This homework is due on Friday, March 13.

1. Find the rank of each matrix. Fully explain your reasoning.

a)
$$\begin{pmatrix} -1 & 1 & 4 & 2 \\ 2 & -1 & 3 & 0 \\ 3 & 0 & -3 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 3 & -2 & 1 \\ 2 & -1 & 1 & 3 \\ 3 & 2 & -1 & 4 \\ 1 & -4 & 3 & 2 \end{pmatrix}$

- **2.** Suppose the matrix $\begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & x \\ 2 & 1 & x \end{pmatrix}$ has rank 2. What is x? Explain your reasoning.
- **3.** Let $B = \{\vec{\beta}_1, \vec{\beta}_2, \dots \vec{\beta}_n\}$ be a basis for some vector space V. Let $\vec{v} \in V$. We know from the Exchange Lemma that if $\vec{v} = c_1 \vec{\beta}_1 + c_2 \vec{\beta}_2 + \dots + c_n \vec{\beta}_n$, and if $c_i \neq 0$, then \vec{v} can be exchanged for $\vec{\beta}_i$ in B to produce a new basis $\hat{B} = \{\vec{\beta}_1, \vec{\beta}_2, \dots, \vec{\beta}_{i-1}, \vec{v}, \vec{\beta}_{i+1}, \dots, \vec{\beta}_n\}$.
 - a) Explain why if \vec{v} is any non-zero vector in V, then \vec{v} can be exchanged for at least one vector in the basis B.
 - b) Can it happen that for some non-zero vector $\vec{v} \in V$, there is **exactly one** vector in \vec{v} for which \vec{v} can be exchanged? If not, why not? If so, what has to be true about \vec{v} ?
- **4.** Consider a general 3×3 matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. To keep the notation manageable, this problem looks at matrix multiplication of vectors by A, but it could be generalized to apply to any matrix.
 - a) We have seen how to multiply a vector by a matrix, and we have seen that multiplication by an $m \times n$ matrix defines a function from \mathbb{R}^n to \mathbb{R}^m . This problem asks you to verify for the case of a 3×3 matrix that that function respects vector operations. That is, show that for any $\vec{v} \in \mathbb{R}^3$ and $r \in \mathbb{R}$, $A(r\vec{v}) = r \cdot (A\vec{v})$ and for any $\vec{v}, \vec{w}, A(\vec{v} + \vec{w}) = (A\vec{v}) + (A\vec{w})$. (This is an easy calculation.)
 - **b)** Let $\vec{e_1}, \vec{e_2}, \vec{e_3}$ be the usual standard basis for \mathbb{R}^3 . Show that $A\vec{e_i} = a_i$ for i = 1, 2, 3, where a_i is the *i*-th column of A. Again, this is an easy calculation.
 - c) Deduce that the function from \mathbb{R}^3 to \mathbb{R}^3 defined as multiplication by the matrix A is completely determined by its effect on the basis vectors $\vec{e}_1, \vec{e}_2, \vec{e}_3$. That is, once you know $A\vec{e}_1, A\vec{e}_2, A\vec{e}_3$, you know what $A\vec{v}$ must be for any $\vec{v} \in \mathbb{R}^3$.
- **5.** Let V and W be vector spaces. Suppose that $f: V \to W$ is a linear function. (That is, $f(r \cdot \vec{v}) = r \cdot f(\vec{v})$ for all $r \in R$, $\vec{v} \in V$, and $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$ for all $\vec{v}_1, \vec{v}_2 \in V$. let $K = f^{-1}(\vec{0})$. That is, $K = \{\vec{v} \in V \mid f(\vec{v}) = \vec{0}\}$. Show that K is a subspace of V.

- **6.** Let \mathcal{P}_n be the vector space of polynomials of degree less than or equal to N, as usual. Show that the function $f: \mathbb{R}^3 \to \mathcal{P}_2$ given by $f\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (a+b+c) + (b+c)x + cx^2$ is an isomorphism of vector spaces.
- 7. Show that the function $f: \mathbb{R}^4 \to \mathbb{R}^4$ given by $f \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} d \\ c \\ b \\ a \end{pmatrix}$ is an automorphism.
- **8.** Let $\langle \vec{b}_1, \vec{b}_2 \rangle$ be any basis of \mathbb{R}^2 . Define a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f \begin{pmatrix} x \\ y \end{pmatrix} = x\vec{b}_1 + y\vec{b}_2$. Show that f is an automorphism.