This homework on Sections I.3, II.1, and II.2 is due in class on Wednesday, February 5.

1. Determine whether each matrix is singular or non-singular. As part of the justification for you answers, you will have to explain in words why you can answer the question by putting the matrix into echelon form.

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 3 & -1 \\ 2 & 0 & 3 \\ -1 & 2 & 1 \end{pmatrix}$ c) $\begin{pmatrix} -1 & 0 & 1 & 0 \\ 3 & 2 & -2 & 4 \\ 2 & 1 & 0 & -1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$

2. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n , and let r and s be real numbers. By writing out \vec{u} and \vec{v} in coordinates, verify the following identities:

a)
$$r(\vec{v} + \vec{u}) = r\vec{v} + r\vec{u}$$

b)
$$(r+s)\vec{v} = r\vec{v} + s\vec{u}$$

c)
$$(r\vec{v}) \cdot \vec{u} = r(\vec{v} \cdot \vec{u})$$

- **3.** Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n , and let a and b be non-zero real numbers. Verify that the angle between \vec{v} and \vec{u} is the same as the angle between $a\vec{v}$ and $b\vec{u}$.
- **4.** Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-1}$ be n-1 vectors in \mathbb{R}^n . Prove that there is a non-zero vector \vec{x} in \mathbb{R}^n that is orthogonal to \vec{v}_i for $i=1,2,\ldots,n-1$. (Hint: Think about linear equations!) Now, find n vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ such that the $\vec{0}$ is the only vector in \mathbb{R}^n that is orthogonal to \vec{u}_i for $i=1,2,\ldots,n$. (Hint: Don't look for a complicated example!)
- **5.** A plane in \mathbb{R}^3 can be given by an equation Ax + By + Cz = D where A, B, C, and D are constants and A, B, and C are not all zero.

Suppose two planes are given by equations $A_1x+B_1y+C_1z=D_1$ and $A_2x+B_2y+C_2z=D_2$. The intersection of the two planes can be empty, or it can be a line, or the planes could be identical. How can the correct possibility be determined from the constants in the equations? Explain! (Hint: Think in terms of solving linear systems.)