This homework is due on Monday, May 4.

- 1. Some exercises about complex numbers...
 - a) Let a,b,c, and d be real numbers with $d \neq 0$. Write $\frac{a+bi}{c+di}$ in the form $\alpha + i\beta$ where α and β are real numbers. Hint: Multiply by $\frac{c-di}{c-di}$.
 - **b)** Let z = a + bi be a complex number, where a and b are real. The norm of z is defined by $|z| = |a + bi| = \sqrt{a^2 + b^2}$. Show that for two complex nubmers z and w, $|zw| = |z| \cdot |w|$.
 - c) Use the fact that $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ and the fact that $e^{i(\theta+\varphi)} = e^{i\theta} \cdot e^{i\varphi}$ to derive the angle sum formulas for sine and cosine.
- **2.** Let A be the complex matrix $A = \begin{pmatrix} -1 & i & 0 \\ i & -2 & 1-i \\ 1 & 3-i & 1+i \end{pmatrix}$. Find the inverse matrix A^{-1} (by forming the augmented matrix $(A|I_n)$ and putting it into reduced row echelon form).
- 3. Find all (complex) eigenvalues for the following matrices. (At least one of these is really easy.)

a)
$$\begin{pmatrix} 1 & 5 \\ -2 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & i & 1-i \\ 0 & 0 & 1+i \end{pmatrix}$ c) $\begin{pmatrix} 3 & 0 & 0 \\ 1 & 5 & -5 \\ 0 & 3 & -1 \end{pmatrix}$

- **4.** Suppose that λ is an eigenvalue for the matrix A. Show that λ^2 is an eigenvalue for the matrix $A^2 = AA$. Now suppose that A is non-singular; in that case, can you say anything about eigenvalues of the inverse matrix, A^{-1} ?
- **5.** Suppose that $h: \mathbb{C}^2 \to \mathbb{C}^2$ is a homomorphism, i is an eigenvalue of h with eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and -i is an eigenvalue of h with eigenvector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Find the matrix of h in the standard basis.
- **6.** Let $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$, and assume that $a \neq 0$. Show that A is not diagonalizable. (You can do this by showing that \mathbb{C}^3 does not have a basis of eigenvectors of A.)
- 7. Let \mathscr{D} be the vector space of differentiable functions from \mathbb{R} to \mathbb{R} . That is, \mathscr{D} is the set $\{f \colon \mathbb{R} \to \mathbb{R} \mid f'(x) \text{ exists for all } x\}$, with the usual addition and scalar multiplication for real-valued functions. Let $\partial \colon \mathscr{D} \to \mathscr{D}$ be the derivative function, $\partial (f) = f'$. Show that every real number λ is an eigenvalue for ∂ , and find an eigenvector for eigenvalue λ . (You need to remember a fact from calculus.)