq -2 \\ \text{if } -2 < x < 2 \end{array} $
$f(x) = \int_{-\infty}^{1-x} \frac{1-x}{2x+1}$	$\lim_{x \to -2} x < -2$	$g(x) = \langle$	x^2 ,	if $-2 < x < 2$
$f(x) = \begin{cases} 2x + 1, \\ 2 \end{cases}$	if $x < -2$ if $-2 \le x \le 2$ if $x > 2$		3,	if $x = 2$
(3,	If $x > 2$		2x,	if $x > 2$

- 4. For each of the functions in the previous problem, determine whether the function is differentiable at -2 and whether it is differentiable at 2. If so, find the value of the derivative.
- 5. Evaluate the following limits. (This means show any algebraic work, but you do not have to show the application of individual limit laws.)

a)
$$\lim_{x \to 3} x^2 + 1$$
 b) $\lim_{t \to 1} \frac{t^3 - t^2}{(t-1)^2}$ c) $\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{x-4}$ d) $\lim_{x \to 2} \frac{x^2 - 7x + 10}{2x^2 + x - 10}$

- 6. Use the definition of derivative to compute the following derivatives directly:
 - **a)** f'(1) where $f(x) = (x+2)^2$
 - **b)** g'(0) where g(z) = 3z + 2
 - **c)** s'(4) where $s(t) = \frac{1}{t-2}$
 - **d)** t'(3) where $t(x) = \sqrt{7x+4}$
- 7. Suppose that the position of a point at time t is given by $s(t) = 2t^2 + 3t$. What is its average velocity between time t = 0 and time t = 2? What is its instantaneous velocity at t = 0?
- 8. Is it possible for $\lim_{x\to a^-} f(x)$ to exist while $\lim_{x\to a^+} f(x)$ does not exist? (Explain!)
- 9. Write an essay discussing the relationship between derivatives and tangent lines.