This lab is due next week at the beginning of lab. All problems are to be turned in. Reminder: The first test will be at the end of next week, on Friday, February 11. It will cover Chatper 5.

- 1. We have defined the definite integral of a function on a closed interval [a, b]. The numbers a and b have to be finite. But of course, as usual, we can use limits to investigate what happens as some quantity approaches infinity. Here, for example, we can consider $\lim_{b\to\infty}\int_1^b f(x)\,dx$. Apply this idea in each of the following cases:
 - a) $\lim_{b \to \infty} \left(\int_1^b \frac{1}{x^2} dx \right)$ b) $\lim_{b \to \infty} \left(\int_1^b \frac{1}{\sqrt{x}} dx \right)$ c) $\lim_{b \to \infty} \left(\int_1^b \frac{1}{x} dx \right)$
- d) Explain what these limits say in terms of areas. What area is represented by the limit, and is that area infinite?
- **2.** Suppose that f is a function that is continuous on $[0, \infty]$ and that $\lim_{x \to \infty} f(x) = 1$. Consider the average value of f(x) on the interval [0, b]. What do you expect to happen to this average value as $b \to \infty$? That is, what is $\lim_{b \to \infty} \left(\frac{1}{b} \int_0^b f(x) dx\right)$? Why? Explain your reasoning. Draw a picture.
- 3. This problem is an exercise in computing indefinite integrals by substitution. We know that $\int x^{11} dx = \frac{1}{12}x^{12} + C$. Compute $\int x^{11} dx$ using each of the following substitutions, and check that the answer is correct in each case.
 - **a)** $u = x^6$ **b)** $u = x^3$ **c)** $u = x^2$
- **4.** The integral $\int \sin(x)\cos(x)\,dx$ can be done by substitution in two different ways: Let $u=\sin(x)$, or let $u = \cos(x)$. Do the integral **both** ways. Then **explain** why the two answers, which look different, can both be correct.
- 5. Sometimes, an indefinite integral can be found using a substitution that is less than obvious. Compute the following integrals by using the suggested substitution. Then, in each case, **check** your answer by computing its derivative.
 - a) $\int \frac{x^3}{\sqrt{2x^2+1}} dx$, using $u=2x^2+1$. (Hint: Write x^2 in terms of u.)
 - b) $\int \frac{1}{1-\sqrt{x}} dx$, using $u=1+\sqrt{x}$. (Hint: Solve for dx in terms of u and du.)
 - c) $\int \frac{1}{\sqrt{x(1+x)}} dx$, using $u = \sqrt{x}$. (Hint: Write x in terms of u.)
 - d) $\int \sin^3(x) dx$, using $u = \cos(x)$. (Hint: Write $\sin^2(x) = 1 \cos^2(x)$.)